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Introduction by the Organizers

Interfaces and free boundaries appear in numerous applications, ranging from tu-
mor growth, finance, biological membranes, porous media, two-phase flows, fluid
structure interaction to shape optimisation problems. Often, geometric partial
differential equations have to be solved on a surface in order to determine the
evolution of interfaces and free boundaries. Besides classical methods from the
existence, uniqueness and regularity analysis of partial differential equations new
approaches involving a close interaction between modeling, analysis and numeri-
cal methods have been proven to be successful. The workshop brought together
researchers working on aspects of geometry, the theory of partial differential equa-
tions, classical analysis, asymptotic analysis, and novel numerical methods. Thus,

https://creativecommons.org/licenses/by-sa/4.0/deed.en


390 Oberwolfach Report 8/2024

new insights were established into so far only vaguely formulated scientific prob-
lems in order to obtain precise models and equations as well as structure preserving
and efficient numerical methods for problems involving interfaces and free bound-
aries.

The workshop was attended by 47 participants from Europe, Asia and America
with an expertise in analysis of PDEs, modeling, numerical analysis and scientific
computing. In addition, six researchers participated online. The scientific program
consisted of 28 plenary talks. In addition, six young researchers were given the
opportunity to present their research in twenty minutes talks on Tuesday and
Thursday evening.

The workshop had a focus on free and moving boundary problems, phase field
equations and their singular limits, bulk-surface interactions, geometric variational
and geometric evolution problems, problems involving bending energies, stochastic
PDEs for interfaces and free boundaries and PDEs on surfaces. We will now briefly
discuss the relevant contributions.

Free and moving boundary problems: John King discussed new developments
for moving boundary problems for singular reaction-diffusion equations with a
focus on applications in tissue and tumor growth. Sara Zahedi introduced new
divergence preserving cut finite elements which are important for two-phase flow
moving boundary problems. Julian Fischer established a weak-strong uniqueness
principle for varifold solutions to the Mullins-Sekerka problem. Richard Schubert
showed convergence to a planar interface for the Mullins-Sekerka evolution where
in particular the fact that one has to work on unbounded domains causes major
difficulties. James Sethian presented numerical approaches for highly complex
models related to fluid interfaces in industrial painting. Amal Alphonse studied
free boundaries in quasi-variational problems arising in thermo-elasticity.

Phase field models and their singular limits: Helmut Abels considered a sharp
interface limit of a Navier-Stokes/Allen-Cahn system using both matched asymp-
totic expansions and the relative entropy method. Maurizio Grasselli showed new
results on multi-component phase-field systems and in particular showed strict sep-
aration properties. Matthias Röger studied phase separation on varying surfaces
and considered the convergence of diffuse interface approximations. Chun Liu used
non-equilibrium thermodynamics to study temperature effects for chemical reac-
tions and in particular could derive non-isothermal models for phase transitions in
the Cahn-Hilliard context. Changyou Wang used axisymmetric Ginzburg-Landau
approximated solutions of the Ericksen-Leslie system to show existence of weak
solutions. Dennis Trautwein introduced a new viscoelastic phase field model for
tumor growth and showed existence of solutions via a stable finite element ap-
proximation. Clemens Ullrich introduced and analysed a phase field model for the
evolution of surfactants.

Geometric variational and geometric evolution problems: Lia Bronsard studied
non-local isoperimetric problems leading to double bubbles and core-shells with
applications to triblock copolymers. Also in the talk of Matteo Novaga, a non-
local energy was minimized. However, in his case the non-locality originated from
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a charge repulsion. Antonin Chambolle considered discrete to continuous crys-
talline curvature flows using a fully discrete version of the Luckhaus-Sturzenhecker
scheme. Alexandra Pluda studied another geometric evolution problem, namely
the network curvature flow. Here, results can help to understand coarsening in
poly-crystalline materials. Paola Pozzi studied the anisotropic curvature flow for
networks and in particular showed stability results. Björn Stinner showed conver-
gence of finite element schemes with mesh smoothing for geometric evolution prob-
lems. Klaus Deckelnick was able to introduce a new tangential motion for fourth
order geometric curve evolutions which made it possible to rigorously study the
convergence of related finite element discretizations. Alice Marveggio studied the
multiphase mean curvature flow and was able to show stability beyond a circular
topology change in the planar case.

Bulk-surface interactions: Balázs Kovács studied a bulk-surface model for tu-
mor growth and was able to provide a convergence analysis for a finite element
scheme. Patrik Knopf considered two-phase flow with moving contact lines and
modeled the bulk-surface interaction with the help of a phase field model with dy-
namic boundary conditions. Dieter Bothe introduced new sharp interface models
for dynamic contact lines which have the potential to deal with the contact line
paradox.

Problems involving bending energies: Sören Bartels studied the Babuška para-
dox related to an instability of certain fourth order problems. He in particular also
considered the paradox for nonlinear versions. Maxim Olshanskii studied equilib-
rium shapes for deformable liquid surfaces taking curvature energies into account.
The talk of Tom Ranner dealt with microswimmer locomotion and he was able to
model the motion of real swimmers with the help of a Cosserat rod model.

PDEs on surfaces: Axel Voigt and Robert Nürnberg both discussed fluid de-
formable models involving surface Navier-Stokes equations and bending energies.
Tom Sales studied a (tangential) Navier-Stokes/Cahn-Hilliard system on an evolv-
ing surface which is an evolving surface analogue of the “Model H” of Hohenberg
and Halperin. Achilleas Mavrakis analysed a surface finite element method for
surface Stokes equations, and Andrea Poiatti considered several models for phase
separation on evolving surfaces.

Stochastic PDEs for interfaces and free boundaries: Günther Grün was able to
show finite speed of propagation properties for stochastic thin film equations and
Ana Djurdjevac studied multilevel repesentations of isotropic random fields on the
sphere.
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Abstracts

Some moving-boundary problems for singular
reaction-diffusion equations

John King

The quasilinear reaction-diffusion equation

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
+ f(u)

is derived from a simple two-phase model for tissue (or biofilm) growth, where u
is the volume fraction of cellular material, so that 0 6 u 6 1. There is specific
interest in allowing D and f to take power-law forms in each of the limits u → 0
and u → 1; the ultimate behaviour can then exhibit a large variety of distinct
types of phenomena (involving a number of classes of both linear and superlinear
growth rates) and these are classified in terms of the various power-law exponents.
A specific focus is on regimes in which moving-boundary problems naturally arise,
either at u = 0 (usually associated with the case of ‘slow’ diffusion and leading
to a clearly defined tissue boundary) and/or at u = 1 (whereby considerations
associated with the contact inhibition of cell division necessarily arise through close
packing and lead to obstacle-problem-like formulations). The analyses in question
involve a combination of formal asymptotic methods alongside a comprehensive
characterisation of the possible solutions branches.

Babuška’s paradox in linear and nonlinear bending theories

Sören Bartels

(joint work with Andrea Bonito, Peter Hornung, and Philipp Tscherner)

The plate bending or Babuška paradox refers to an instability of certain fourth
order problems with respect to the approximation of the underlying domain by
polygonally bounded domains. In particular, for the minimization of the bending
energy

I(ω, u) =
σ

2

∫

ω

|∆u|2 dx+
1 − σ

2

∫

ω

|D2u|2 dx−
∫

ω

fu dx

subject to simple support boundary conditions

u|∂ω = 0

we have that approximations um ∈ H2(ωm) ∩H1
0 (ωm) obtained as minimizers for

the funtionals I(ωm, u) do not converge to the minimizer u ∈ H2(ω) ∩ H1
0 (ω) if

∂ω has a curved part and ωm are polygonal approximations of ω. The failure of
convergence can be explained by a curvature contribution in the Euler–Lagrange
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equations related to the minimization problem, i.e., the minimizer u for the func-
tional I(ω, ·) solves the equations

∆2u = f in ω, u = 0 on ∂ω, ∆u+ (1 − σ)κ∂nu = 0 on ∂ω,

where κ is the curvature of ∂ω. For polygonally bounded domains ωm, the (dis-
tributional) curvature κm vanishes away from the corner points while the normal
derivative ∂num vanishes in the corner points if um = 0 on ∂ωm. Hence, the
minimizers um for the functionals I(ωm, ·) satisfy the equations

∆2um = f in ωm, um = 0 on ∂ωm, ∆um = 0 on ∂ωm.

The disappearance of the material parameter σ indicates that convergence um → u
cannot be expected in general. A particular rotationally symmetric example has
been specified in [1].

An alternative and more general explanation for the failure of convergence can
be obtained by adopting a variational viewpoint. With the help of density results
for certain regular functions in the admissible set, one verifies the identity

I(ω, u) =
1

2

∫

ω

|∆u|2 dx+
1 − σ

2

∫

∂ω

κ|∂nu|2 ds−
∫

ω

fu dx,

while for polygonally bounded domains ωm one finds that

I(ωm, u) =
1

2

∫

ω

|∆um|2 dx−
∫

ωm

fum dx.

The representations imply that Γ-convergence Im → I cannot apply in general
and that a modification of the boundary condition is necessary to guarantee con-
vergence.

Following ideas from [4], an appropriate treatment of the boundary conditions
consists in imposing these in the corner points only, i.e., considering the set of
admissible functions

Am =
{
v ∈ H2(ωm) : v(ci) = 0 for i = 0, 1, . . . ,m

}
,

where ci ∈ ∂ω, i = 0, 1, . . . ,m, are the corner points of ωm that are assumed to

belong to the boundary of ω. Letting Ĩ(ωm, ·) denote the application of I(ωm, ·) to
funtions in Am one easily establishes the variational convergence of the functionals

Ĩm to I. The construction of a so-called recovery sequence is simply realized via
the restriction of functions u ∈ H2(ω) ∩ H1

0 (ω) to the approximating domains
ωm ⊂ ω which provides approximations um ∈ Am.

In finite element settings it is crucial that the discrete boundary conditions
are satisfied by nodal interpolants in the approximating triangulated domains of
functions u ∈ H3(ω) ∩ H1

0 (ω). Then, convergence of discrete minimizers can be
established for conforming and nonconforming finite element methods, cf. [3].

The Babuška paradox is difficult to observe in real experiments since the Kirch-
hoff bending model only applies to small deflections. The paradox may thus be
an artifact related to an oversimplistic modelling. That this is not the case can
be seen by considering nonlinear bending problems. An interesting case results
from the description of thin-sheet folding problems, in which a given crease line
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allows for discontinuities in the deformation gradient. The mathematical model
obtained in [2] seeks a deformation y : ω → R3 that is continuous in ω and
twice weakly differentiable away from the crease line S, i.e., it belongs to the set
H2(ω \ S;R3) ∩W 1,∞(ω;R3), and minimizes the functional

Ifold(ω, S, y) =
1

2

∫

ω\S

|D2y|2 dx−
∫

ω

f · y dx

subject to boundary conditions Lbc(y) = ℓbc and the isometry condition

(∇y)T∇y = id.

The latter condition imposes the constraint that no shearing or stretching occurs.
Simple experiments show that singularities occur if a smooth crease line S is
approximated by piecewise straight crease lines Sm. In fact, it is possible to prove
that deformations ym ∈ H2(ω \ Sm;R3) ∩W 1,∞(ω;R3) with polygonal arcs Sm

always belong to H2(ω;R3), i.e., they cannot be folded. By following the ideas for
the linear Kirchhoff model discussed above, a convergent approximation is obtained
by imposing continuity only in the corner points of Sm which corresponds to using
slit crease line segments in practice.
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Sharp Interface Limit of a Navier-Stokes/Allen-Cahn System with
Vanishing Mobility

Helmut Abels

(joint work with Mingwen Fei, Julian Fischer, and Maximilian Moser)

We consider the singular limit ε→ 0 of the following system:

∂tvε + vε · ∇vε − div(2ν(cε)Dvε) + ∇pε = −ε div(∇cε ⊗∇cε),(1)

div vε = 0,(2)

∂tcε + vε · ∇cε = mε(∆cε − 1
ε2 f

′(cε)),(3)

in Ω × (0, T0) together with

(vε, cε)|∂Ω = (0,−1) on ∂Ω × (0, T0),(4)

(vε, cε)|t=0 = (v0,ε, c0,ε) in Ω(5)

Here vε, pε are the velocity and the pressure of the fluid mixture, cε is the order
parameter, which is related to the concentration difference of the fluids, ν(cε)
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describes the viscosity in dependence on cε, and f is a suitable smooth double well
potential, e.g., f(c) = 1

8 (c2 − 1)2. Moreover, Dvε = 1
2 (∇vε + (∇vε)

T ), Ω ⊆ R2 is
a bounded domain with smooth boundary, and mε > 0 is mobility coefficient such
that mε →ε→0 0 suitably. We prove the convergence of (1)-(3) to the following
sharp interface limit system:

∂tv
±
0 + v±

0 · ∇v±
0 − ν±∆v±

0 + ∇p±0 = 0 in Ω±(t), t ∈ (0, T0),(6)

div v±
0 = 0 in Ω±(t), t ∈ (0, T0),(7)

J2ν±Dv±
0 − p±0 IKnΓt

= −σHΓt
nΓt

on Γt, t ∈ (0, T0),(8)

Jv±
0 K = 0 on Γt, t ∈ (0, T0),(9)

VΓt
= nΓt

· v±
0 on Γt, t ∈ (0, T0),(10)

v−
0 |∂Ω = 0 on ∂Ω × (0, T0)(11)

(v±
0 ,Γt)|t=0 = (v±

0,0,Γ0),(12)

where ν± = ν(±1), Ω is the disjoint union of Ω+(t),Ω−(t), and Γt for every
t ∈ [0, T0], Ω±(t) are smooth domains, Γt = ∂Ω+(t), and nΓt

is the interior
normal of Γt with respect to Ω+(t). Moreover,

JuK(p, t) = lim
h→0+

[u(p+ nΓt
(p)h) − u(p− nΓt

(p)h)]

is the jump of a function u : Ω × [0, T0] → R2 at Γt in direction of nΓt
, HΓt

and
VΓt

are the curvature and the normal velocity of Γt, both with respect to nΓt
.

Furthermore, σ =
∫
R
θ′0(ρ)2 dρ, where θ0 is the so-called optimal profile that is the

unique solution of

−θ′′0 (ρ) + f ′(θ0(ρ)) = 0 for all ρ ∈ R, lim
ρ→±∞

θ0(ρ) = ±1, θ0(0) = 0.

As first convergence result we have shown in [1]:

Theorem 1. Let T0 > 0, mε =
√
ε for all ε > 0, and (v±

0 ,Γ) be a smooth solution
of the two-phase Navier-Stokes system with surface tension (6)-(12) on [0, T0] and
c0,ε(x, t) ∈ [−1, 1] for all (x, t) ∈ Ω × [0, T0], ε ∈ (0, 1]. Let N ∈ N, N ≥ 3. Then
there exist cA = cA(N, ε),vA = vA(N, ε) ∈ H1(0, T0;L2(Ω)) ∩ L2(0, T0;H

2(Ω))
for ε ∈ (0, 1], uniformly bounded in these spaces and ‖cA‖∞ ≤ 1 + c with c > 0
independent of ε ∈ (0, 1], such that the following holds:

Let (vε, cε) be strong solutions of (1)-(5) with initial values v0,ε, c0,ε such that

‖c0,ε − cA|t=0‖L2(Ω) + ε2‖∇(c0,ε − cA|t=0)‖L2(Ω)

+ ‖v0,ε − vA|t=0‖L2(Ω) ≤ CεN+ 1
2(13)

for all ε ∈ (0, 1] and some C > 0. Then there are some ε0 ∈ (0, 1], R > 0 and
T1 ∈ (0, T0] small such that for all ε ∈ (0, ε0] and some CR > 0 it holds for
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cε := cε − cA and vε := vε − vA

‖cε‖L∞(0,T1;L2(Ω)) + ε
1
4 ‖∇cε‖L2((Ω×(0,T1))\Γ(δ)) ≤ RεN+ 1

2 ,(14)

ε
1
4 ‖∇τε

cε‖L2((Ω×(0,T1))∩Γ(2δ)) + ε‖∇cε‖L2((Ω×(0,T1))∩Γ(2δ)) ≤ RεN+ 1
2 ,(15)

ε2‖∇cε‖L∞(0,T1;L2(Ω)) + ε2+
1
4 ‖∇2cε‖L2(Ω×(0,T1)) ≤ RεN+ 1

2 ,(16)

‖vε‖
H

1
2 (0,T1;L2(Ω))

+ ‖vε‖L∞(0,T1;L2(Ω))∩L2(0,T1;H1(Ω)) ≤ CRε
N+ 1

4 ,(17)

where Γ(δ̃) are standard tubular neighbourhoods for δ̃ ∈ [0, 3δ], δ > 0 small and
∇τε

is a suitable (approximate) tangential gradient. Moreover, let dΓ be the signed
distance to Γ. Then

cA = ζ(dΓ)θ0(ρε) ± χΩ±(1 − ζ(dΓ)) +O(ε
3
2 ) in L∞((0, T0) × Ω),(18)

vA = v+
0 (x, t)η(ρε) + v−

0 (x, t)(1 − η(ρε)) +O(
√
ε) in L∞(0, T0;L

p(Ω)),(19)

where ερε = dΓ +O(
√
ε) in Γ(3δ), p ∈ [1,∞) is arbitrary, ζ : R → [0, 1] is smooth

such that supp ζ ⊆ [−2δ, 2δ] and ζ ≡ 1 on [−δ, δ], and η : R → [0, 1] is smooth
such that η = 0 in (−∞,−1], η = 1 in [1,∞), η − 1

2 is odd and η′ ≥ 0 in R. In
particular,

lim
ε→0

cA = ±1 uniformly on compact subsets of Ω±.

For the proof an approximate solution (vA, pA, cA) is constructed using finitely
many terms from formally matched asymptotic calculations and a novel ansatz for
a critical highest order term. Then the error cA − cε is estimated with the aid of
a refined spectral estimate for the linearized Allen-Cahn operator. We refer to [1]
for the details.

With the aid of relative entropy method we have shown in [2]:

Theorem 2. Let ν(cε) = ν be independent of cε, mε := m0ε
β for ε > 0, where

m0 > 0 and β ∈ (0, 2) are fixed, q = 2 if d = 2, and q = 4
3 if d = 3. Moreover,

let T0 > 0 be such that the two-phase Navier-Stokes system with surface ten-
sion (6)-(12) has a smooth solution (v±

0 , p
±
0 ,Γ) on [0, T0]. Let (vε, ϕε) with vε ∈

L∞(0, T0;L2
σ(Ω))∩L2(0, T0;H1

0 (Ω)d), cε ∈ L2(0, T0;H
2(Ω))∩W 1

q (0, T0;L
2(Ω)) for

ε > 0 be energy-dissipating weak solutions to the Navier-Stokes/Allen-Cahn system
(1)-(5) on [0, T0] for the constant mobility mε and for initial data (v0,ε, c0,ε) with
energy uniformly bounded with respect to ε and satisfying

∑

±

∫

Ω±

0

1

2
|v0,ε − v±

0,0|2 dx+

∫

Ω

ε

2
|∇c0,ε|2 +

1

ε
W (c0,ε) − (ξ · ∇ψ0,ε) dx

+

∫

Ω

|σχΩ+
0
− ψ0,ε|min{dΓ0 , 1} dx ≤ C

ε2

mε

(20)

for ε > 0 sufficiently small, where ψ(r) :=
∫ r

−1

√
2W (s) ds and ψ0,ε := ψ(c0,ε).

Set ψε := ψ(cε).
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Then for ε > 0 small and a.e. T ∈ [0, T0] it holds

‖(vε − v0)(., T )‖L2(Ω) + ‖σχΩ+
T
− ψε(., T )‖L1(Ω) ≤ C

(
ε√
mε

+ mε

)
(21a)

‖∇vε −∇v0‖L2(0,T0;L2(Ω)) ≤ C

(
ε√
mε

+ mε

)
(21b)

for some C > 0 independent of ε > 0 and T ∈ [0, T0]. Finally, there are well-
prepared initial data (v0,ε, c0,ε) for ε > 0 small in the sense that (20) is satisfied,
even with rate ε2.
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Multi-component Cahn-Hilliard and conserved Allen-Cahn equations

Maurizio Grasselli

(joint work with Ciprian G. Gal, Andrea Poiatti, and Joseph L. Shomberg)

“Not only is phase separation intuitive, but it seems to be everywhere. Droplets of
proteins and RNAs are turning up in bacteria, fungi, plants and animals. Phase
separation at the wrong place or time could create clogs or aggregate of molecules
linked to neurodegenerative diseases, and poorly formed droplets could contribute
to cancers and might help explain the ageing process.”

[E. Dolgin, What lava lamps and vinaigrette can teach us about cell biology, Nat.
555, 300-302 (2018)]

Phase separation phenomena often involves many interacting species (see, for in-
stance, [7]). Thus, it follows the necessity of introducing and analyzing multi-
component versions of the well-known Cahn-Hilliard equation as well as of the
conserved Allen-Cahn equation (see [6]). Assume to have N ≥ 2 components ui,
such that

N∑

i=1

ui = 1, 0 ≤ ui ≤ 1, ∀i = 1, . . . , N.

Each component is defined in a space-time domain Ω × [0, T ], where Ω ⊂ Rd,
d = 2, 3, is an open bounded domain and T > 0 is given. Following [3], we set

F (u) :=
N∑

i=1

ψ(ϕi) −
1

2
u ·Au

with A positive definite matrix and

ψ(s) := θs ln s, θ > 0
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so that

E(u) :=

∫

Ω

F (u)dx +
γ

2

∫

Ω

|∇u|2dx, γ > 0.

We also introduce a mobility matrix α ∈ RN×N symmetric and positive semidefi-
nite such that

αηηη · ηηη ≥ C0|ηηη|2 ∀ηηη :

N∑

i=1

ηi = 0,

for some C0 > 0, and observe that

Ker(α) = span{[1, 1, . . . , 1]T}.

Then we consider the following initial and boundary value problem for the Cahn-
Hilliard multi-component equation





∂tu− div(α(∇µµµ)) = 0 in Ω × (0, T )

µµµ = −γ∆u + F
′(u) in Ω × (0, T )

(∇u)n = 0 on ∂Ω × (0, T )

(α∇µµµ)n = 0 on ∂Ω × (0, T )

and a similar problem for the conserved Allen-Cahn multi-component equation




∂tu + α(µµµ−µµµ) = 0 in Ω × (0, T )

µµµ = −γ∆u + F
′(u) in Ω × (0, T )

(∇u)n = 0 on ∂Ω × (0, T ).

The matrix α is positive semidefinite, so we need to introduce the following pro-
jector

(Pηηη)i := ηi −
1

N

N∑

j=1

ηj

and reformulate both problems in terms of

w := Pµµµ =


µi −

1

N

N∑

j=1

µj



i=1,...,N

.

This gives, respectively,

(1)





∂tu− div(α∇w) = 0 in Ω × (0, T )

w = −γ∆u + PF
′(u) in Ω × (0, T )

(∇u)n = 0 on ∂Ω × (0, T )

(α∇w)n = 0 on ∂Ω × (0, T )

u(0) = u0 in Ω
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and

(2)





∂tu + α(w −w) = 0 in Ω × (0, T )

w = −γ∆u + PF
′(u) in Ω × (0, T )

(∇u)n = 0 on ∂Ω × (0, T )

u(0) = u0 in Ω.

We call finite energy solution to problem (1), a solution which satisfies the identity

d

dt
E(u) +

∫

Ω

α∇w : ∇wdx = 0,

while a energy solution to the problem (2) satisfies the identity

d

dt
E(u) +

∫

Ω

α(w −w) · (w −w)dx = 0.

Both the identities are essential to establish the existence of (finite energy) solu-
tions and to analyze their longtime behavior.

Regarding problem (1), the following results are proven in [4] (see also [1] for a
model which accounts for hydrodynamics)

• well-posedness for finite energy solutions (refinement of [3])
• instantaneous regularization of finite energy solutions
• instantaneous uniform strict separation property if d = 2
• existence of global and, if d = 2, exponential attractors for the correspond-

ing dissipative dynamical system
• convergence of any energy solution to a single stationary state (extension

of [2] to the multi-component case)
• validity of the strict separation property for large times if d = 3.

By strict separation property we mean the existence of a δ ∈ (0, 1) such that
δ ≤ ui ≤ 1 − δ for all i ∈ {1, . . . , N}. This δ might be uniform with respect
to the initial datum. Such a property is crucial to investigate several further
properties of a solution (e.g., additional regularity, existence of an exponential
attractor). Moreover, it rigorously justifies the use of smooth approximations of
mixing entropy density.

The following results are valid for problem (2) (see [5])

• existence of finite energy solutions
• continuous dependence on the initial datum if α has, for instance, the

following structure

α = ξ




N − 1 −1 . . . −1
−1 N − 1 . . . −1
...

...
...

...
−1 . . . . . . N − 1


 with ξ > 0.

Assuming the well-posedness hypotheses, further properties are shown, namely,

• instantaneous regularization of finite energy solutions
• instantaneous uniform strict separation property
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• existence of global and exponential attractors for the corresponding dissi-
pative dynamical system

• convergence of any energy solution to a single equilibrium.
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Nonlocal isoperimetric problems: double-bubbles and core-shells, and
a new partitioning problem

Lia Bronsard

(joint work with Stan Alama, XinYang Lu, Chong Wang, Silas Vriend,
and Mike Novack)

We first present a nonlocal isoperimetric problem for three interacting phase do-
mains, related to the Nakazawa-Ohta ternary inhibitory system which describes
domain morphologies in a triblock copolymer. We consider global minimizers on
the two-dimensional torus, in a limit in which two of the species have vanishingly
small mass but the interaction strength is correspondingly large. In this limit there
is splitting of the masses, and each vanishing component rescales to a minimizer of
an isoperimetric problem for clusters in 2D. Depending on the relative strengths
of the coefficients of the interaction terms we may see different structures for the
global minimizers, ranging from a lattice of isolated simple droplets of each minor-
ity species to double-bubbles or core-shells. These results have led to a new type
of partitioning problem that I will also describe. These represent work with S.
Alama, X. Lu, C. Wang for the triblock copolymer problems, and with S. Alama
and S. Vriend, and separately with M. Novack on the new partitioning problems.

The partitioning problem for (N,M) clusters introduced in [2] comes from the
study of triblock copolymer models in the 2D torus by Alama-Bronsard-Lu-Wang
in [3]. In [1], these authors study a partitioning problem in the torus with three
phases, one of which occupies nearly all of the total area with the other two
accounting for only a tiny fraction. In that case, the global minimizers form
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weighted double-bubble or core-shell patterns depending on the parameters. In
[3], they consider this partitioning problem but with two of the phases occupying
nearly all of the total area and the third accounting for only a tiny fraction. In
that case, we expect minimizers of the nonlocal triblock copolymer energy to form
a lamellar pattern with the two majority phases, with tiny droplets of the third
phase aligned on each lamellar stripe. By blowing up the droplets in the limit
of vanishing area of the third phase we expect to recover the lens shape in the
plane, and the characterization of the vesica piscis as the unique minimizer (up
to symmetries) of this problem is critical to the analysis of the small-area limit of
the triblock problem.

The classical double bubble theorem characterizes the minimizing partitions of
Rn into three chambers, two of which have prescribed finite volume. In the article
with M. Novack, [4] we prove a variant of the double bubble theorem in which
two of the chambers have infinite volume. Such a configuration is an example
of a (1,2)-cluster, or a partition of Rn into three chambers, two of which have
infinite volume and only one of which has finite volume [2]. A (1, 2)-cluster is
locally minimizing with respect to a family of weights {cjk} if for any Br(0), it
minimizes the interfacial energy

∑
j<k cjkH

n(∂X (j) ∩ ∂X (k) ∩ Br(0)) among all

variations with compact support in Br(0) which preserve the volume of X (1).
For (1, 2) clusters, the analogue of the weighted double bubble is the weighted lens
cluster, and we show that it is locally minimizing. Furthermore, under a symmetry
assumption on {cjk} that includes the case of equal weights, the weighted lens
cluster is the unique local minimizer in Rn for n ≤ 7, with the same uniqueness
holding in Rn for n ≥ 8 under a natural growth assumption. We also obtain a
closure theorem for locally minimizing (N, 2)-clusters.

In the article with Michael Novack [4], we study (1, 2)-clusters {X (j)}3j=1, where

|X (1)| < ∞, and the weighted energy
∑

j<k cjkH
n(∂∗X (j) ∩ ∂∗X (k)), where the

family of weights satisfies standard positivity and triangularity conditions, and
first show that the standard weighted lens cluster is locally minimizing. Our main
result can be summarized as follows:

Theorem. If c12 = c13, then, up to rigid motions of Rn, the standard weighed
lens cluster is the unique locally minimizing (1, 2)-cluster in Rn for n ≤ 7. The
same uniqueness holds in Rn for n ≥ 8 among locally minimizing (1, 2)-clusters
with planar growth at infinity.

We also include a proof of the equivalence between the above notion of local
minimality and another natural one and use it to strengthen the closure theorem
from [5] when there are two chambers with infinite volume, and also provide a
characterization of the asymptotic behavior of the local minimizers of the (N, 2)
partitioning problem.
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Temperature effects for chemical reaction dynamics

Chun Liu

(joint work with Jan-Eric Sulzbach)

Most existing research in fluid dynamics revolves around a fixed temperature set-
ting, but it is becoming increasingly more in demand to incorporate non-isothermal
conditions in practical applications. With advances in industries and technologies,
it is crucial to provide a theoretical foundation for these complex systems. The
key challenge is to find a way to unite the concepts from non-equilibrium thermo-
dynamics with ideas from fluid mechanics. With this research we try to breach
the gap between these two theories, by presenting a novel approach to model
non-isothermal fluid systems.

For non-isothermal fluids, the temperature changes with the flow in both space
and time. When a fluid is subjected to a change in temperature, its material
properties, such as density, viscosity and pressure, change accordingly. In addition,
for large enough deviations from a constant temperature there is a substantial
influence on the flow field. Since the fluid can transport heat, the temperature
field is, in turn, affected by changes in the flow field. This two-way coupling
between fluid flow and heat transfer is a phenomenon that is common in heat
engines, chemical reactions and atmospheric flows.

The theory of non-equilibrium thermodynamics derived from irreversible pro-
cesses has been developed almost 100 years ago. It started from the 1930s seminal
work by Onsager ([10], [11]) where he formulated the principles of irreversible
thermodynamics with some underlying assumptions. The idea is to extend the
concept of state from continuum thermostatics to a local description of material a
point in the continuum, i.e., every material point that constructs the continuum
is assumed to be close to a local thermodynamic equilibrium state at any given
instant. Therefore, we can define the state variables and state functions such as
temperature and entropy past their definition in equilibrium thermostatics. This
theory is known as Classical Irreversible Thermodynamics (CIT) (cf. [7]). Besides
the classical set of state variables, thermodynamic fluxes are introduced to describe
irreversible processes. In particular, the rate of change of entropy within a region
is contributed by an entropy flux through the boundary of that region and entropy
production inside the region. In CIT the entropy flux only depends on the heat
flux. The non-negativity of the entropy production rate grants the irreversibility
of the dissipative process and states the second law of thermodynamics. Exten-
sions of this theory beyond this local equilibrium hypothesis and incorporating a
variational structure leads to the works by [5, 6, 1, 3].
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The new approach developed in [8, 9, 2, 12] combines the ideas from non-
equilibrium thermodynamics with the energetic variational approach (EnVarA)
[4]. A key advantage is that we can provide a practical user’s manual that can be
employed in a wide variety of physical models:

• We will adopt a starting point as the free energy Ψ(f, θ) of the system,
which includes both mechanical (resolved) and temperature/heat (under-
resolved) contributions. From this free energy one can derive the thermo-
dynamic state functions entropy s(f, θ) = −∂θΨ(f, θ) and internal energy
e(f, θ) = Ψ(f, θ) + θs(f, θ).

• In the next step we will need to specify the kinematics of the mechan-
ical state variables f . For instance when f corresponds to a density or
concentration, the kinematics would be conservation of mass.

• Next we also need to specify the kinematics of the temperature. Here, the
question is whether the temperature moves with the particle or if it stays
on a fixed or moving background.

• In the next step, we derive the conservative and dissipative forces by using
the Energetic Variational Approach (with prescribed mechanical dissipa-
tion) and combine them with Newton’s force balance.

• In order to obtain the equations for the thermal quantities we apply the
laws of thermodynamics.

• In the last step we connect the different thermal quantities by making use
of constitutive relations such as the Duhem relation and Fourier’s law.

One example of this framework can be found in [8], where the ideal gas equation
is studied. Starting with a free energy of the form Ψ(ρ, θ) = k2θρ log ρ−k1ρθ log θ
we obtain the non-isothermal Brinkman fluid with ideal gas equilibrium

∂tρ+ ∇ · (ρu) = 0, ∇p = µ∆u− νρu,

∂ts+ ∇ · (su) = ∇ ·
(
κ∇θ
θ

)
+ ∆̃,

where the entropy production is given by

∆̃ =
1

θ

(
µ|∇u|2 + ν|u|2 +

κ|∇θ|2
θ

)

and the entropy and pressure are

−s(ρ, θ) = kρ
(

log ρ− 3

2
(log θ + 1)

)
, p(ρ, θ) = kρθ.

Besides the derivation of the model the paper focuses on establishing the existence
of local-in-time weak solutions for the above system. Key steps in the proof are
to obtain the existence of solutions for a regularized system, where an artificial
viscosity term is used to regularize the continuity equation and the entropy equa-
tion is replaced by a regularized balance of internal energy equation. The next
steps are to pass to the limit in each of the regularization parameters. Besides
standard methods we apply the Div-Curl Lemma and weak compactness results
in L1, where passing to the limit in the entropy equation is the key challenge.
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A second example of the general framework can be found in [9]. In this work we
derive a model for the non-isothermal reaction-diffusion equation with law of mass
action kinetics. This work extends the isothermal system derived in [13]. Here,
we consider a chemical reaction of the form αA+ βB ⇋ γC with free energy

ψ(c, θ) =
3∑

i=1

ci
(
kci θ ln ci − kθi θ ln θ

)
,

where we assume that each species ci has the free energy of an ideal gas, which is
the case for ideal mixing. The general non-isothermal system now has the form

∂tci + ∇ · (ciui) = −σRt, ηi(ci, θ)ui = −kc∇ciθ

∂ts+ ∇ ·
( 3∑

i=1

siui

)
= ∇ ·

(
κ∇θ
θ

)
+

1

θ

∑

i

(
ηi(ci, θ)|ui|2)

+
1

θ

((∑

i

σiµi

)2
+
κ|∇θ|2
θ

)

where the reaction rate Rt, chemical potential µi and entropy s are given by

Rt = kc ln

(
cAcB
cC

)
+ kθ ln θ − kc

µi = kcθ(ln ci + 1) − kθθ ln θ

s =
∑

i

si = −
∑

i

ci
(
kc ln ci − kθ(ln θ + 1)

)

From this system we recover a linearized model close to the equilibrium state and
analyze the global-in-time well-posedness of the system for small initial data in a
critical Besov space.

Further applications and extensions can be found in [2] for phase transitions in
the Cahn-Hilliard system and ongoing projects.
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Discrete to continuous crystalline curvature flows

Antonin Chambolle

(joint work with Daniele DeGennaro and Massimiliano Morini)

This talk is an evolution and improvement from a previous talk in a MFO workshop
(#2357), two months before. In a work soon online, we investigated a fully discrete
version of the Almgren-Taylor-Wang / Luckhaus-Sturzenhecker scheme [1, 9] for
building mean curvature flows. This scheme, after some rewriting, can be described
as follows: given a set E0, and dE0 the signed distance function to its boundary,
we solve in R

d, for h > 0 small and each n ≥ 1:

(1)

{
−hdiv zn + un = dEn−1 ,

|zn| ≤ 1, zn ·Dun = |Dun|
which is formally the Euler-Lagrange equation of

min
u

∫
|Du| +

1

2h

∫
(u− dEn−1)2dx

(yet this energy is infinite in the whole space). We let then En = {x : un(x) ≤ 0}.
Equation (1) means that the level set 0 of un is at a distance from the boundary of
En−1 which is equal to h times its mean curvature: this corresponds to an implicit
time-discretization of the mean curvature flow. By translational invariance and
comparison, un is trivially 1-Lipschitz (since dEn−1 is), in particular the second
condition in (1) reads z ∈ ∂| · |(∇d) a.e. in Rd (the subgradient of the Euclidean
norm). One also deduces that dEn ≥ un in {un > 0}, and dEn ≤ un in {un < 0}.
Hence,

dn − dn−1

h
≥ div zn

out of En. Getting some control on dn in time and div zn in space allows then to
pass to the limit and deduce the existence of E ⊂ Rd× [0,∞) (the Hausdorff limit
of
⋃

n≥0E
n × {nh}) a closed set such that

(2) ∂td ≥ div z in D′((Rd × (0,∞)) \ E), z ∈ ∂| · |(∇xd) a.e.

with d(x, t) = dist(x,E(t)) for all x, t. Reasoning with the complement, one
finds a similar equation for A ⊂ E, the complement of the Hausdorff limit of⋃

n≥0(Rd \ En) × {nh}).
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This equation, which holds in the distributional or measure sense, is seen to
hold also in the viscosity sense [6, 5] and hence characterizes the mean curvature
flow (with a possible, but exceptional, fattening of the set E \A), as shown in [10].
An important step in proving the convergence is an estimate of the solution of (1)
with the right-hand side replaced with |x|, first computed in [3], this is crucial to
estimate the variation of dn in time as well as div zn from above where dn > 0.

Now, in [6, 4], it is also shown that the same scheme (and the same proof)
can be applied to build and characterize anisotropic, or crystalline flows. Sticking
to the simpler case of [6], and given ϕ a convex norm (with possibly polyhedral
level sets) we replace Du above with ϕ(Du), the distance with the ϕ◦ distance
(ϕ◦(x) = sup{x ·ν : ϕ(ν) ≤ 1}), the condition on zn in (1) with zn ∈ ∂ϕ(∇un) and
end up with a distributional definition of a well posed crystalline mean curvature
flow (see [6] for a comparison result which guarantees the uniqueness, in general,
of the limit—when A is the interior of E). In this case, the motion is still described
by (2) yet the second condition is z ∈ ∂ϕ(∇xd) and d is the ϕ◦-distance to E.
We observe that an alternative definition of the crystalline flow (which in general
coincides) is based on the notion of viscosity solutions and was proposed by Giga
and Giga [7] in 2D and Giga and Požár [8] in arbitrary dimension.

In the work presented at the workshop, together with M. Morini (Parma) and
our student D. DeGennaro (Ceremade), we propose to solve a fully discrete equa-
tion, which reads (for h, ε > 0, small time and space steps)

{
h(D∗

εz
n)i + uni = dn−1

i for i ∈ εZd

|zni,j | ≤ β j−i
ε
, zni,j(uj − ui) = β j−i

ε
|uj − ui|

where Dε : RεZd → RεZd×εZd

is defined by (Dεu)i,j = (uj−ui)/ε, D∗ is its adjoint
(for the standard scalar product), and βk, k ∈ Zd, is a finitely supported family
of positive weights (positive at least on a basis of Zd). One then sends h, ε → 0.
We show that we can adapt the techniques above to show again the convergence
to (2), for the crystalline anisotropy ϕ(p) =

∑
k∈Zd βk|k · p|. Surprisingly, this

happens for ε ≪ h (as expected), but also in case ε = h, and also, in case the
weights β• are rational, regardless of the ratio ε/h as both go to zero. To ensure
this property, we have to define dn from un with a sort of interpolation scheme
(defined by suitable inf/sup convolutions with the distance ϕ◦), so that the limiting
evolution is precisely given by (2) without any drift, contrarily to the dicrete
scheme introduced previously in [2], which was the starting point for our study,
and where a rounding occurs at each step which accumulates in the limit.
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Divergence Preserving Cut Finite Element Methods

Sara Zahedi

(joint work with Thomas Frachon, Peter Hansbo, and Erik Nilsson)

I introduce Cut Finite Element Methods (CutFEM) for interface problems and
discuss our recent developments in achieving pointwise divergence-free velocity
approximations in the case of incompressible flows.

The cut finite element method belongs to the class of unfitted finite element
methods, providing an alternative to standard finite element methods when a fitted
mesh is complicated and/or expensive to generate. The basic ideas of CutFEM
were first introduced in [1] for an elliptic partial differential equation. In Cut-
FEM, we begin with a regular mesh covering the computational domain, which is
not required to conform to external and/or internal boundaries (interfaces). We
then define active unfitted meshes, on which appropriate finite element spaces are
defined, and a weak formulation where interface and boundary conditions are im-
posed weakly. A common approach to ensure accurate and robust discretization,
regardless of the interface position relative to the computational mesh, is to add
stabilization terms in the weak form. Ghost penalty stabilization [2] has been
demonstrated to work well with low as well as high order elements using both
continuous and discontinuous elements.

We present a cut finite element discretization of the Stokes interface prob-
lem using Taylor-Hood elements and standard ghost penalty stabilization. While
this method accurately approximates discontinuities across interfaces on unfitted
meshes [3, 4], the incompressibility condition does not hold pointwise.

To address this issue, we explore the Darcy interface problem to elucidate how
to enforce the incompressibility condition discretely. Our proposed discretization
is based on the mixed finite element pairs RTk × Qk [5], where Qk is the space
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of discontinuous polynomial functions of degree k ≥ 0 and RTk is the Raviart-
Thomas space. We demonstrate that the divergence-free property of the Raviart-
Thomas element is compromised when the standard ghost penalty stabilization for
the pressure is added in the weak form. We propose a modification of the pressure
stabilization term, allowing for optimal divergence approximation in the unfitted
setting.

Utilizing Hdiv-conforming finite elements and the new stabilization terms, we
introduce cut finite element methods for the Stokes equations [6]. These meth-
ods demonstrate optimal convergence rates for velocity, pointwise divergence-free
velocity fields, and well-posed linear systems, irrespective of the position of the
boundary/interface relative to the computational mesh.

Finally, we discuss how to achieve pressure-robustness on unfitted meshes [6].
We demonstrate that pressure-robustness relies on accurate enforcement of bound-
ary conditions and may not hold when boundary conditions are imposed weakly,
even when the incompressibility condition is met pointwise. Two approaches for
weakly imposing the normal component of the velocity at the boundary are exam-
ined: Nitsche’s method (or a penalty method) and a Lagrange multiplier method.
While pressure-robustness can be maintained with both approaches by minimizing
errors at the boundary, the resulting linear systems’ condition number are higher
when the boundary conditions are weakly imposed, regardless of whether the mesh
is fitted or unfitted to the boundary.
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Fluid deformable surfaces

Axel Voigt

(joint work with Veit Krause, Ingo Nitschke, Michael Nestler,
and Maik Porrmann)

We consider surface finite elements and a semi-implicit time stepping scheme to
simulate fluid deformable surfaces. Fluid deformable surfaces are thin fluidic sheets
of soft materials exhibiting a solid–fluid duality. While they store elastic energy
when stretched or bent, as solid shells, under in-plane shear, they flow as viscous
two-dimensional fluids. This duality has several consequences: it establishes a
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tight interplay between tangential flow and surface deformation. In the presence
of curvature, any shape change is accompanied by tangential flow and, vice versa,
the surface deforms due to tangential flow. Such surfaces are modeled by incom-
pressible surface Navier-Stokes equations with bending forces. We consider closed
surfaces and enforce conservation of the enclosed volume. The numerical approach
builds on higher order surface parameterizations, a Taylor-Hood element for the
surface Navier-Stokes part, appropriate approximations of the geometric quantities
of the surface, mesh redistribution and a Lagrange multiplier for the constraint.
The considered computational examples highlight the solid-fluid duality of fluid
deformable surfaces and demonstrate convergence properties that are known to be
optimal for different sub-problems, see, e.g., [1, 2]. The numerical approach and
its validation is described in detail in [3]. With the aim to model the underlying
mechanics of epithelial tissue in morphogenetic evolution we add an active driving
forces which solely depends on curvature. Such geometric odd elastic forces, which
act in response to mean curvature gradients and are directed perpendicularly to
this gradient have been introduced in [4].

The overall model reads

∂tu + ∇vu = −∇Sp− pHν +
2

Re
divPσ − λν + b +

Ac

2
ν ×∇SH

divPu = 0
∫

S

u · ν dS = 0

(1)

which is defined on a surface S = S(t), which is given by a parametrization
X. Related to S we denote the surface normal ν, the shape operator B with
Bij = −∇i

Sνj , the mean curvature H = trB and the surface projection P =
I − ν ⊗ ν. Let ∇S and divS be the surface differential operators with respect
to the covariant derivative. Those operators are well defined for vector fields in
the tangent bundle of S. For a non-tangential vector field u : S → R3 we use
the tangential derivative ∇Pu = P∇u

e
P and the tangential divergence divPu =

tr[P∇u
e] where u

e is an extension of u constant in normal direction and ∇ the
gradient of the embedding space R3. ∇Pu is a pure tangential tensor field and
relates to the covariant operator by ∇Pu = ∇S(Pu)− (u ·ν)B. Similarly, it holds
that divPu = divS(Pu)− (u · ν)H, see [2]. In the above equation u is the surface
fluid velocity, p the surface pressure, σ = 1

2 (∇Pu+∇Pu
T ) the rate of deformation

tensor, Re the Reynolds number and b an acting force. The convection term is
defined by [∇vu]i = ∇Sui · v, i = 1, 2, 3 where v is the relative material velocity
of the surface. The surface fluid velocity is related to the parametrization by
(u·ν)ν = ∂tX. This formulation thus provides an Eulerian approach in tangential
direction but a Lagrangian approach in normal direction. While conservation of the
surface area |S| is enforced as a consequence of the local inextensibility constraint.
To enforce conservation of the enclosed volume, e.g.

∫
S u · ν = 0, we consider the

scalar Lagrange multiplier λ. Elastic properties of the surface S if deformed in
normal direction are considered by b, which result from the Helfrich energy and
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read

b =
1

Be
(−∆SH−H(‖B‖2 − 1

2
tr(B)2)ν,(2)

with the bending capillary number Be. The remaining term models the active
forcing with Ac an activity parameter.

Figure 1 shows snapshots of the evolution. The initial condition is a local
minimum of the Helfrich energy. The active forcing induces a chiral flow, which
induces a shape instability. The instability leads to a global shape change termi-
nating in shape which has a lower Helfrich energy and continuously circulating
flows in opposite direction on both sides.

Figure 1. Snapshots of evolution: Isolines correspond to mean
curvature, the color to the shape evolution in normal direction
(blue - inwards, red - outwards) and the arrows to the tangential
flow.

The full parameter space, varying the reduced volume, the bending capillary
number and the stregth of activity is currently explored.

Acknowledgement: We acknowledge funding by DFG through FOR3013 - Vector-
and tensor-valued surface PDEs and computing resources at ZIH at TU Dresden.
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An isoperimetric problem with capacitary repulsion

Matteo Novaga

(joint work with Michael Goldman and Berardo Ruffini)

We will consider a variational problem motivated by models for charged liquid
drops recently studied in a series of papers [7, 8, 9, 10, 11, 2]. One of the main
features of this problem is the competition between surface tension and charge
repulsion; in particular, as opposed to the Gamow liquid drop model (see for in-
stance [1] and references therein), the non-local effects often dominate the cohesive
forces leading to singular behaviors.

Let us introduce the model: Given α ∈ (0, N) and a measurable set E ⊂ R
N ,

we define the Riesz energy

(1) Iα(E) = inf
µ(E)=1

∫

RN×RN

dµ(x) dµ(y)

|x− y|N−α
.

Letting P (E) denote the perimeter of E, we consider the functional

Fα,Q(E) = P (E) +Q2Iα(E),

for a charge Q > 0.
We are interested in studying the minimum problem

(2) min
|E|=m

Fα,Q(E),

for a fixed volume m > 0.
This question is motivated by the model for an electrically charged liquid drop

in absence of gravity, introduced by Lord Rayleigh [12] in the physically relevant
case N = 3 and α = 2, and later investigated by many authors (see for instance
[13, 14, 3, 7, 10, 11]).

In [7] it has been proved that, quite surprisingly, for any α ∈ (1, N) (in particular
for the Coulombic case α = 2) the problem is ill-posed. Indeed one can show that

inf
|E|=m

Fα,Q(E) = P (Br),

where r is such that |Br| = m. To restore well-posedness of the problem one needs
to impose some extra regularity conditions such as bounds on the curvature [7],
entropic terms [10] or the convexity of competitors [8].

It was shown in [11] that, for N = 2 and α = 1, the ball is the unique minimizer
of the problem, as long as Q is below an explicit threshold, and that nonexistence
occurs otherwise.

This result was later extended in [9] to the general case N ≥ 2 and α ∈ (1, N).
More precisely, the following result holds:

Theorem. Let N ≥ 2. For α ∈ (1, N) and Q > 0, there are no minimizers of
problem (2).

Conversely, for α ∈ (0, 1] there exists Q0 = Q0(N,α) > 0 such that for every
Q ≤ Q0, balls are the only minimizers of (2).
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A diffuse-interface model for two-phase flows with moving contact
lines, variable contact angles and bulk-surface interaction

Patrik Knopf

(joint work with Andrea Giorgini)

The description of two-phase flows is an important but very challenging topic of
modern continuum fluid dynamics with various applications in biology, chemistry
and engineering. To represent the interface separating the different components,
two fundamental approaches have been developed, namely sharp-interface methods
and diffuse-interface methods (see, e.g., [1] and the references therein).

In sharp-interface models, the interface is represented as an evolving hypersur-
face contained in the surrounding domain. The time evolution of the interface is
the described by a free boundary problem.

In diffuse-interface models (also referred to as phase-field models), the inter-
face is approximated by a thin layer whose thickness is proportional to a small
parameter ε > 0. The concentrations (or volume fractions) are represented by
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an order parameter, the so-called phase-field, which attains the values −1 and 1,
respectively, in the regions where the single fluids are present. This phase-field
is expected to exhibit a continuous transition between −1 and 1 at the diffuse-
interface separating the fluids. The main advantage of this approach is that the
time evolution of the phase-field can be described via an Eulerian formulation as
a PDE on the whole domain. This avoids an explicit description of the interface
as in free boundary problems. If a proper scaling with respect to the interface
parameter ε is used, the corresponding sharp-interface model can be recovered (in
most cases at least formally) as the sharp-interface limit (see, e.g., [1]).

The “Abels–Garcke–Grün model”. A very popular thermodynamically con-
sistent diffuse-interface model for viscous incompressible two-phase flows with pos-
sibly unmatched densities is the Abels–Garcke–Grün model (or AGG model), which
was derived in [2]. The system of equations reads as follows:

∂t
(
ρ(φ)v

)
+ div

(
v ⊗ (ρ(φ)v + J)

)
− div

(
2ν(φ)Dv

)
+ ∇p(1a)

= −ε div
(
∇φ⊗∇φ

)
in Q,

div v = 0 in Q,(1b)

ρ(φ) = ρ̃1
1 + φ

2
+ ρ̃2

1 − φ

2
, J = − 1

2 (ρ̃2 − ρ̃1)mΩ(φ)∇µ in Q,(1c)

∂tφ+ div(φv) = div
(
mΩ(φ)∇µ

)
in Q,(1d)

µ = −ε∆φ+ ε−1F ′(φ) in Q.(1e)

Here, Ω ⊂ Rd with d = 2, 3 is a bounded Lipschitz domain with boundary Γ, T > 0
is a given final time, and Q := Ω × (0, T ). Moreover, v is the velocity field asso-
ciated with the mixture, p denotes the pressure, φ is the phase-field (representing
the difference of the fluid concentrations), and µ represents the chemical potential.
Moreover, ν is the concentration depending viscosity, D is the symmetric gradient
operator, ε is a positive parameter related to the thickness of the diffuse interface,
mΩ is the (bulk) mobility function and F is a double-well potential. The con-
centration depending density ρ(φ), where ρ̃1 and ρ̃2 are the constant individual
densities of the two fluids, requires the inclusion of an additional mass flux term J
in the Navier–Stokes equation to make the model thermodynamically consistent.
The AGG model is usually supplemented with the classical boundary conditions

v = 0, ∂nφ = 0, ∂nµ = 0 on Σ.(2)

Here, Σ := Γ × (0, T ) and n denotes the outward unit normal vector field on the
boundary Γ.

Limitations of the AGG model with classical boundary conditions. Even
though the AGG model ((1),(2)) is already very sophisticated and capable of de-
scribing the challenging case where the two fluids have unmatched specific densi-
ties, the classical boundary conditions (2) still entail some important limitations.

(L1) The boundary condition (2)2 enforces the diffuse interface separating the
two fluids to always intersect the boundary Γ at a perfect right angle. Cer-
tainly, this will not always be satisfied in concrete applications, where the
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contact angle of the interface might not only deviate from ninety degrees
but even change dynamically over the course of time.

(L2) As shown, for instance, in [5], the boundary condition (2)1 is not very
suitable for the description of moving contact line phenomena since the
motion of the fluid at the boundary is totally neglected.

(L3) The conditions (2)1 and (2)3 ensure mass conservation in the bulk, mean-
ing that

∫
Ω φ(t) dx is constant in time. Therefore, no transfer of material

between bulk and surface (e.g., absorption processes) can be described.

A variant of the AGG model with dynamic boundary conditions. In order
to overcome the aforementioned limitations (L1)–(L3), we derived and investigated
a new class of thermodynamically consistent Navier–Stokes–Cahn–Hilliard systems
with dynamic boundary conditions in the recent paper [3]. Similar to [2], our
model derivation is based on local mass balance laws, both in the bulk and on
the surface, with a priori unknown mass fluxes. We also consider local energy
dissipation laws involving additional energy flux terms. Eventually, we employ the
Lagrange multiplier approach (where the chemical potentials µ and θ act as the
Lagrange multipliers) to complete our model derivation by identifying the mass
and energy fluxes. The resulting system of equations reads as:

∂t
(
ρ(φ)v

)
+ div

(
v ⊗ (ρ(φ)v + J)

)
− div

(
2ν(φ)Dv

)
+ ∇p(3a)

= −ε div
(
∇φ⊗∇φ

)
in Q,

div v = 0, in Q,(3b)

ρ(φ) = ρ̃1
1 + φ

2
+ ρ̃2

1 − φ

2
, J = − 1

2 (ρ̃2 − ρ̃1)mΩ(φ)∇µ in Q,(3c)

∂tφ+ div(φv) = div
(
mΩ(φ)∇µ

)
in Q,(3d)

µ = −ε∆φ+ ε−1F ′(φ) in Q,(3e)

∂tψ + divΓ(ψvτ ) = divΓ

(
mΓ(ψ)∇Γθ

)
− βmΩ(ψ) ∂nµ on Σ,(3f)

θ = −δκ∆Γψ + δ−1G′(ψ) + ε∂nφ on Σ,(3g)

φ|Γ = ψ,

{
LmΩ(ψ) ∂nµ = βθ − µ if L ∈ [0,∞),

mΩ(ψ) ∂nµ = 0 if L = ∞ on Σ,(3h)

v · n = 0,
[
2ν(ψ)(Dv · n) + γ(ψ)v

]
τ

=
[
− ψ∇Γθ + 1

2 (J · n)v
]
τ

on Σ,(3i)

v|t=0 = v0, φ|t=0 = φ0 in Ω,(3j)

ψ|t=0 = ψ0 on Γ.(3k)

In addition to the quantities introduced in (1), ψ is a surface phase-field, θ is
a surface chemical potential, and G is a double-well potential. The nonnegative
function mΓ represents the mobility on the boundary. The parameter δ > 0 is
related to the thickness of the diffuse interface on the boundary, and the constant
κ ≥ 0 acts as a weight for smoothing effects on the surface. We further prescribe
the constants β ∈ R and L ∈ [0,∞]. Moreover, the subscript τ indicates the
tangential component of a vector field on Γ.
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As it was shown in [4], the underlying Cahn–Hilliard subsystem with dynamic
boundary conditions (3d)–(3h) is capable of overcoming the limitations (L1) and
(L3). Moreover, as discussed in [5], the Navier-slip boundary condition (3i)2 pro-
vides a better description of the convection-induced motion of the contact line.
Therefore, it helps to overcome limitation (L2).

First analytic results in the case of matched densities. In [3], we also pre-
sented some first analytical results. There, we restricted ourselves to consider the
case of matched densities (i.e., ρ(φ) ≡ ρ̃1 = ρ̃2) as well as regular potentials F and
G. Concerning the coupling condition for the chemical potentials, we investigated
the case L = 0 with β > 0. In this setting, we proved the existence of global
weak solutions in two and three dimensions as well as the uniqueness of the weak
solution in two dimensions.
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Multilevel Representations of Isotropic Gaussian Random Fields
on the Sphere

Ana Djurdjevac

(joint work with Markus Bachmayr)

Representation of random fields on hypersurfaces is important in many applica-
tions such as (cell) biology, climatology and astrophysics. Furthermore, if we are
considering a partial differential equation with random coefficient on a hypersur-
face, one of the main questions is how to represent those random fields. For
example, let Γ be a hypersurface and (Ω,F ,P) a probability space and we are
considering the diffusion problem

(1) −∇Γ · (a(ω)∇Γq) = f

where a is a random field. Two standard choices for the field a are: uniformly
bounded or log-normal random field. In this report we are interested in the case
when a = exp(u), where u is an isotropic Gaussian random field on a sphere
Γ = S2.
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One of the main questions is how to approximate the solution mapping. For
that purpose, we are interested in the representations of the Gaussian random field
u of the form

(2) u(ω, s) =

∞∑

i=1

zi(ω)ϕi(s), s ∈ S
2.

The standard representation of that form is the so-called Karhunen-Loève (KL)
expansion, where in this case (zi)i∈N is a sequence of independent scalar Gaussian
random variables and functions ϕi ∈ L2(S2) are determined as eigenfunctions of
the covariance operator of u. Since we are considering the random field on a sphere,
the expansion is in terms of spherical harmonics Yℓm, ℓ ≥ 0, m = −ℓ, . . . , ℓ, which
are eigenfunctions of the Laplace-Beltrami operator on S2 and zℓm ∼ N (0, Aℓ),
where the positive real sequence A = (Aℓ)ℓ∈N0 is called the power spectrum of u.
Hence the expansion has the form

(3) u =

∞∑

ℓ=0

∞∑

m=−∞

zℓmYℓm.

For more details, see for example [6].
While this expansion yields the most rapid convergence in L2-norm, the func-

tions ϕi typically exhibit global oscillations. This has the direct consequence of the
error of the best n-term Hermite approximation of the solution q of (1). The reason
is that the error directly depends on the summability properties of coefficients ϕi

from the expansion of the coefficient (2), see for example [2]. Hence, motivated by
the work in [2], our main goal (presented in [4]) is to construct a series expansions
of isotropic Gaussian random fields on S2 with independent Gaussian coefficients
and localised basis functions. Such representations with multilevel localized struc-
ture provide an alternative to the standard Karhunen-Loève expansion.

We are exploring an alternative expansion that is based on spherical needlets
[8]. These are functions ψjk with a scale parameter j ∈ N0 and an angular index
k ∈ {1, . . . , nj}, which have localisation properties of the following type: for each
ψjk there exists a point ξjk ∈ S2 such that

(4) |ψjk(s)| ≤ C2j

1 +
(
2jd(s, ξjk)

)r , s ∈ S
2,

for some r ∈ N with C = C(r) > 0 and with the geodesic distance

(5) d(s, s′) = arccos(s · s′)
on S2. Hence, ψjk is concentrated near ξjk and decays rapidly with increasing
angular distance to this point. One can show (see [8]) that the points ξjk can be
chosen in a such a way that the family {ψjk : j ∈ N0, k = 1, . . . , nj} is a Parseval
frame of L2(S2), meaning that

‖f‖2L2(S2)
=
∑

j,k

|〈f, ψjk〉|2 and f =
∑

j,k

〈f, ψjk〉L2(S2)ψjk,
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for any f ∈ L2(S2). If we were to directly use spherical harmonics in the expansion
of the isotropic Gaussian field u, the problem would be that even though we
have the localized spatial functions, we lose the independence of the coefficients.
Namely, in [1], it was shown that the needlet coefficients 〈u, ψjk〉L2(S2) of a weakly

isotropic Gaussian random field u on S2, are just asymptotically uncorrelated. We
show that there exist modified needlets ψA

jk such that one has the expansion

(6) u =
∞∑

j=0

nj∑

k=1

yjkψ
A

jk

in terms of independent scalar Gaussian random variables yjk ∼ N (0, 1) and the
modified needlets ψA

jk still have the same localisation property (4) as the standard
needlets ψjk, but with r limited by certain features of the power spectrum of u.

In order to construct such modified needlets, we apply the result from [7] that
states that one obtains such an expansion exactly when the family {ψA

jk} is a
Parseval frame of the reproducing kernel Hilbert space H. For that purpose, we
consider the factorization of the covariance operator T : C(S2)′ → C(S2), because
if one has the factorization of the form T = SS′and if {ϕi}i∈N is a Parseval frame
of the domain of S, then {Sϕi}i∈N is a Parseval frame of the reproducing kernel
Hilbert space of u, for more details see [7, Prop. 1]. Hence, we choose

(7) Sf :=

∞∑

ℓ=0

√
Aℓ

ℓ∑

m=−ℓ

(∫

S2

Yℓmf dσ

)
Yℓm .

For a given power spectrum A, we now define modified needlets by

(8) ψA

jk(s) :=
√
λjkK

A

j (s · ξjk), KA

j (s · ξjk) :=

∞∑

ℓ=0

bj(ℓ)
√
Aℓ

2ℓ+ 1

4π
Pℓ(s · ξjk).

It is now straightforward to verify that (6) holds for these functions.
Furthermore, we show that under appropriate conditions on forward differences

of
√
Aℓ the localisation properties of the form (4) of the standard needlets ψjk are

preserved in the modified needlets ψA

jk.

Next we revisit the equation (1), and now for the expansion of the log-normal
coefficient a = exp(u) we use the modified needlet expansion of the form (6).
As already mentioned at the beginning, integrability and approximation of the
random solution q depends on the summability properties of ψA

jk. We show that
the best n-term product Hermite polynomial approximations qn converge in L2 as
O(n−s) for any s up to β/2, where under certain assumptions, β is precisely the
limiting order of Hölder regularity of the random field u (and hence of a). Note
that here we rely crucially on the localisation of the random field expansion, and
no such convergence result is available for KL expansions in spherical harmonics.
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Coarsening in the network flow

Alessandra Pluda

Solids have a crystalline structure, and a piece of metal is actually (much) more
complicated than a unique crystal. Most of the technological materials are poly-
crystalline: they are composed of several pieces (grains) in which the crystal lattice
is rotated in different ways, delimited by grain boundaries. Grain boundaries have
a profound impact on materials properties (for instance electrical and thermal con-
ductivity) and therefore their performance. The challenge in polycrystals is then
the development of process technology, in other words the way we make materials,
that will allow us to arrange grains in a way that gives us the property we desire,
these properties can be said strength, toughness, electrical resistivity.

One way that the grain structure is tailored or engineered is through grain
growth. To model grain growth is an old problem and it attracted the attention of
applied scientists and then mathematicians. Already in 1956, Mullins considered
the 2-dimensional version in thin films and observed that the grain boundaries
of a recrystallized metal, when annealed, move with a velocity proportional to
the curvature [10]. Thus, in a first approximation, the grain boundary and the
grain growth can be described as a finite union of curves that meet at junctions (a
network) that moves by curvature (the normal velocity of each curvature at each
point and time is its curvature). The system evolves so as to reduce the energy,
hence we consider the L2-gradient flow of the length functional and we expect to
see networks with only triple junctions at almost all times. The equilibrium state
should actually be a single crystal and one of the defining features of evolution is
that the network undergoes changes in topology.

It is fair to say that in the last years there have been progresses concerning both
in situ–experiments, simulations and mathematical models [1, 4, 5, 7]. Unfortu-
nately at the moment experiments cannot give us precise information about the
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dynamics of the motion of grain boundaries, thus we still have to relies on good
models and simulations.

The first attempt to study the network flow from a mathematical point of view
has been by Brakke [2], who developed a geometric-measure-theoretic method to
define the evolution. While his definition is very powerful and useful in its own
way (it provides global existence), it does not give a very detailed picture of the
evolution itself, hence the need of a definition based on classical PDE solutions. My
final goal is the study of evolution by curvature of cluster of surfaces as a simplified
model of grain growth. Concerning the 2-dimensional version, I aim to a complete
analysis of the network flow in a PDE framework, from well–posedness, to the
study of long–time behaviour and asymptotic analysis as time goes to infinity [9,
12].

A precise analysis of singularities in some special cases can be used as a bench-
mark on the reliability of simulations. On the other hand, simulations can be an
inspiration for the theoretical study of the flow.

In numerical simulations we see that the networks completely rearrange itself any
time we have a topological discontinuity and larger grains “eat” smaller ones.
The most prominent features that eyes pick up is the increasing average size of
(surviving) grains [3, 6].

Between the period of critical events we know exactly how the area of a grain
grows with time: the grains follow the so-called Von Neumann rule. Consider
indeed a grain bounded by a loop ℓ composed of m curves. By Gauss–Bonnet we
have

∂tA =

∫

ℓ

k ds =
(m

3
− 2
)
π ,

hence the area of grains bounded by more than six curves grows linearly, by less
than six curves decreases linearly and the area of hexagonal cells remains constant.
Moreover, by Hölder inequality

∣∣∣2 − m

3

∣∣∣π ≤
∫

ℓ

|k| ≤
(∫

ℓ

κ2
) 1

2 √
L(ℓ) ,

that is ∫

ℓ

κ2 ds ≥ C

L(ℓ)
,

with C that is different from zero for non–hexagonal cells. If we suppose that all
grains are very similar to each other and the percentage of non–hexagonal grains is
sufficiently high during evolution, we can actually formally prove that the average
area of the (surviving) grains grows linearly. Consider an initial network composed
of N2 grains in the flat torus and let it evolve by the network flow. We pass from
the above estimate on a single grain to the estimate on the entire network simply
by multiplying by the number of grains and keeping in mind that the average
length of a single loop is of order 1/N :

∫

N

k2 ds & N♯ (non–hexagonal grains) = N3 .
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The evolution law of the the total length of the network reads

d

dt
L(N ) = −

∫

N

k2 ds .

Now we use the fact that the length of the network is of order N and we put
together the last two formula, getting the differential inequality:

d

dt
N(t) . −N3(t) ,

Thus the average area (that is of order 1/N2) grows at least linearly in time

1

N(t)2
≥ 2Ct .

Figure 1. Expected evolution of a complicated network

It is not difficult to show another property of the flow that indicates that
the structure/topology of the networks should be simplified during the evolution.
When the flow develops a multiple junction where at most five curves, then the
multiple junction will be split in triple junctions and locally all the flowouts will be
without loops. Hence, by an easy computation involving the Euler characteristic,
one shows that the total number of curves decreases at least by three and the total
number of triple junctions decreases at least by two.

To conclude, in my talk I also showed a quantitative estimate of the size of
the basin of local minimality of regular networks with straight segments. The
estimate, obtained by local calibrations [11], indicates that the volume of the basin
of attraction of all the many critical points of the length functional is expected to
be small in the space of networks hence it is unlikely that the flow gets stuck in a
configuration composed of lots of hexagonal grains.
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A (tangential) Navier–Stokes–Cahn–Hilliard system on an
evolving surface

Thomas Sales

(joint work with Charles M. Elliott)

This talk was concerned with a system of partial differential equations on an
evolving surface which can be understood as an evolving surface analogue of the
“Model H” of Hohenberg and Halperin [4]. Two derivations were outlined. The
first of these was by using rational mechanics/thermodynamics arguments (in the
style of [3]) for which one obtains the system

ρ∂•u = −∇Γp+ pHν + ∇Γ · (2η(ϕ)E(u)) − ε∇Γ · (∇Γϕ⊗∇Γϕ),(1)

∇Γ · u = 0,(2)

∂•ϕ = ∇Γ · (M(ϕ)∇Γµ),(3)

µ = −ε∆Γϕ+
1

ε
F ′(ϕ),(4)

posed on Γ(t).
Here the motion of Γ(t) is determined by the velocity u which is split into

a tangential and normal component, the latter of which induces the geometric
evolution of Γ(t). The notation above can be split into various categories as
follows.

(1) Fluidic quantities: ρ is the constant density of the fluid. u is the fluid
velocity. p is the pressure induced by the fluid. η(·) is the viscosity, which
varies with the phase field variables.

(2) Geometric quantities: H is the mean curvature of Γ(t) and ν is the outer
unit normal to Γ(t).
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(3) Phase field quantities: ϕ is the difference of the concentrations of the two
fluidic components. µ is the chemical potential. M(·) is the mobility
function. ε is the interface width associated with the diffuse interface
approximation.

(4) Differential operators: ∂• is the material derivative following the flow u.
∇Γ is the surface gradient/covariant derivative. E(·) = 1

2

(
∇Γ(·) + ∇Γ(·)T

)

is the rate of strain operator.

The second derivation is via a thin film limit (in the style of [5]) where one pre-
scribes the normal evolution of Γ(t). The resulting equations are the same as
(1)-(4) up to a term in the normal direction. This discrepancy can be seen as a
Lagrange multiplier enforcing the prescribed normal evolution of Γ(t).

When one considers the full problem (1)-(4) one has to solve the equations on
a domain which is also to be found. Our simplifying assumption, as in [6], is to
consider the normal evolution as being prescribed so that one obtains a purely
tangential system of equations

ρ

(
P∂◦uT + (∇ΓuT )uT + VNHuT − 1

2
∇ΓV

2
N

)

= −∇Γp̃+ P∇Γ · (2η(ϕ)E(uT )) + µ∇Γϕ

,(5)

∇Γ · uT = −HVN ,(6)

∂◦ϕ+ ∇Γϕ · uT = ∇Γ · (M(ϕ)∇Γµ),(7)

µ = −ε∆Γϕ+
1

ε
F ′(ϕ).(8)

Where here ∂◦ is the normal time derivative (i.e. following the flow of only the
normal component of the velocity), P is the projection onto the tangent space of
Γ(t), VN is the prescribed normal velocity, and H is the Weingarten map. We
similarly have a new pressure, p̃, which functionally plays the same role p above.
Moreover, the prescribed evolution is assumed to be such that

|Γ(t)| = |Γ(0)|.

The main results of the associated preprint [2] are on the well-posedness of the
system (5)-(8) for a constant mobility M(·) ≡ 1. In particular we establish the
existence and uniqueness for suitable weak solutions (using the framework of [1])
for regular potentials, for example the quartic double well potential

F (r) =
(1 − r2)2

4
,

and the singular logarithmic potential

F (r) =
θ

2
((1 + r) log(1 + r) − (1 − r) log(1 − r)) +

1 − r2

2
,

for some constant θ ∈ (0, 1). The latter case naturally has some constraints on the
choice of initial data for ϕ.
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Stability of multiphase mean curvature flow beyond a circular
topology change

Alice Marveggio

(joint work with Julian Fischer, Sebastian Hensel, and Maximilian Moser)

The evolution of a network of interfaces by mean curvature flow features the oc-
currence of topology changes and geometric singularities. Therefore, existence and
uniqueness results for classical strong solutions are in general limited to a finite
time horizon. On the other side, the evolution beyond topology changes can be
described only in the framework of weak solution concepts, whose uniqueness may
fail (e.g., Brakke solutions).

In a recent work [1], Fischer, Hensel, Laux and Simon have established a weak-
strong uniqueness principle for weak BV solutions to planar multiphase mean
curvature flow: As long as a unique strong solution exists, any energy dissipating
weak BV solution with the same initial data must coincide with it. In particular,
their result follows from a stability estimate, which is formulated in terms of an
error functional (measuring the error between a strong and a weak solution) and
holds prior to the first topology change of the strong solution. Our aim is to extend
the stability result of [1] beyond the formation of a circular topology change.

The stability result in [1] holds for weak BV solution concepts, more precisely
for BV solutions in the sense of Laux and Otto [5] and for the varifold-BV solution
concept recently introduced by Stuvard and Tonegawa [7]. Denoting the strong
solution by the partition Ωs = (Ωs

1, ...,Ω
s
P ) of R2 on the time interval [0, Text)

and the weak BV solution by the partition Ωw = (Ωw
1 , ...,Ω

w
P ) of R2 on [0,∞),

the study of the time evolution of a suitable error functional E[Ωw|Ωs] yields
(by means of a Gronwall type argument) a weak-strong stability estimate holding
prior to the first topology change of the strong solution. The estimate does not
guarantee stability past topology changes as the time-dependent constant C(t) in

https://arxiv.org/abs/2401.12044
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Figure 1. Evolution of a circle by mean curvature flow, i.e.,
r′(t) = − 1

r(t) for any t ∈ (0, Text), r(0) = r0 and Text = 1
2r

2
0 .

the Gronwall inequality of [1]

d

dt
E[Ωw|Ωs](t) ≤ C(t)E[Ωw |Ωs](t) for any t ∈ [0, Text)(1)

is given by C(t) ∼ (Text − t)−1. Since C(t) is borderline non-integrable, this
requires the study of the stability of the leading-order contributions in (1) at the
singularity t = Text.

We aim to extend the weak-strong stability estimate following from (1) beyond
the formation of the simplest topology change [6], i.e., a circular one of length
scale r(t). More precisely, in our statement, a two-phase strong solution is given
by some smooth, bounded, open and simply connected initial set Ωs

1(0) ⊂ R2 with
boundary ∂Ωs

1(0) evolving in time into ∂Ωs
1(t) by mean curvature flow. Hence, by

the works of Gage and Hamilton [3] and of Grayson [4], ∂Ωs
1(t) becomes circular in

the process, in the sense that ∂Ωs
1(t) gets asymptotically close to a circle of radius

r(t) :=
√

2(Text − t), and it shrinks to a point at the extinction time Text =
vol(Ωs

1(0))
π (cf. Figure (1) for the evolution of an exact circle). On the other side,

our result applies to multiphase weak BV solutions, which may additionally feature
other types of topology changes and singularities.

Our result on the stability for weak BV solutions to planar multiphase mean
curvature flow beyond a circular topology change reads as follows.

Theorem. Let P ≥ 2. Consider a weak BV solution Ωw = (Ωw
1 , ...,Ω

w
P ) on [0,∞)

and a two-phase strong solution Ωs = (Ωs
1,R

2\Ωs
1, ∅, ..., ∅) on [0,∞) asymptotically

close to a circle of length scale r(t) :=
√

2(Text − t) and evolving approximately
self-similarly. Then, there exists δ0 ∈ (0, 1) such that for δ ∈ (0, δ0)

E[Ωw|Ωs](0) ≤ δr0

implies quantitative weak-strong stability up to space-time shift: ∃(z, T ) : [0,∞) →
R2 × [0,∞) Lipschitz such that T is increasing, (z(0), T (0)) = (0, 0), ‖z‖L∞

t
.

δ1/2r0, ‖T − Id‖L∞
t

. δ1/2r20, and

E[Ωw|Ωs
z,T ](t) ≤ E[Ωw|Ωs

z,T ](0)
(r(T (t))

r0

)α
for α ∈ (1, 5)(2)

for all 0 ≤ t < tχ := sup{t : T (t) < 1
2r

2
0}, where Ωs

z,T (t) = z(t) + Ωs(T (t)).

We overcome the issue of the blowing-up constant C(t) ∼ (Text − t)−1 in (1)
at the singular time Text by developing a weak-strong stability theory for circular
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Figure 2. The interface Ī = ∂Ωs
1 is dynamically adapted to I =

∂∗Ωw
1 by means of the space-time shift (z, T ).

topology change up to dynamic space-time shift (z(t), T (t)) ∈ R2 × R. The role
of the space-time shift is that of dynamically adapting the strong solution to the
weak BV solution so that the leading-order non-integrable contributions in the
inequality (1) are compensated - see Figure 2. As a result, we obtain an inequality
of the form

d

dt
E[Ωw|Ωs

z,T ](t) ≤ − α

r2(T (t))
E[Ωw|Ωs

z,T ](t) for α ∈ (1, 5),

whence we infer the weak-strong stability estimate (2). Note that the exponent
α < 5 in (2) is optimal in the sense that is consistent with the result obtained by
Gage and Hamilton in [3].

In order to prove weak-strong stability for a circular topology change up to
dynamic space-time shift, we work in two different regimes for the weak BV so-
lution. The non-perturbative regime correspond to the times t ∈ (0, tχ) at which
the energy dissipation term satisfies

1

2

P∑

i,j=1
i6=j

∫

Ii,j(t)

|Hi,j(t)|2 dH1 ≥ Λ

r(T (t))
,

where Ii,j = ∂∗Ωw
i ∩ ∂∗Ωw

j , Hi,j is the mean curvature of Ii,j , and the constant
Λ > 0 is chosen such that the dissipation dominates all the contributions from
the time evolution of the error functional. In particular, one obtains the desired
stability estimate by a trivial argument. On the other side, the perturbative
regime corresponds to the times at which the energy dissipation term is strictly
bounded by Λ

r(T (t)) . Indeed, together with the smallness of the error one can

show that the weak solution reduces to a graph over the strong solution with
small Lipschitz norm. This structure can then be exploited to compensate the
leading-order contributions by means of an explicit computation and choosing the
space-time shift correctly.

At last, we note that we expect that our method may provide the starting
point to study other types of dynamically stable shrinkers [6], as well as to prove
quantitative convergence of the phase-field (Allen-Cahn) approximation for planar
mean curvature flow [2] beyond the associated singularities.
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Viscoelastic two-phase models for tumour growth

Dennis Trautwein

(joint work with Harald Garcke and Balázs Kovács)

We introduce the topic of two-phase models with viscoelasticity, focusing on the
challenges in modelling, analysis and numerical approximations. The primary
aspect is their application to tumour growth [2, 4], but these models also find
relevance in the context of two-phase flows and fluid–structure interaction [6].

Two-phase models generally describe the evolution and interaction of two un-
mixed materials separated by an interface, which can be either diffuse, with a
smooth transition between phases, or sharp, resulting in a free boundary prob-
lem. The diffuse interface models are described using Cahn–Hilliard type systems
for an order parameter, while sharp interface models depend on geometric quan-
tities like the mean curvature of the evolving interface. The interface model is
coupled to a Navier–Stokes equation or Stokes equation for an internal velocity,
incorporating an elastic stress tensor described by an Oldroyd-B type model for
the left Cauchy–Green tensor. We discuss various biological, chemical and me-
chanical factors contributing to unstable tumour growth and their inclusion in the
mathematical models [2, 3, 4, 5].

The integration of different subsystems in the mathematical models poses sig-
nificant challenges, necessitating a simultaneous treatment of these difficulties.
Understanding the physical properties of the subsystems is crucial. Based on
[1, 2, 4], we discuss the most important properties and demonstrate how they can
be used for constructing suitable numerical approximations using the finite ele-
ment method and for existence analysis. Finally, we will present the applicability
of these numerical schemes from [2, 4] with accompanying results.
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On finite speed of propagation for a class of stochastic
thin-film equations

Günther Grün

(joint work with Lorenz Klein)

In 2005, Davidovitch, Moro, and Stone [3] introduced the stochastic thin-film
equation

dut + (u3uxxx)xdt = (u3/2dWt)x

as a model to capture effects of thermal noise in surface-tension driven thin-film
flow1. Based on numerical experiments, they conjectured that noise enhances
droplet spreading, affecting corresponding rates, too.

In recent years, first existence and nonnegativity results for stochastic thin-film
equations were established in various parameter regimes (see [1, 2, 5, 6, 13, 8, 14,
15]. It turned out that in the case of surface-tension driven evolution (see above),
the Stratonovich interpretation of noise provides an additional regularizing term
which seems to be essential for basic existence results (cf. [6] and subsequent work).
In this contribution, we assume the noise to be colored in space and white in time
and to be explicitly given by a Q-Wiener process Wt(x) :=

∑
k∈Z

µkβk(t)gk(x)
where

• the gk, k ∈ Z, are the standard sine, cosine eigenfunctions of the Laplacian
under periodic boundary conditions,

• the βk, k ∈ Z, are independent standard Brownian motions on an appro-
priate filtered probability space (Ω,F , (Ft)t≥0,P),

• Q is a Hilbert-Schmidt operator on L2(O) such that Qgk = µ2
kgk for all

k ∈ Z,
• ∑k∈Z

µ2
kk

4 <∞.

1For a derivation of stochastic thin-film equations for dewetting scenarios, see [12].
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If we chooseQ to be an integral operator with a nonnegative, compactly supported,
symmetric kernel, and if the index k indicates the frequency of the eigenfunction
gk, then the nonnegative numbers µk, k ∈ Z, satisfy µk = µ−k for all k ∈ N, and
the stochastic thin-film equation reads in the Stratonovich formulation simply as

(1) dut + (unuxxx)xdt− (CStrat + S)(un−2ux)xdt = (un/2dWt)x

for mobility exponents n > 0, a positive parameter CStrat = CStrat((µ)k∈N0 , n)
and the parameter S – at this stage – chosen to be zero. Taking the specific form
of the porous-media-type Stratonovich correction term into account, it becomes
evident that results on finite speed of propagation cannot be expected for n < 2.
From the deterministic setting, we expect weighted versions of the energy estimate

(2) 1
2

∫

O

v2x(t)dx+

∫ t

0

∫

O

vnv2xxxdxds ≤ 1
2

∫

O

v20xdx

to be a crucial ingredient for results on finite speed of propagation in the parame-
ter regime n ∈ (2, 3). Therefore, we look for martingale solutions with compactly
supported initial data which dissipate energy, i.e. which satisfy a stochastic ana-
logue of (2). More precisely, the starting point for our analysis on finite speed of
propagation are localized versions of the integral estimate

E

[
sup

t∈[0,T ]

1
2

∫

O

|ux(·, t)|2 + sup
t∈[0,T ]

1
η+1

∫

O

u(·, t)η+1 + c

∫

OT

(
u
n+2
6
)6
x

]

≤ 1
2

∫

O

|(u0)x|2 + 1
η+1

∫

O

uη+1
0

(3)

with η ∈ (0, 1/2) and c an appropriate positive constant. Surprisingly, it turns out
that so far2 the existence of such energy dissipating solutions can only be proven
if the parameter S in (1) is chosen positive and sufficiently large – for instance

S > 3(n−2)2

4(3−n) CStrat (see [10] for an existence result).

We employ the following notion of finite speed of propagation.

Definition. Let u be an energy-dissipating martingale solution to equation (1)
related to a stochastic basis (Ω,F , (Ft)t≥0,P). Let us assume initial data to be
compactly supported on O and deterministic. We say the process u to exhibit
finite speed of propagation if, for any point x0 ∈ O and any R > 0 such that
BR(x0) ⊂ O and suppu0 ∩ BR(x0) = ∅, there is for any r ∈ (0, R) an almost
surely positive stopping time Tr,R,x0 such that

(4)

∫ Tr ,R,x0

0

∫

Br(x0)

|u(·, ·, ω)|dxdt = 0

holds for all ω ∈ Ω.

In this sense, we prove finite speed of propagation (cf. [9, 10, 11]) in the pa-
rameter regime n ∈ (2, 3) with the parameter S satisfying the assumption above.

2The solutions constructed in [2, 15] use another solution concept and are not “energy
dissipating”.
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Our result is based on two main ingredients. First, we establish existence of en-
ergy dissipating solutions to equation (1) with compactly supported initial data.
For this, we generalize ideas of [5, 8] to the case of nonlinear conservative noise
with n ∈ (2, 3). A crucial technical detail is a discrete, nonsmooth version of the
identity ∫

O

un−2uxuxxx = −
∫

O

un−2u2xx + (n−2)(n−3)
3

∫

O

un−4u4x.

Weighted versions of (3) are the starting point for the proof of finite speed of
propagation. The scaling transition in the deterministic part of the equation (thin-
film operator versus porous-media operator) gives rise to a sum of power-type
nonlinearities on the right-hand side of these integral estimates. Combining the
ansatz of [7] to rearrange different power-type nonlinearities with the ideas of
[4] to transfer deterministic methods to the stochastic setting – in [4] applied to
stochastic porous-media equations with source-term noise, – we succeed to set up a
new iteration technique tailored for the stochastic thin-film equation and to prove
finite speed of propagation in the sense of the definition above (see [11]).

To the best of our knowledge, this is the first result on finite speed of propaga-
tion for a stochastic version of a degenerate parabolic equation with conservative
(instead of source-term) noise – and at the same time for a degenerate parabolic
equation of higher order.
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Existence and compactness of global weak solutions of three
dimensional axisymmetric Ericksen-Leslie system

Changyou Wang

(joint work with Joshua Kortum)

In this talk, I will describe a recent joint work with Joshua Kortum (University
of Würzburg, Germany) in which we establish, in dimension three, the existence
of global weak solutions to the axisymmetric simplified Ericksen-Leslie system
without swirl. This is achieved by analyzing weak convergence of solutions of
the axisymmetric Ginzburg-Landau approximated solutions as ε tends to zero.
The proof relies on the one hand on the use of a blow-up argument to rule out
energy concentration off the z-axis, which exploits the topological restrictions of
the axisymmetry. On the other hand, possible limiting energy concentrations on
the z-axis can be dealt with by a cancellation argument at the origin. Once more,
the axisymmetry plays a substantial role. We will also show that the space of
axisymmetric solutions without swirl (u, d) to the simplified Ericksen-Leslie system
is compact under weak convergence in L2

tL
2
x × L2

tH
1
x.

More precisely, we study the following simplified version of the celebrated Ericksen-
Leslie system that models the hydrodynamics of nematic liquid crystals. For an
axisymmetric domain Ω ⊂ R3, let (u, d, P ) : Ω × [0,∞) → R3 × S2 ×R be a triple
of axisymmetric functions without swirl, namely,

(u, d, P ) = (ur(r, z, t)er + uz(r, z, t)ez, sinφ(r, z, t)er + cosφ(r, z, t)ez, P (r, z, t)),

which solves (
∂t + b · ∇ − L+

1

r2

)
ur + Pr = −

(
Lϕ− sin 2ϕ

2r2

)
ϕr,(1)

(∂t + b · ∇ − L)uz + Pz = −
(
Lϕ− sin 2ϕ

2r2

)
ϕz ,(2)

1

r
(rur)r + (uz)z = 0,(3)

(∂t + b · ∇ − L)ϕ = − sin 2ϕ

2r2
,(4)

where

er = (cos θ, sin θ, 0), ez = (0, 0, 1),

b = urer + uzez,

L := ∂2r +
1

r
∂r + ∂2z .
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Our main theorem states as follows.

Theorem. Suppose u0 ∈ L2
div(Ω) and d0 ∈ H1(Ω, S2) are axisymmetric without

swirl. Then there exists a global weak solution (u, d, P ) : Ω× [0,∞) → R3×S2×R

to (1)–(4) that is axisymmetric without swirl, subject to the initial and boundary
condition (u, d) = (u0, d0) on Ω × {0} ∪ ∂Ω × (0,∞).
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On anisotropic curve shortening flow for planar networks

Paola Pozzi

(joint work with Michael Gößwein, Heiko Kröner, and Matteo Novaga)

Recent results for anisotropic curve shortening flow of networks are presented.
For simplicity of exposition we consider a simple network Γ composed of three
curves, joined through one triple junction and with three fixed endpoints which
coincide with given distinct points P i ∈ R2, i = 1, 2, 3 in the plane. The curves
are parametrized by some regular immersed maps ui : [0, 1] → R1, ui = ui(x) such
that ui(1) = P i, i = 1, 2, 3 and u1(0) = u2(0) = u3(0). The anisotropic length of
Γ is given by

E(Γ) :=

3∑

i=1

∫ 1

0

ϕ◦(νi)|uix|dx,

where νi = (τ i)⊥ is the Euclidean unit normal, τ i =
ui
x

|ui
x|

the Euclidean unit

tangent, and ϕ◦ : R2 → [0,∞) a smooth elliptic anisotropy map. We study an
L2-gradient flow for the above functional, i.e. we let each curve of the triod evolve
according to the geometric motion

(uit · νi)νi = ϕ◦(νi)κiϕν
i on (0, T ) × (0, 1), i = 1, 2, 3,

where κiϕ denotes the anisotropic curvature given by κiϕ = D2ϕ◦(νi)τ i · τ iκ with κ
the Euclidean curvature. The topology of the triod is maintained during evolution
and natural boundary conditions are imposed.

After giving a definition of geometric solutions and admissible initial networks,
we prove short-time existence of the flow in suitable Hölder spaces and show that,
if the maximal time of existence of the evolution is finite, then either one of the
lengths of the curves goes to zero or the L2-norm of the (anisotropic) curvature
blows up (see [2] for details). Unlike the case of evolution of a single closed
immersed curve where the maximum principle can be applied (see [1]), in the
network setting, due to the triple junction and the interaction between the curves,
we have to rely on delicate integral estimates. The latter depend on the anisotropy,
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making a possible extension of the ideas presented in [1] problematic. Hence it
remains an open question if and how we can use the anisotropic curve shortening
flow of networks with smooth elliptic energies to approximate anisotropic motion
for general (in particular crystalline) anisotropies.

Next we show that the functional E fulfills a  Lojasiewicz-Simon gradient in-
equality and employ this result, together with a suitable graph representation of
the solution, to derive a stability statement for the flow. Precisely, we show that,
for any initial configuration which is C2+α-close to a (local) energy minimizer, the
flow exists globally and converges to a possibly different energy minimum. In the
specific and elementary setting we have chosen (a simple triod), and exploiting the
assumptions on ϕ◦, it is possible to derive convergence to the unique minimum for
E (if the latter is non-degenerate, i.e. its triple junction is a distinct point from
P i, i = 1, 2, 3). The stability results are discussed in [3].

All results presented are generalizations to the anisotropic setting of the cor-
responding statements in the isotropic setting: see [2] and [3] for appropriate
references.

References

[1] G. Mercier, M. Novaga, P. Pozzi Anisotropic curvature flow of immersed curves, Comm.
Anal. Geom. 27 (2019), no. 4, 937–964.
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Modeling of Paint Atomization in Rotary Bell Spray Painting

James A. Sethian

(joint work with Robert I. Saye)

In manufacturing settings, paints are frequently applied by an electrostatic rotary
bell atomizer: paint flows to a cup rotating at 10,000-70,000 rpm and is driven by
centrifugal forces to form thin sheets and tendrils at the cup edge, where it then
atomizes into droplets.

Rotary Bell: Schematic of paint flow and air currents

The goal of computational modeling of this process is to both understand the
dynamics, and to optimize flow characteristics. This includes

https://arxiv.org/abs/2310.05596
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• Optimizing the atomization process for higher paint flow rates, trying to
obtain more uniform and consistent atomization.

• Studying the atomization process as a function of paint fluid properties
(such as density, viscosity, and surface tension) and physical properties,
such as fluid delivery rates, bell rotation speeds and shaping air currents.

• Analyzing film dynamics, particularly in the immediate atomization at the
cup edge, including the dynamics of filament formation and droplet size,
distribution and trajectories.

However, the fluid mechanics of this problem make it particularly challenging:

• Bell speeds range from 30,000 to 70,000 rpm, creating enormous centrifugal
forces.

• The paint quickly transitions from thin sheets to filaments to tiny droplets.

• Fluid interfaces undergo rapid changes in geometry as they contort and
tear apart.

• Paints are non-Newtonian and require careful calculation of associated
shear forces.

From a computational point of view, these challenges impose several requirements.
First, we need appropriate equations of motion in a moving, rotating coordinate
system referencing curved surfaces. Second, hybrid interface solvers which couple
interface jump conditions with highly contorted interfaces are required. Third,
highly accurate fluid solvers are needed to deal with complex geometry and rapidly
varying dynamics in time and space such as fast moving shaping air currents.
Fourth, adaptive mesh refinement is needed, because of the vast scales between
the smallest droplets and the extent of the computational domain. And fifth, the
sheer scales of the time step and space discretization require use of advanced high
performance computing capabilities, replete with attention to massively parallel
processing on multi-core architectures.

In an earlier (2019) Oberwolfach meeting, we described our plan to build a numer-
ical methodology that can accurately compute the underlying dynamics. Here, we
report on that work, giving a brief idea of the algorithms and summarizing the
numerical results. Here, we describe discussion and results which appeared in [5].

Our methodology combines (1) level set methods to track the paint/air fluid inter-
face, in a way that is able to deal with significant distortions, tearing, breakup and
merger [1, 2, 4, 6]; (2) implicit mesh discontinuous Galerkin methods for high order
accurate computation of the underlying flow and interface dynamics, employing
on-the-fly body-fitted DG meshes in order to impose complex interface jump con-
ditions [3]; (3) an adaptive mesh refinement scheme to resolve fluid droplets, in
which subdivision criteria are based on width/thickness of paint film, as well as
curvature; and (4) advanced efficient parallel implementation on high performance
multi-core architectures.

Level Set Methods: We use level set methods to track the paint/air fluid inter-
faces. These methods rely on an implicit embedding of the interface as the zero
level set of a higher-dimensional function, whose evolution satisfies an initial value
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partial differential equation containing a transport velocity term which captures
the underlying physics.

DG methods: The fluid equations are solved as follows:

• The equations of two-phase non-Newtonian incompressible fluid flow are
solved using a discontinuous Galerkin (DG) approach.

• A level set function is used in a finite difference setting on a background
mesh to implicitly determine where the interface is located.

• On the fly, the method constructs a body-fitted DG mesh (just for that
time step) so that jump conditions are accurately resolved.

For details, see [3].

Adaptivity: Because the thin films break into tiny bubbles, we need to build a
version of adaptive mesh refinement that dynamically refines the background level
set (and hence DG mesh) to accurately track small particles. Our approach is as
follows:

We subdivide the DG cells that contain the paint/air interface into smaller
subcells:

• Subdivision criteria based on width/thickness of paint film, as well as
curvature.

• Cells subdivide and coarsen appropriately in response to subdivision cri-
teria.

Cup

Liquid film

Liquid droplets

High Performance Computing:All the codes/algorithms have been converted
to massively parallel implementations. The time step, spatial resolution, and
physics make it impossible to model the entire bell atomization process. On the
biggest, fastest, parallel supercomputer (ORNL, NERSC, etc) on millions of cores,
we can only model a small angular wedge of the cup. Nonetheless, quantitative
results can be obtained.
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t = 472.5µs t = 535.0 µs t = 597.5 µs

Figure 1. Time- and spatially-varying inflow film thick-
ness, high mesh resolution, and shaping air currents sim-
ulating nozzle inlets. Three-dimensional model results us-
ing a high-resolution computational mesh together with accurate
smooth cup geometry. Two viewpoints at the same time frame
are given: a top-down perspective and a side-on view to show the
vertical drifting of the shedding droplets, being pushed upwards
by the shaping air currents. The liquid surface is colored copper,
with the bell cup situated beneath.

Results:
See Figure 1.
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Finding equilibrium states of fluid membranes

Maxim Olshanskii

We consider an inextensible Boussinesq–Scriven viscous membrane represented by
a time-dependent surface Γ(t) with a density distribution ρ(x, t). The governing
equations for the motion of the membrane are based on conservation of mass and
linear momentum for an arbitrary material area γ(t) ⊂ Γ(t) (see, e.g., [1]). The
system of equations reads: Find a velocity field u of the density flow on Γ(t)
together with a surface pressure p and the surface normal velocity VΓ satisfying

(1)





ρu̇ = −∇Γp+ 2µ divΓ(DΓ(u)) + b + pκn,

divΓu = 0,

ρ̇ = 0,

VΓ = u · n

on Γ(t).

Here, κ is the double mean curvature, p is the surface pressure, µ is the viscosity,
DΓ(u) = 1

2 (∇Γu + ∇Γu
T ) is the surface rate-of-strain tensor, ρ̇, u̇ are material

derivatives of ρ and u, and b represents area forces, which include elastic and
external forces. For definitions of the surface tangential operators we refer to [1].

We assume that ρ = const. at t = 0, and then ρ̇ = 0 implies ρ = const. for
t > 0. The area forces b consist of the external force given by a constant pressure
difference across the membrane and elastic forces generated by the bending and
stretching of the membrane,

b = pextn + belst.

For the elasticity, we consider the Helfrich model with the Willmore energy func-
tional and zero spontaneous curvature:

H =
cκ
2

∫

Γ

κ2 ds,

where cκ > 0 has the meaning of bending rigidity. Applying the principle of virtual
work and computing the shape derivative of H one finds that the release of the
bending energy produces a force in the normal direction to the surface:

(2) belst = cκ(∆Γκ+
1

2
κ3 − 2Kκ)n.

We were interested in the equilibrium state solutions to the governing equations
(1)–(2). The following three conditions of the equilibrium were found: The surface
is time-independent in the sense of a shape:

(3) u · n = 0.

Then, either u = 0, which reduces the problem to the classical one of finding
a minimal Willmore surface, or the steady surface of interest should support a
nontrivial Killing vector field, i.e. tangential u 6= 0 such that

(4) DΓ(u) = 0.
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According to the third equilibrium condition, the in-surface pressure in an equilib-
rium state splits into a constant term and a term representing the kinetic energy
density:

(5) p− ρ

2
|u|2 = p0 with some p0 := const.

The shape equation for the surface at equilibrium is found by using (3)–(5)
and the particular elasticity model. For the Helfrich model, it reads: Find a
smooth connected closed and compact surface Γ of a prescribed area such that its
curvatures satisfy

(6) −ρuTHu− ρ

2
κ|u|2 = p0κ+ cκ(∆Γκ+

1

2
κ3 − 2Kκ) + pext on Γ.

We discussed (see also [2]) that it is plausible to
assume that only surfaces of revolution support non-
zero Killing fields among closed compact smooth sur-
faces isometrically embedded in R3. This motivated
us to restrict further considerations to such surfaces.
Let Oz be the axis of symmetry for Γ. Then u sat-
isfying (3)–(4) is a field of rigid rotations given by
u(x) = w ez × x, x ∈ Γ, with the angular velocity
w ez. It can be shown that uTHu = κ2|u|2, where κ2
is the second principal curvature. For an axisymmetric
surface the term on the left-hand side of the shape equa-

tion takes the form −ρ
(
κ2 + κ

2

)
(w r)2. Thus, we were

interested in the following problem: Find an axisym-
metric Γ, p0, and p

ext such that (6) holds with given ρ,
κ, |w|, A = area(Γ) and V = vol(Γ).

We next consider an arc-length parametrization
s : [0, L] → (r(s), ψ(s)) of the profile curve, where
ψ the tilt angle, so that Γ is generated by rotating
the curve around the z-axis in R3. Writing geometric
quantities in terms of r and ψ the problem of finding
a stationary shape can be reformulated follows: Given
an angular velocity w ≥ 0, surface area A > 0 and
volume V > 0 (satisfying the isoperimetric inequality

V ≤ 1/(6π2)A
3
2 ), find L ∈ R+, ψ(s), r(s) : [0, L] →

R, p0, p
ext ∈ R satisfying the following system of ODEs,

integral and boundary conditions:

−ρw2r(12rψs + 3
2 sinψ) =p0κ+ cκ

(
r−1(rκs)s + 1

2κ
3 − 2Kκ

)
+ pext,

with κ = (ψs +
sinψ

r
), K =

ψs sinψ

r
,

rs = cosψ,
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2π

∫ L

0

r ds =A, π

∫ L

0

r2 sinψ ds = V

r(0) = 0, r(L) = 0, ψ(0) = 0, ψ(L) = π.

We derived a simple and effective second order numerical method to solve this
system.

Letting A = 4π2 and applying the numerical method we find branches of solu-

tions to (6) parameterized solutions by their reduced volume V̂ := 3vol(Γ)/(4π),

V̂ (Γ) ∈ (0, 1], where V̂ = 1 corresponds to the unit sphere, a trivial solution of (6)
for w = 0 and p0, pext satisfying 2p0 + pext = 0. Several branches of shapes, which
are new compared to the classical Willmore shapes, were found and reported in

[2]. One of such shapes (with V̂ = 0.39, w = 4) from the first branch of oblique
shapes, in the terminology of [2], is illustrated in the figure above.

References

[1] T. Jankuhn, M. Olshanskii, and A. Reusken, Incompressible fluid problems on embedded
surfaces: Modeling and variational formulations, Interfaces and Free Boundaries 20 (2018),
353–377.

[2] M. Olshanskii, On equilibrium states of fluid membranes, Physics of Fluids 35 (2023),
062111.

Parametric finite element methods for Navier–Stokes equations on
evolving surfaces

Robert Nürnberg

(joint work with Harald Garcke)

In this talk we introduce a numerical method for the approximation of a surface
Navier–Stokes equation on an evolving surface, where the evolution of the surface
is coupled to the flow of the fluid on it. In particular, for an evolving closed
oriented hypersurface Γ in Rd, d = 2 or 3, we consider the incompressible surface
Navier–Stokes equations

(1) ρ ∂•t ~u−∇s · σ = ~g + αfΓ ~ν, ∇s · ~u = 0, V = ~u · ~ν,
where ~u denotes the velocity of the fluid on the surface. In addition, ∂•t denotes
the material time derivative on Γ, ∇s· is the surface divergence, σ is the surface
stress tensor, ~ν is a unit normal on Γ, V is the normal velocity of the evolving
surface Γ, ~g is some external forcing and ρ is the constant density. For the forcing
fΓ we have some intrinsic properties of the surface in mind, and α ∈ R≥0 is a
related coefficient. The second condition in (1) models the incompressibility of the
surface’s material, meaning in particular that the total surface area is conserved.
The third equation in (1) means that the surface evolves according to the normal
component of the velocity ~u. The surface stress tensor is given by

σ = 2µDs(~u) − pP ,
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where µ ∈ R≥0 is the interfacial shear viscosity and p denotes the surface pressure,
which acts as a Lagrange multiplier for the incompressibility condition in (1).
Here P = I − ~ν ⊗ ~ν is the projection onto the tangent space of Γ, and Ds(~u) =
1
2 P (∇s ~u+(∇s ~u)T )P is the surface rate-of-deformation tensor, where ∇s = P ∇ =

(∂s1 , . . . , ∂sd) denotes the surface gradient and ∇s ~u =
(
∂sj ui

)d
i,j=1

.

For example, the forcing fΓ in (1) can be derived from a simple bending energy,
e.g.

(2) E(Γ) = 1
2

∫

Γ

κ
2 dHd−1 ,

the well-known Willmore energy. By κ we denote the mean curvature (the sum
of the principal curvatures) of Γ and dHd−1 indicates integration with respect to
the (d− 1)-dimensional surface measure. The forces from the bending energy act
in a direction normal to the surface and f is given as minus the first variation of
E(Γ), i.e.

(3) fΓ = −∆s κ − κ |∇s ~ν|2 + 1
2 κ

3 ,

where ∆s is the surface Laplacian and ∇s ~ν is the Weingarten map.
More generally, if fΓ = 1 then α can play the role of a Lagrange multiplier for

the side constraint
∫
Γ
V dHd−1 =

∫
Γ
~u · ~ν dHd−1 = 0, which would enforce the

conservation of the volume enclosed by Γ. We also observe that replacing (2) with
the total surface area

∫
Γ 1 dHd−1 would result in the variation fΓ = κ. However,

using that forcing in (1) would have no effect on the flow, due to the surface’s
incompressibility. In particular, the solution to (1) would be independent of the
value of α.

The surface Navier–Stokes equations (1), as well as the stationary case, where
~u · ~ν = 0, have recently seen a lot of interest in the literature. We refer to [4, 6]
and the references therein. Solutions to (1), (3) are often called fluidic surfaces
and play a role as a simplified model for biological membranes, see e.g. [5]. In
fact, the system can formally be derived as a limit of the coupled bulk Navier–
Stokes/surface Navier–Stokes/Willmore energy model for fluidic biomembranes
considered in [1, 2], when the bulk densities and bulk viscosities go to zero.

Solutions of (1), (3) satisfy the energy estimate

1
2

d

dt

(
ρ 〈~u, ~u〉Γ(t) + α 〈~κ, ~κ〉Γ(t)

)
+ 2µ

〈
Ds(~u), Ds(~u)

〉
Γ(t)

= 〈~g, ~u〉Γ(t) .(4)

The aim of this talk is to introduce a parametric finite element approximation for
(1), (3) that mimics (4) on the discrete level. Based on the authors’ previous work
with John W. Barrett in [2], we first consider a semidiscrete method based on poly-
hedral approximations Γh(t) of the evolving surface Γ, together with surface P2P1

Taylor–Hood elements for the approximations (~Uh, P h) of velocity and pressure,
and P1 approximations of curvature and bending forces. For the discrete stability
proof, similarly to the techniques used in [2], it is crucial to identify the (full)

discrete velocity ~Vh of Γh(t) with ~πh
1
~Uh, the piecewise linear interpolant of ~Uh.

Unfortunately, this indirect reduction in the degrees of freedom of ~Uh, and which
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P1 P2

1/h ‖Γh(T )− Γ(T )‖L∞ ‖Γh(T )− Γ(T )‖L∞ EOC

32 3.7052e-02 7.3893e-02 —
64 8.8822e-01 9.3797e-03 2.98

128 1.0081e-00 1.1815e-03 2.99
256 1.0140e-00 1.4784e-04 3.00
512 1.0083e-00 1.8481e-05 3.00

Table 1. Errors for the convergence test for Γ(t) = (1 + t)S1 for
P1 and P2 discrete surfaces.

terms they influence, leads to locking phenomena for some numerical experiments
for the corresponding fully discrete scheme.

That is why in the second part of the talk we consider piecewise quadratic
approximations Γh(t) of Γ instead, together with the associated isoparametric
finite element spaces Sh

2 (Γh) and Sh
1 (Γh) of order P2 and P1. Using isoparametric

P2P1 Taylor–Hood elements for (~Uh, P h) then means that the proof of the discrete
analogue of the stability bound (4) naturally follows the proof in the continuous

setting. In particular, the (full) discrete velocity ~Vh of Γh(t) now satisfies ~Vh =
~Uh ∈ Sh

2 (Γh). In addition, it can be shown that the surface area of the evolving
discrete surfaces Γm(t) is preserved, in line with the corresponding conservation
property on the continuous level.

The differences between the P1 and P2 surface approximations in practice can
be visualized with the following convergence experiment. To this end, we observe

that the family of spheres Γ(t) = r(t)Sd−1, with outer unit normal ~ν =
~id

|~id|
,

together with ~u(·, t) = r′(t)~ν and p(t) = ρ r′′(t) r(t)
d−1 + 2µ r′(t)

r(t) − α fΓ(t) r(t)
d−1 is a

solution to (1) with the second equation replaced by ∇s · ~u = (d − 1) r′(t)
r(t) . For

example, for (2) it holds that

(5) fΓ(t) =
(d− 1)2

r3(t)
− 1

2

(
d− 1

r(t)

)3

=

{
1

2 r3(t) d = 2 ,

0 d = 3 .

We use this solution to perform a convergence test for both schemes, for the
function r(t) = 1+ t on the time interval [0, T ] with T = 1, and for the parameters
d = 2, ρ = µ = α = 1. See Table 1 for the observed errors. We see that for the P1
case the errors are not converging, while for the P2 surfaces we see a convergence
rate of order O(h3). The reason for the nonconvergent P1 approximations is
locking, as seen in the example in Figure 1.

The research presented in this talk is work in progress, see [3].
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Figure 1. Plots of the discrete surface at times t = 0, 0.1, . . . , 1
for the convergence test for Γ(t) = (1 + t)S1 for P1 (left) and P2
(right) discrete surfaces.
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Numerical analysis of an evolving bulk–surface model
of tumour growth

Balázs Kovács

(joint work with Dominik Edelmann and Christian Lubich)

We have presented some recent results on the numerical analysis of an evolving
bulk-surface finite element method for a model of tissue growth (see [2]), which
is a modification of the model of Eyles, King and Styles (2019) [1]. The model
couples a Poisson equation on the domain with a forced mean curvature flow of
the free boundary, with nontrivial bulk–surface coupling in both the velocity law
of the evolving surface and the boundary condition of the Poisson equation. The
numerical method discretises evolution equations for the mean curvature and the
outer normal and it uses a harmonic extension of the surface velocity into the bulk;
the strong formulation consists of four coupled groups of equations:
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Figure 1. Numerical solutions with varying regularisation pa-
rameter µ = 0, 0.01, 0.1, 1 (column-wise from left to right).
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{
−∆u = −1 in Ω(t),

∂νu−µ∆Γu+ αu = βH +Q on Γ (t);
(1)





∂•ν = β∆Γ ν + β|A|2ν − α∇Γu on Γ (t),

∂•H = β∆ΓH + β|A|2H − α∆Γu− α|A|2u on Γ (t),

vΓ = V ν with V = −βH + αu on Γ (t);

(2)

{
−∆v = 0 in Ω(t),

v = vΓ on Γ (t);
(3)

{
∂tX = v ◦X on Ω0 ∪ Γ 0.(4)

The term µ∆Γu in the first equation is a regularisation term, which does not
appear in [1], but is required by the presented analysis.

The spatial semi-discretisation using evolving bulk–surface finite elements ad-
mits a convergence analysis in the case of continuous finite elements of polynomial
degree at least two. The error analysis combines stability estimates and consis-
tency estimates to yield optimal-order H1-norm error bounds for the computed
tissue pressure u and for the surface position X , velocities vΓ and v, normal vec-
tor ν and mean curvature H . We have presented some numerical experiments
illustrating and complementing our theoretical results.

A numerical experiment. Figure 1 briefly reports on the minimal effects of the
regularisation µ = 0, 0.01, 0.1, 1 (column-wise left to right) with a fixed source
Q = 1.5, and fixed model parameters α = 1 and β = 1.
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A weak-strong uniqueness principle for De Giorgi type solutions to
the Mullins-Sekerka equation

Julian Fischer

(joint work with Sebastian Hensel, Tim Laux, and Theresa Simon)

The Mullins-Sekerka equation describes volume-preserving phase separation and
coarsening processes; it arises in particular as the sharp-interface limit of the Cahn-
Hilliard equation with double-well potential. In the Mullins-Sekerka equation, the
motion of an interface I(t) between two phases Ω+(t) = {x : χ(x, t) = 1} and

https://arxiv.org/pdf/2401.09372
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Ω−(t) = {x : χ(x, t) = 0} is determined by the chemical potential u = u(x, t);
more precisely, the interface moves with normal velocity Vn given by

Vn = n · [[∇u]] on I(t),

where n denotes the surface normal of I(t) and [[·]] denotes the jump across the
interface. The system is closed by the piecewise harmonicity of the chemical
potential

∆u = 0 in Ω \ I(t)

and the Gibbs-Thomson law prescribing the chemical potential u to be equal to
the mean curvature H of the phase interface

u(x, t) = H(x, t) on I(t).

Classical solutions to the Mullins-Sekerka equation have been constructed by
Chen, Hong, and Yi [2] and by Escher and Simonett [3]. A conditional proof of
existence of weak solutions has been given by Luckhaus and Sturzenhecker [10],
while Röger [12] provided the first unconditional proof of existence. Recently,
Hensel and Stinson developed a notion of weak solutions based on De Giorgi’s
approach to solutions for gradient flows [9]. Note that the aforementioned weak
notions of solutions are formulated in terms of the phase indicator function χ;
the harmonicity of the chemical potential and the evolution of the interface are
merged into a single equation ∂tχ = ∆u that must be satisfied in the sense of
distributions, and the Gibbs-Thomson law is imposed via a weak formulation in
terms of the phase indicator function χ.

As our main result, in [5] we establish a weak-strong uniqueness principle for
the two-phase Mullins-Sekerka equation in the planar case: As long as a classi-
cal solution to the evolution problem exists, any weak solution in the sense of
Hensel-Stinson [9] must coincide with it. In particular, in the absence of geomet-
ric singularities their notion of weak solutions does not introduce a mechanism for
(unphysical) nonuniqueness. We also derive a stability estimate with respect to
changes in the data. We emphasize that our result in [5] also applies to solutions
in the sense of Luckhaus-Sturzenhecker [10], assuming that they satisfy a sharp
energy dissipation estimate.

Our method is based on the notion of relative entropies for interface evolution
problems: We consider the relative energy given as

E[χ|ξ] :=

∫

Ω

1 − ξ · ∇χ
|∇χ| d|∇χ|(1)

where ξ denotes a suitable extension of the unit normal vector field of the strong
solution subject to the length constraint |ξ| ≤ 1. Observe that the relative energy
(1) controls quantities like

∫

Ω

∣∣∣∣
∇χ
|∇χ| − ξ

∣∣∣∣
2

d|∇χ|,

thereby measuring the “difference” between the two interfaces in a tilt-excess-like
sense. The general notion of relative entropies goes back to Dafermos and Di Perna;
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for geometric quantities, a notion of relative energy for curves was developed by
Jerrard and Smets [11] and the above stated analogous notion for interfaces by the
second and the first author [6]. A notion of relative energy for partitions based on
the concept of calibrations was developed by the four authors [4]. In recent years
the relative entropy method has also proven highly useful for the justification of
sharp-interface limits [1, 8, 7].

Besides the notion of relative energy (1), two further key ingredients for our
weak-strong uniqueness result are

• An estimate showing that whenever the interface in the weak solution is
not a graph over the interface of the strong solution, the energy dissipation
term from the weak solution dominates all other terms in the evolution of
the relative energy and leads to an estimate of the form

d

dt
E[χ|ξ] ≤ −1

2

∫

Ω

|∇u|2 dx.

• The construction of an auxiliary chemical potential ũ, which is harmonic
in each of the phases of the weak solution, but takes the curvature of the
strong solution as a boundary condition on the phase interface of the weak
solution.

Combining these ingredients with stability properties of the Dirichlet-to-Neumann
operator with respect to perturbations of the domain, they allow us to establish a
stability estimate for the relative energy of the form

d

dt
E[χ|ξ] ≤ −1

2

∫

Ω

|∇u−∇ũ|2 dx+ CE[χ|ξ]

and conclude with a Gronwall estimate.
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Convergent finite element schemes and mesh smoothing for geometric
evolution problems

Björn Stinner

(joint work with Paola Pozzi)

Mesh-based computational methods for geometric evolution problems require
adaptation and smoothing to enable long-term simulations. We consider finite
element schemes based on classical approaches for geometric evolution equations
but augmented with the gradient of the Dirichlet energy, or a variant of it, which
is known to produce a tangential mesh movement beneficial for the mesh quality.
However, this contribution ideally is accounted for in a way such that the impact
on the physics of the evolution is minimal.

We focus on the one-dimensional case, i.e., the geometric evolution of curves.
Our general aim is to derive semi-discrete finite element schemes for which con-
vergence can be proved and quantified. Two cases are discussed.

Case 1: Triod evolution by curvature flow. We consider three curves moving
by curvature connected at a triple junction at which angles of 120◦ are prescribed.
In [3] an approach for single, closed curves is analysed, which approximates the
movement in normal direction. However, some tangential movement is required
to ensure that the triple junction can move, too. The approach in [1] provides
such an addition. However, with that appraoch the angle condition at the triple
junction is not straightforward to realise.

Our idea has been to use the first approach for the geometric evolution in normal
direction and to ensure that the angle condition is met, and then to augment
the scheme with the second approach for some tangential movement, scaled with
a small parameter ε > 0 that enables to control the impact on the geometric
(normal) evolution. The weak formulation of the problem essentially reads:

3∑

i=1

(∫ 1

0

(u
(i)
t · ν(i))(ϕ(i) · ν(i))|u(i)x | + ε(u

(i)
t · τ (i))(ϕ(i) · τ (i))|u(i)x |2dx

)

= −
3∑

i=1

(∫ 1

0

τ (i) · ϕ(i)
x + εu(i)x · ϕ(i)

x dx

)
.

where the functions u(i) : (0, 1) × (0, T ) → R2, i = 1, 2, 3, are parametrisations
of the three curves and τ (i) and ν(i) are the unit tangent and normal vectors. In
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strong form the problem reads

(u
(i)
t · ν(i))ν(i) = (1 + ε|u(i)x |)H(i),

(u
(i)
t · τ (i))τ (i) =

1

|u(i)x |2
(τ (i) · uxx)τ (i),

0 =
3∑

i=1

τ (i) + εu(i)x ,

where H is the curvature. The terms with ε are the deviations from the problem
that we want to solve.

The weak formulation is suitable to linear finite elements, and we have the
following results for the solution to the semi-discrete problem:

Theorem 1 (h-convergence (ε fixed)). Assume that there is a unique (suffi-
ciently regular) solution Γ = (u(1), u(2), u(3)) with

0 < c0 ≤ |u(i)x | ≤ 1/c0.

For all h small enough the semi-discrete problem has a unique solution Γh =

(u
(1)
h , u

(2)
h , u

(3)
h ) satisfying

∫ T

0

‖u(i)t − u
(i)
ht ‖2L2((0,1))dt+ sup

t∈[0,T ]

‖u(i)x (t) − u
(i)
hx(t)‖2L2((0,1)) ≤ Ch2, i = 1, 2, 3.

The constant C > 0 depends on c0, T , norms of the u(i), and scales with ε−1.

The proof follows the lines of [1] and uses a fixed-point argument. For further
details we refer to [4]. The latter work also contains numerical examples that
support the theoretical findings.

Case 2: Elastic flow with tangential mesh movement. When studying the
elastic flow of curves, often, the length functional (multiplied with some penalty
parameter λ > 0) is added to the elastic energy to ensure that curves do not
expand to infinity. The L2 gradient flow then still is geometric as the energy only
changes when varying the curve in the normal direction.

Our idea has been to replace the length functional with the Dirichlet energy
and to consider the L2 gradient flow of

Dλ(u) =
1

2

∫ 1

0

|κ|2dx+
1

2
λ

∫ 1

0

|ux|2dx,

where κ = ∂ssu is the curvature vector (second arc-length derivative of the para-
metrisation u : [0, 1] → Rn). Critical points of the two energies are the same
modulo rescaling the penalty parameter λ. Thanks to the Dirichlet energy, tan-
gential mesh movement is ensured to enable long-term computations. In turn, the
resulting flow is not geometric due to these tangential contributions.
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The weak formulation is based on [2] and uses second order splitting:
∫ 1

0

(ut · φ)|ux| −
∫ 1

0

Pκx · φx
|ux|

− 1

2

∫ 1

0

|κ|2(τ · φx) + λ

∫ 1

0

ux · φx = 0,

∫ 1

0

(κ · ψ)|ux| +

∫ 1

0

(τ · ψu) = 0,

where P = I − τ ⊗ τ is the projection to the normal space. We assume that there
is a unique smooth, periodic (in space) solution, u : (0, T ) × (0, 1) → Rn which is
regular:

c0 ≤ |ux| ≤ C0, |κ| ≤ C0.

Using linear finite elements and denoting the interpolation operator with Ih the
semi-discrete problem is:

∫ 1

0

Ih(uht · φh)|uhx| −
∫ 1

0

Phκhx · φhx
|uhx|

− 1

2

∫ 1

0

Ih(|κh|2)(τh · φhx)

+λ

∫ 1

0

uhx · φhx = 0,

∫ 1

0

Ih(κh · ψh)|uhx| +

∫ 1

0

(τh · ψhx) = 0,

where Ph = I − τh ⊗ τh. As the continuous problem, it satisfies a natural energy
(dissipation) identity:

∫ 1

0

Ih(|uht|2)|uhx| +
d

dt

{
1

2

∫ 1

0

Ih(|κh|2)|uhx| +
λ

2

∫ 1

0

|uhx|2
}

= 0.

Theorem 2 (Convergence and error estimate). For all h small enough the
semi-discrete problem has a unique solution and is such that

sup
t∈[0,T ]

‖u(t, ·) − uh(t, ·)‖2H1 +

∫ T

0

‖ut(t, ·) − uht(t, ·)‖2L2dt ≤ Ch2,

sup
t∈[0,T ]

‖κ(t, ·) − κh(t, ·)‖2L2 +

∫ T

0

‖κu(t, ·) − κhu(t, ·)‖2L2dt ≤ Ch2.

The proof is based on [2]. Some technical estimates are simplified thanks to
using the Dirichlet energy rather than the length functional, which makes control-
ling the length element |ux| easier. The publication [5] contains the details of the
proof. It also presents simulation results that support the theory and illustrates
the behaviour of evolution.
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Analysis of a quasi-variational contact problem arising in
thermoelasticity

Amal Alphonse

(joint work with Carlos N. Rautenberg and Jose Francisco Rodrigues)

We discuss a model of a thermoforming process involving a system of PDEs with
an implicit obstacle constraint that describes the thermoelastic behaviour of mate-
rials in the process. The obstacle is a priori unknown and it depends on the other
unknown variables in the system leading to a quasi-variational problem. Thermo-
forming is an industrial process that aims to manufacture precision parts and it
involves forcing a sheet/membrane u onto a mould Φ0 ≡ 0 (we can assume it is
zero without much loss of generality) by means of air pressure (or other mecha-
nisms). The sheet is heated (with temperature denoted by θ1) in order to enter the
shape-acquiring phase and to reduce brittleness of the material, while the mould
(temperature denoted by θ2) is not; in fact, the mould might be cooled. The tem-
perature difference triggers a complex heat transfer process during contact, and
this is coupled with changes of shape of the mould (whose resulting position is de-
noted by Φ) and sheet due to the thermal linear expansion phenomenon. Lastly,
the membrane takes on the shape of the mould via a cooling down phase. The full
model as described is evolutionary; we focus in the talk on the following associated
stationary counterpart: with

Aθu := −∇ · (a(θ1)∇u),

for i = 1, 2,

−κi∆θi + ciθi = hi + (−1)ibi(θ1 − θ2)χ{u=Φ} in Ω,(1a)

∂nθi = 0 on ∂Ω,(1b)

−∆Φ = α(θ1 − θ2)χ{u=Φ} + g in Ω,(1c)

Φ = 0 on ∂Ω,(1d)

u ≤ Φ, Aθu ≤ f, (Aθu− f)(u− Φ) = 0 in Ω,(1e)

u = 0 on ∂Ω.(1f)

Here, κi > 0, ci > 0, f, g, hi : Ω → R, bi ≥ 0 and α > 0 for i = 1, 2 are given
data, χ{u=Φ} is the characteristic function of the contact set and ∂nθ denotes the
normal derivative at the boundary ∂Ω of a bounded Lipschitz domain Ω. We
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assume throughout that

a ∈ C1(R) with 0 < λ1 ≤ a ≤ λ2, and a′ is bounded.(2)

Let us briefly discuss the assumptions and explain the role of the unknown
quantities that appear in (1). We assume that displacements of the membrane
and the mould occur only in one spatial direction and denote those displacements
as u and Φ, respectively. The initial or undeformed membrane and mould are
denoted respectively by u0 ≡ 0 and Φ0; hence the deformed structures are given
by u and Φ+Φ0, and the former is assumed to be below the latter. Additionally, we
do not allow for displacement in the boundary ∂Ω and we assume that mechanical
contact has a negligible effect on the deformation of the mould. We take for
granted that heat transfer between the membrane and mould is present only when
contact occurs and that boundaries are insulated; as mentioned θ1 and θ2 denote
the temperatures of the membrane and the mould, respectively. Furthermore, the
linear thermal expansion effect on the mould appears in the displacement equation
as a term proportional to the temperature difference θ1 − θ2 and is active only
when contact is present. Additionally, we do not assume thermal expansion of the
membrane due to the fact that this term is significantly smaller than the force
pushing the membrane. Without loss of generality, when Φ0 is smooth, we can
assume Φ0 ≡ 0. The problem described above is a highly complex type of contact
problem in thermoelasticity as it couples elastic with heat transfer phenomena
and at the same time the constraint associated to the non-penetration condition
between the membrane and the mould holds. In particular, the static conduction
of heat across the two thermoelastic materials depends on the extent of the contact
area which in turn depends on the thermoelastic displacement.

Observe that (1) is a free boundary problem since the boundary of the contact
set {u = Φ} is not known a priori.

In the talk, we prove the following results. We first look at existence of a notion
of solution which is slightly weaker than the natural one. Define the graph

J(s) =





1 : s < 0

[0, 1] : s = 0

0 : s > 0.

We say (θ1, θ2, u,Φ) ∈ H1(Ω)2 ×H1
0 (Ω)2 is a weak solution if

∫

Ω

κ1∇θ1 · ∇η + c1θ1η =

∫

Ω

(h1 − b1(θ1 − θ2)χ)η ∀η ∈ H1(Ω),

∫

Ω

κ2∇θ2 · ∇ζ + c2θ2ζ =

∫

Ω

(h2 + b2(θ1 − θ2)χ)ζ ∀ζ ∈ H1(Ω),

∫

Ω

∇Φ · ∇ξ = α

∫

Ω

((θ1 − θ2)χ+ g)ξ ∀ξ ∈ H1
0 (Ω),

u ∈ K(Φ) :

∫

Ω

a(θ1)∇u · ∇(u− v) ≤
∫

Ω

f(u− v) ∀v ∈ K(Φ)
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holds, where

χ ∈ J(Φ − u).

Theorem 1 (Weak solutions). If

c0 := min
{
c1 − (b2 − b1)+/4, c2 − (b1 − b2)+/4

}
> 0,

(1) has a weak solution.

We say (θ1, θ2, u,Φ) ∈ (H2
loc(Ω))4 ∩ (H1(Ω)2 ×H1

0 (Ω)2) is a regular solution
if the above weak formulation holds and

χ = χ{Φ=u}.

Theorem 2 (Regular solutions). If additionally

c2/κ2 ≥ c1/κ1 and h1/κ1 ≥ h2/κ2 ≥ 0,

f + ∇ · (a(θ1)∇Φ) > 0 a.e. in Ω,

we have χ = χ{u=Φ} and (1) has a regular solution.

Notice that we needed additional assumptions to ensure existence of regular
solutions; this can be roughly thought of as ‘strong forces lead to regular solutions’.
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Understanding microswimmer locomotion with Cosserat rods

Thomas Ranner

(joint work with Netta Cohen, Lukas Deutz, Thomas P. Ilett,
and Yongxing Wang)

1. Introduction

The nematode Caenorhabditis elegans has been used for over 50 years as a ge-
netic model for understanding developmental biology and neurobiology. It has
approximately 1000 cells in total, of which 302 are neurons. Despite this C. el-
egans manages to live freely: for example, it moves around, reproduces, eats,
avoids predators. For almost all of the last 50 years, C. elegans and especially its
locomotion has been studied on a two-dimensional plate under a microscope, see
Figure 1 (left). Its 2D locomotion is very well characterised consisting of periods of
sinosoidal forward undulations interrupted by turning and reversal manoeuvres [4].
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Figure 1. (Left): C. elegans on a 2D plate. (Right): 3D exper-
imental set up.

Recent years have seen several groups (including ours, Figure 1, right) interested in
capturing three-dimensional locomotion of C. elegans. Our previous study [5] has
produced a large dataset of over 4 hours of fully reconstructed three-dimensional
postures (midlines only). We find that in fact postures in these recordings are
typically nonplanar with new manoeuvres such as a torsion roll [2] and a 3D
coiling gait [7] identified.

2. The computational model

For full details of the model and its derivation are given in [6] based on ideas by
[3] and [1]. We give a brief summary here.

(a) Schematic of Cosserat rod (b) Schematic of C. elegans

Figure 2. Schematics for geometry and anatomy of model.

To describe the geometry of C. elegans body, we use a Cosserat rod. A Cosserat
rod describes the geometry of a long thin body that can undergo bending, twisting,
stretching and shearing. We describe the rod using a parametrisation of the midline

~x : [a, b] → R3 and an orthonormal frame {~d1, ~d2, ~d3} : [a, b] → SO3, see Figure 2a
for an example. The orthonormal frame allows us to parametrise the (small)
thickness by describing the orientation of a set of discs akin to a set of salami

slices from a sausage. We note that for a Cosserat rod we expect ~d3 to be close
to, but not equal to, the tangent to the midline ∂s~x. The orientation of the
thickness of the rod is important in modelling C. elegans anatomy as the muscles,
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and especially their neural connectivity, are not symmetric about the midline, see
Figure 2b. In particular, the rod formulation allows us to distinguish between
bending (and shearing) in different directions.

Rather than working with the frame {~d1, ~d2, ~d3} directly, we parametrise the

frame using three rotation (Euler) angles ~θ = [α, β, γ] : [a, b] → R3. The rotations
describe how a global coordinate system, often called the lab reference frame,

~e1, ~e2, ~e3 can be rotated onto ~d1, ~d2, ~d3. This gives us a convenient way to describe
the geometry without having to impose any external constraints.

The conservation of linear and angular momentum of a Cosserat rod is given
in the classical textbook by [1]. We adopt constitutive laws assuming a linear
relationship between internal force and strain and between internal torque and
(generalised) curvature. Combining the balance of linear and angular momentum
with our constitutive relation gives the continuous model.

The finite element formulation is based on the formulation of the continuous
problem in the reference configuration, also known as the total Lagrangian for-
mulation. We approximate solution variables as vector-valued piecewise linear
functions.

3. Using the model to augment the dataset

The dataset we work with consists of a sequence of midlines but to understand
the locomotion of C. elegans we must also be able to determine the frame. To
attempt to do this, we pose the inverse problem: can we determine the forces
and torques which best match the midlines in the dataset by using our forwards
model? Since our forwards model maps forces and torques to midlines and frames,
the inverse problem automatically gives a sequence of candidate frames which
match the midline and are consistent with the model.

We formulate the inverse problem in an optimal control framework where we
seek to minimise an objective function which depends on input forces and torques
which move the solution of the model from one time point to the next - so called
piecewise-in-time control. We includes an L2 data mismatch term and regularisa-
tion terms both on the input forces and torques as well as on the output frame: We

penalise deviations of the ~d3 director from the tangent direction, high (generalised)
curvatures and high angular velocity of the frame. The regularisation terms on
the frame are required for well-posedness since the model has a rotational degree
of freedom.

Results show that we can accurately capture the dynamics of the data set using
our control framework. We accurately capture synthetic and real data sets. Unfor-
tunately the quantitative results depend on the regularisation parameters, which
makes it difficult to answer questions about the underlying biological mechanisms.
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SFEM for Penalty and Lagrange formulations of surface Stokes

Achilleas Mavrakis

We will consider two different discrete formulations of the surface Stokes problem
using a surface finite element approximation. These formulations have been de-
rived and proven to be well-posed in the continuous case [1], involving the tangen-
tial surface Stokes equation. More precisely, we use Taylor-Hood finite elements,
and thus our discrete velocity vector belongs to H1(Γh). We need to enforce
a tangential constraint. The first formulation uses a penalty term in order to
enforce a tangential condition on the discrete velocity (see also [1]), while the sec-
ond one enforces the tangential condition via an extra Lagrange multiplier. We
analyze well-posedness and convergence results for these two different discrete for-
mulations using, as mentioned, Pku

/Pkp
Taylor-Hood elements for the penalty and

Pku
/Pkp

/Pkλ
Taylor-Hood finite elements for the Lagrange multiplier formulation.

So let us define our discrete formulations. Considering parametric finite el-
ement space [3], Sku

h,kg
:= {uh ∈ C0(Γh) : uh|T = ũh ◦ F−1

T for some ũh ∈
Sku

h,1, for all T ∈ Th}, for mapping FT : {Γ
(1)
h , T̃h} → {Γh, Th}, T̃h the linear

triangulation on the planar triangulated surface Γ
(1)
h , we have the spaces

Vh = (Sku

h,kg
)3 ⊂ (H1(Γh))3, Qh = S

kpr

h,kg
∩ L2

0(Γh), Λh = Skλ

h,kg
⊂ H1(Γh).

So, since our finite element spaces are subspaces of H1(Γh) we have

• Penalty method : Find (uh, ph) ∈ Vh ×Qh such that,
{
ατ
h(uh,vh) + bh(vh, ph) = (fh,Phvh)L2(Γh) for all vh ∈ Vh,

bh(uh, qh) = (−gh, qh)L2(Γh) for all qh ∈ Qh,
(PhP)

– ατ
h(uh,vh) := aT,h(uh,vh) + τ(uh · ñh,vh · ñh)

– aT,h(uh,vh) =
∫
Γh
ET,h(uh) : ET,h(vh) + Phuh ·Phvh dσh
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– ET,h(uh) = Eh(uh) − (uh · nh)Hh

– bh(uh, qh) :=
∫
Γh

uh · ∇Γh
qh dσ,

where nh,Hh are the known geometric approximations (see [3]). On the
other hand ñh is a different higher order approximation of the normal,
which is needed for optimal convergence ‖n− ñh‖L∞(Γh) ≤ chkp , kp ≥ kg,
kg the geometric order of approximation. Lastly, one may wonder what
about the penalty parameter τ? Our stability and convergence analysis
will determine it.

• Lagrange multiplier method : Determine (uh, {ph, λh}) ∈ Vh×Qh×
Λh such that{
αλ
h(uh,vh) + b̃h(vh, {ph, λh}) = (fh,vh) for all vh ∈ Vh,

b̃h(uh, {qh, ξh}) = 0 for all {qh, ξh} ∈ Qh × Λh,
(LhP)

– αλ
h(uh,vh) :=

∫
Γh
Eh(uh) : Eh(vh)dσh +

∫
Γh

uh ·vhdσh,= ah(uh,vh)

– b̃h(vh, {ph, λh}) :=
∫
Γh

vh · ∇Γh
ph dσh +

∫
Γh
λhvh · nh dσh.

For the well-posedness we use the ‖ · ‖L2(Γh) for the pressure p and Lagrange mul-
tiplier λ, while the norm of the velocity is dictated by the discrete surface Korn’s
inequality. That is, since our finite element vector functions are not tangential we
may only have the following approximation

‖vh‖H1(Γh) ≤ c(‖ET,h(vh)‖L2(Γh) + ‖Phvh‖L2(Γh) + h−1‖vh · ñh‖L2(Γh)),

vh ∈ H1(Γh)3. Thus, for both formulations one uses their respective energy
norms ‖·‖ατ

h
and ‖·‖αλ

h
. Notice for τ = ch−2 we have ‖·‖H1(Γh) ≤ c‖·‖ατ

h
while

‖·‖H1(Γh) ≤ ch−1‖·‖αλ
h

holds for the Lagrange formulation. The difficult part of

proving well-posedness is proving that the discrete inf-sup condition holds,

β‖rh‖L2(Γh) ≤ sup
vh∈Vh

|bh(vh, rh)|
‖vhα‖

∀rh ∈ Rh,

where α = ατ
h, rh = qh and Rh = Qh for the penalty formulation, and α =

αλ
h, rh = {qh, λh}, Rh = Qh × Λh for the Lagrange multiplier method. This is

done by using the “Verfürth’s trick”, i.e. choosing with the help of Scott-Zhang

interpolant Ĩzh [4] (we need its super-approximation property) a correct velocity

(e.g. vh = Ĩzh(v∗) = Ĩzh(vT + λℓhnΓ) for the Lagrange approach), using the inf-sup
condition of the continuous problem (see [1]) and calculating

(1) sup
vh∈Vh

|b̃h(vh, {qh, λh})|
‖vh‖αλ

h

≥ ‖{qh, λh}‖L2(Γh) − ch‖∇Γh
qh‖L2(Γh).

One then needs to control the last gradient term. We need to map back to the

planar triangulation Γ
(1)
h where the geometry is more suitable. Again choosing a

tangent velocity ṽh =
∑

E∈Eh
h2EϕE |s(1)h · ∇

Γ
(1)
h

q̃h|s(1)h ∈ Vh, where Eh the interior

edges, s
(1)
h = n

(1),+
h × m

(1),+
h = n

(1),−
h × m

(1),−
h the cross product of the normal

and conormal (it is therefore tangent across the edges), and ϕE a piecewise nodal
surface finite element function which is zero everywhere apart the midpoint of
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the edges, after heavy calculations one may control that term and thus prove the
inf-sup condition.

So having proved the well-posedness for aforementioned norms, one then can
calculate the following error bounds.

Theorem 1 (Penalty Method Error bounds). Let (uh, ph) ∈ Vh ×Qh be the
solution to the penalty discrete scheme (PhP). For ku ≥ 1, kpr = ku − 1 ≥ 0,
the geometric variables kp ≥ kg ≥ 1 and τ at most of order O(h−2) we have the
following error estimates

‖u − uℓ
h‖L2(Γ) + h‖u−ℓ − uh‖ατ

h
+ h‖p−ℓ − ph‖L2(Γh)

≤ c(hm+1 + τ−1/2hm + τ1/2hm+2)(‖u‖Hku+1(Γ) + ‖p‖Hkpr+1(Γ) + ‖f‖L2(Γ)),

where m = min{hku , hkpr+1 , hkg−1τ−1/2, hkg , hkpτ1/2}.
Theorem 2 (Lagrange Multiplier Error bounds). Let (uh, {ph, λh}) ∈ Vh×
Qh ×Λh be the solution to the discrete scheme (LhP). Then for ku, kpr = ku − 1,
kλ = ku − 1, we have the following error estimates

‖PΓ(u− uℓ
h)‖L2(Γ) + h‖u−ℓ − uh‖αλ

h
+ h‖p−ℓ − ph‖L2(Γh) + ‖λ−ℓ − λh‖L2(Γh)

≤ c(hm+1)D,

where m = min{hku , hkpr+1 , hkλ+1, hkg−1} and D = ‖u‖Hku+1(Γ) + ‖p‖Hkpr+1(Γ) +

‖λ‖Hkλ+1(Γ) + ‖f‖L2(Γ).

For the penalty method we get optimal convergence for τ = O(h−2), kp = kg+1
and also we gain one order O(h) for the full velocity in L2-norm. On the other
hand for the Lagrange multiplier method we need a higher approximation of the
surface s.t. kg = ku + 1 to get optimal convergence. Also, notice that we only gain
one order O(h) for the tangential velocity in L2-norm.

These results have also been observed numerically. For example let us consider

the surface with level set : φ(x) = 1
4x

2
1 + x22 +

4x2
3

(1+ 1
2 sin(πx1))2

− 1, with solution

u = curlΓ( 1
2π cos(2πx1) cos(2πx2) cos(2πx3)), p = sin(πx1) sin(2πx2) sin(2πx3).

The solution is both tangent and divergence free. For the above mentioned choices
we have for P2/P1(/P1) Taylor-Hood finite elements the following graphs:
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Figure 1. Dziuk-Elliott Surface — Velocity-pressure L2-Errors
— P.M.: {kg = 2, ku = 2, kpr = 1, kp = 3},
L.M.: {kg = 3, ku = 2, kpr = 1, kλ = 1}.

Figure 2. Dziuk-Elliott surface — Velocity (a) ∇cov
Γh

-Errors, (b)
Normal-Errors (P.M. : ‖uh · ñh‖L2(Γh), L.M. : ‖uh · nh‖L2(Γh))
— P.M: {kg = 2, ku = 2, kpr = 1, kp = 3} , L.M.: {kg = 3, ku =
2, kpr = 1, kλ = 1} .

Mathematics of phase separation on evolving surfaces

Andrea Poiatti

(joint work with Helmut Abels, Diogo Caetano, Charles M. Elliott,
Harald Garcke, and Maurizio Grasselli)

I am presenting some recent results about the mathematical analysis of phase-
field models on evolving surfaces. In particular, in [5] we propose the study of the
Cahn-Hilliard equation on an evolving two-dimensional surface, whose evolution
is assumed to be given a priori. Given a finite time horizon T > 0, we study
the following system of equations: in

⋃
t∈[0,T ]{t} × Γ(t), find ϕ, i.e., the relative

concentration variable, such that




∂•ϕ+ ϕdivΓ(t)V − divΓ(t)(ϕV
τ
a) − ∆Γ(t)µ = 0,

µ = −∆Γ(t)ϕ+ Ψ′(ϕ),

ϕ(0) = ϕ0,

(1)

where we assume that {Γ(t)}t∈[0,T ] is a family of closed, connected, oriented sur-

faces in R
3 and that its evolution is given a priori as a flow determined by the

(sufficiently smooth) velocity field V. The additional (prescribed) velocity term
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Vτ
a corresponds to the difference between the tangential surface velocity Vτ and

a tangential advection Va on the surface, given for instance by some tangential
fluid flow. Furthermore, ∂• denotes the material time derivative, and Ψ is the
Flory-Huggins free energy defined as follows

Ψ(r) =
θ

2
((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) − θ0

2
r2, r ∈ (−1, 1),(2)

where θ, θ0 are absolute temperatures and satisfy 0 < θ < θ0. This ensures that
Ψ has a double-well shape, but also allows the solution ϕ to attain values only
in the physical interval [−1, 1]. After introducing a suitable functional framework
following [3, 4], under some regularity assumptions on the initial datum ϕ0, we
prove the instantaneous regularization of weak solutions and show the validity of
the instantaneous strict separation property. This means that for any τ > 0 there
exists δ = δ(τ) > 0 such that

sup
t∈[τ,T ]

‖ϕ(t)‖L∞(Γ(t)) ≤ 1 − δ.

The proof of this result is made possible by the use of a suitable approximation
scheme, as well as of a Moser-Trudinger-type inequality for two-dimensional com-
pact Riemannian manifolds (see [6]). Applications of models similar to (1) can be
found, for instance, in cell membrane phase separation phenomena leading to lipid
rafts formation. In such models it is interesting to introduce the effects of a tan-
gential fluid flow Va (from now on denoted by u) which is not a priori prescribed.
Indeed, it has been observed that the membrane fluidity within the lipid rafts can
be lower than that in the liquid disordered surrounding phase ([9]). In order to
allow more accurate predictions on membrane phase behavior taking into account
the membrane viscosity differences between liquid ordered and disordered phases,
an incompressible Cahn-Hilliard-Navier-Stokes model appears naturally as a valid
alternative ([10]). Following some ideas from [1], and assuming an inextensible ma-
terial surface, in [2] we thus derive a model taking into account two incompressible
fluids with unmatched densities and viscosities, leading to the following system of
equations: given a prescribed normal surface velocity Vn = (V · n)n such that∫
Γ(·) vnHdσ ≡ 0 (where vn = Vn · n and H is the double mean curvature), find

(u, p, ϕ), where u is the tangential fluid velocity and p is the fluid pressure, such
that, for any (t, x) ∈ ⋃

t∈[0,T ]

{t} × Γ(t),





ρP∂◦u + ((ρu + Jρ) · ∇Γ(t))u + ρvnHu + vnHJρ − 2PdivΓ(t)(ν(ϕ)ES(u))

+∇Γ(t)p = −PdivΓ(t)(∇Γ(t)ϕ⊗∇Γ(t)ϕ) + 2PdivΓ(t)(ν(ϕ)vnH) + ρ
2∇Γ(t)(vn)2,

divΓ(t)u = −Hvn,
∂◦ϕ+ u · ∇Γ(t)ϕ− ∆Γ(t)µ = 0,

µ = −∆Γ(t)ϕ+ Ψ′(ϕ),

u(0) = u0, ϕ(0) = ϕ0,

where P(x, t) is the normal projector on the tangent space at x ∈ Γ(t), ∂◦ is the
normal material time derivative, H := ∇Γ(t)n, and ES(u) := 1

2 (∇Γ(t)u + ∇T
Γ(t)u)



464 Oberwolfach Report 8/2024

is the symmetric (tangential) strain rate tensor. Moreover, ν(·) is the viscosity
function, whereas

ρ(ϕ) := ρ1
1 + ϕ

2
+ ρ2

1 − ϕ

2

is the density function, with ρ1, ρ2 > 0 and ρ1 6= ρ2, leading to the presence of an
additional tangential flux term

Jρ := −ρ1 − ρ2
2

∇Γ(t)µ,

which generates issues in the analysis due to its higher-order nonlinearity.
Given the model above, by extending the recent results in [8] to the evolving

surface setting, we prove the existence of a unique local strong solution. Fur-
thermore, by means of some careful higher-order energy estimates, we prove the
well-posedness of global strong solutions, as well as the validity of the strict sepa-
ration property from pure phases. In this case, we prove this property by means
of a different approach from the Moser-Trudinger inequality, i.e., exploiting a De
Giorgi iteration scheme adapted from [7] to the evolving surface setting. This
allows to consider much more general singular potentials than (2).
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A phase-field model for a binary mixture with surfactants

Clemens Ullrich

(joint work with Günther Grün and Stefan Metzger)

Surfactants (= ‘surface active agents’) are chemical compounds that, by adsorb-
ing onto a fluid interface, reduce its surface tension. Thus, when modelling a two-
phase system with surfactants, the concentration of adsorbed surfactant has to en-
ter the surface energy in a suitable way. Based on a sharp-interface model for two-
phase flow with surfactants in [3], a first phase-field formulation was introduced in
[4], where a weighted Cahn–Hilliard energy density e(φ, c) = γ(c)( ε

2 |∇φ|2+ 1
εW (φ))

is assigned to an order parameter φ and a surfactant density c.

A modified energy density of the form ẽ(φ, c) = ε
2 |∇φ|2+ d̃(c)

ε W (φ) is considered
in [1, 2], which brings advantages for mathematical analysis since the leading-order
term does not depend on c. The two models are connected by a common sharp-
interface limit.

We want to follow a different approach that builds on the original energy density
e(φ, c). In order to capture phenomena such as the evolution of bridges between
originally separated portions of the same phase (network formation, cf. [5]), it
is advisable to allow for negative surface tensions induced by the concentration
of adsorbed surfactant on the fluid interface and to balance the weighted Cahn–
Hilliard energy against a higher-order bending energy.

The state variables of this system are a velocity field v, a phase field φ, an
interfacial surfactant density cΓ, and a bulk surfactant density cb. Dimensionwise,
cb is a volume density while cΓ is a surface density. Assuming that both fluids are
incompressible with matched densities, we consider a total energy of the form

E(v, φ, cΓ, cb) = Ekin + ECH + Ebend + Echem

=
1

2

∫

Ω

|v|2 dx+

∫

Ω

γ(cΓ)

(
ε

2
|∇φ|2 +

1

ε
W (φ) + δ

)
dx

+
A

2

∫

Ω

(
ε∆φ− 1

ε
W ′(φ)

)2

dx+

2∑

i=1

∫

Ω

ξi(φ)Gi(c
b) dx,

where W is the polynomial double-well potential, δ > 0 is a small positive shift,
and ξi are smooth cutoffs of the phases i ∈ {1, 2} such that ξ1 + ξ2 ≡ 1.

Regarding the free energy densities γ and Gi, we make the choices

γ(cΓ) = cΓ(ln cΓ − 1), Gi(c
b) =

1

Ni
cb
(

ln(ANi

i cb) − 1
)
,

which are motivated by Freundlich’s adsorption isotherm (cf. [4]). Furthermore,
via the Legendre transform γ∗ : R → R of γ, we define

σ(cΓ) := −γ∗(γ′(cΓ)) = γ(cΓ) − cΓγ′(cΓ) = σ0 − cΓ.

The function σ(cΓ) will play the role of a surface tension for the fluid interface.
Starting from general evolution equations and invoking Onsager’s principle of

least dissipation of energy as well as Fick’s law of diffusion, we arrive at a system
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of the form

∂•t v = div (−pI + 2η(φ)Dv) + µ∇φ(1a)

+ f(φ,∇φ)∇σ(cΓ) in (0, T ) × Ω,

div v = 0 in (0, T ) × Ω,(1b)

∂•t φ = div (m(φ)∇µ) in (0, T ) × Ω,(1c)

µ =
1

ε
σ(cΓ)W ′(φ) − εdiv (σ(cΓ)∇φ)(1d)

+Aε2∆2φ− 2A∆φW ′′(φ)

−AW ′′′(φ)|∇φ|2 +
A

ε2
W ′(φ)W ′′(φ)

+

2∑

i=1

ξ′i(φ)Gi(c
b) in (0, T ) × Ω,

∂•t
(
f(φ,∇φ)cΓ

)
= div (f̃∇cΓ)

(1e)

+ βf(φ,∇φ)

(
2∑

i=1

ξi(φ)G′
i(c

b) − γ′(cΓ)

)
in (0, T ) × Ω,

∂•t c
b =

2∑

i=1

div
(
M(cb, φ)∇

(
ξi(φ)G′

i(c
b)
))

(1f)

− βf(φ,∇φ)

(
2∑

i=1

ξi(φ)G′
i(c

b) − γ′(cΓ)

)
in (0, T ) × Ω,

v = ∂νφ = ∂ν∆φ = ∂νµ = ∂νc
Γ = ∂νc

b = 0 on (0, T ) × ∂Ω,(1g)

v(0, ·) = v0, φ(0, ·) = φ0, cΓ(0, ·) = cΓ0 , cb(0, ·) = cb0 in Ω,(1h)

where ∂•t denotes the material time derivative, f(φ,∇φ) := ε
2 |∇φ|2 + 1

εW (φ) + δ

is the characteristic function of the diffuse interface as used in ECH , and f̃ is a
smooth, strictly positive approximation of the interface.

The momentum equations (1a)–(1b) involve two force terms, one due to the
spatial structure of the phase field, the other a Marangoni-type force due to surface
tension gradients. The order parameter φ obeys a sixth-order Cahn–Hilliard–
Willmore type equation (1c)–(1d), whereas (1e) and (1f) are advection-reaction-
diffusion equations for the interfacial and bulk surfactant. This evolution conserves
both phases,

∫
Ω φ(t, x)dx = const, as well as the total mass of bulk and interfacial

surfactant,
∫
Ω

(cb + f(φ,∇φ)cΓ)(t, x)dx = const. However, since the system allows
for dynamical adsorption/desorption at a rate

Rad = βf(φ,∇φ)

(
2∑

i=1

ξi(φ)G′
i(c

b) − γ′(cΓ)

)
,



Interfaces, Free Boundaries and Geometric Partial Differential Equations 467

the solute (bulk) and adsorbed (interfacial) surfactant are not conserved individ-
ually. Formally testing (1a) by v, (1c) by µ, (1d) by ∂tφ, (1e) by γ′(cΓ), and (1f)
by ξ1G

′
1(cb) + ξ2G

′
2(cb) yields the energy dissipation inequality

d

dt
E(v, φ, cΓ, cb) = −2

∫

Ω

η(φ)|Dv|2dx−
∫

Ω

m(φ)|∇µ|2dx

− 4

∫

Ω

f̃ |∇
√
cΓ|2dx−

∫

Ω

M(cb, φ)

∣∣∣∣∣

2∑

i=1

∇(ξi(φ)G′
i(c

b))

∣∣∣∣∣

2

dx

− β

∫

Ω

f(φ,∇φ)

∣∣∣∣∣

2∑

i=1

ξi(φ)G′
i(c

b) − γ′(cΓ)

∣∣∣∣∣

2

dx.

(2)

The (φ, cΓ)-subsystem consisting of (1c)–(1e) without the advection, bulk sur-
factant, and adsorption/desorption terms describes phase separation in a binary
mixture with an insoluble surfactant adsorbed onto the fluid interface. If Neu-
mann boundary conditions as in (1g) are prescribed on the boundary of a smooth
bounded connected open set Ω ⊂ Rd, d ∈ {2, 3}, then the existence of weak solu-
tions can be shown for arbitrary time intervals and general initial data (φ0, c

Γ
0 ) of

finite energy.
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Sharp-Interface Modeling and VOF-Simulation of Dynamic
Contact Lines

Dieter Bothe

(joint work with Mathis Fricke, Tomas Fullana, Yash Kulkarni,
Shahriar Afkhami, Stéphane Popinet, and Stéphane Zaleski)

We revisit the sharp-interface modeling of two-phase flows with moving contact
lines on a planar solid boundary. From an analysis of the kinematics of the flow, it
can be shown that regular solutions of the two-phase incompressible Navier-Stokes
equations with a contact angle relation of type θ = f (VΓ) are unphysical if the
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standard Navier slip boundary condition is used [3], [6]. Motivated by phase field
models going back to work by Qian et al. [11],[12],[13], we derive a hybrid sharp-
interface / contact region model [7], which employs a generalized Navier boundary
condition of the form (see Fig. 1 for notation)

−βv‖ = (Sn∂Ω)‖ + σ (cos θ − cos θ0)nΓδ
ε
Γ.(1)

Here S = η(∇v + ∇vT) is the viscous stress tensor, β > 0 is the sliding friction
coefficient, σ > 0 is the surface tension coefficient and θ0 is the equilibrium contact
angle. Furthermore, the term δεΓ denotes a smoothed version of the contact line
Dirac distribution, where ε > 0 is considered as a physical parameter describing
the width of the contact line zone. One can show that the boundary condition
(1) leads to a generalized dynamic contact angle relation of the type VΓ = f(θ, θ̇),

where θ̇ denotes the co-moving derivative of θ (see [7] for more details). To be
more specific, this relation reads as

VΓ = 2L θ̇ +
1

βε
σ (cos θ − cos θ0) ,(2)

where L := η/β > 0 is the Navier slip length. Notably, equation (2) simplifies for

quasi-stationary states (i.e. for θ̇ = 0) to

−(βε)VΓ = σ (cos θ0 − cos θ) .(3)

Equation (2) is well-known in the literature as a linear contact angle model. This
indicates that there exists a deep relation between the present model in quasi-
stationary states and other modeling approaches such as the molecular kinetic
theory (MKT) (see, e.g., [1] and [2]). In particular, the so-called contact line
friction parameter can be identified as ζ = βε.

Figure 1. Notation for contact line modeling.

It is important to note that within the present model, the parameter L = η/β
decouples from the “apparent slip length” defined as the distance to the wall,
where the tangential velocity component extrapolates to zero (see Fig. 2). In
particular, we show that the viscous stress component (1) vanishes at the contact
line in quasi-stationary states. This is a consequence of the kinematics of the flow
and leads to equation (3). In other words, we can show that there is apparent
free slip at the contact line for quasi-stationary states. This result is consistent to
observations from molecular dynamics, where a similar conclusion is drawn (see,
e.g., [14]).



Interfaces, Free Boundaries and Geometric Partial Differential Equations 469

Figure 2. Apparent slip length (positive, infinite and negative).

We have implemented this generalized Navier boundary condition into the geo-
metrical Volume-of-Fluid code Basilisk [9], [10]. To make the method consistent
with the kinematics of the contact line, the contact angle is not prescribed during
the advection of the interface but is reconstructed from the volume fraction field
(see also [5]) and used to evaluate the right-hand side of (1). Notably, numer-
ical simulations of the withdrawing plate experiment show that the logarithmic
pressure singularity at the contact line, known for the standard Navier boundary
condition [8], is not present for the GNBC model with finite contact line zone, i.e.
for ε > 0 (see [7]). Finally, we introduce a more general non-linear closure relation
which leads to non-linear variants of (1). This class of models is relevant for high
velocities of the contact line (relative to the solid surface) and will be studied in
more detail in the future.
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Convergence to the planar interface for the Mullins-Sekerka evolution

Richard Schubert

(joint work with Felix Otto and Maria G. Westdickenberg)

The Mullins-Sekerka interfacial evolution is a nonlocal free boundary evolution:
The normal velocity of the interface is a nonlocal function of the interface and, in
particular, its mean curvature. More precisely, the evolution describes the coars-
ening of two phases, each occupying their respective mutually disjoint domains Ω+

and Ω−. The normal velocity of the interface Γ = Ω+ ∩ Ω− is given as the jump
of the normal derivative of the chemical potential f ,

V = −[∇f · n],

which in turn solves the Dirichlet problem

−∆f = 0 in Ω+ ∪ Ω−

f = H on Γ,

with mean curvature H of Γ.
Essential features of Mullins-Sekerka are the preservation of mass and the re-

duction of surface area. In addition, there is a scale invariance: The solution space
is invariant under a rescaling of length by a factor of λ and time by a factor of λ3.
Hence Mullins-Sekerka is a geometric version of a third-order parabolic equation.

As the evolution is driven towards (local) energy minimizers, large connected
components of one phase grow at the expense of smaller ones, which eventually
vanish, a behaviour known as Ostwald ripening. The relaxation behaviour towards
energy minimizing configurations has been analyzed in a perturbative setting in
[1, 3] for spheres, and in [2] for the plane. In [4] exponential convergence to a
collection of equally sized discs is proved on the torus of dimension d + 1 = 2
starting from non-perturbative initial data.

Exponential convergence is expected for compact surfaces while the problem in
the whole space admits no spectral gap and thus only algebraic relaxation of the
energy towards the ground state can be expected. In [5] we prove convergence
towards the plane in three ambient dimensions for very general initial data and
with optimal rates. Starting with initial data that have finite excess mass and
excess energy with respect to the two-dimensional plane, but without assuming
graph-structure or even connectedness of the phases, we prove that graph-structure
is generated in a quantified time scale and that the energy gap eventually relaxes
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as expected from the linearization:

E(t) ≤ C min

{
E(0),

V (0)2 + E(0)3

t4/3

}
.

In particular this result includes the Ostwald-ripening regime. Optimality of the
decay rate can be read off from the properties of the linearization

−∆f = 0 in R
d+1
+ ,

f = ∆′h on R
d,

ht = −2fz on R
d,

h(0) = h0 on R
d,

where z is the variable orthogonal to the plane. The kernel is in (tangential)
Fourier space given by G(k, t) = exp−2|k|3t which leads to decay of the energy

‖∇h‖L2 ≤ t−(d+2)/3‖h(0)‖L1,

and of the amplitude as well as the Lipschitz constant

‖h‖L∞ + t1/3‖∇h‖L∞ ≤ t−d/3‖h(0)‖L1.

Core to the analysis is the monitoring of the three quantities excess mass, excess
energy, and dissipation, given as

V =

∫

R3

|χ+ − χ0|, E =

∫

Γ

1 − n · n0, D =

∫

R3

|∇f |2,

where χ+, χ0 are the characteristic functions of the positive phase and the positive
half-space, respectively, n is the normal of Γ, and n0 is the normal of the plane.
Assuming that Γ is the graph of a Lipschitz function, the Nash-type inequality

E ≤ CV 6/7D4/7(1)

delivers the optimal decay rate for E by using (1) as a lower bound for the dis-
sipation in the gradient flow inequality d

dtE ≤ −D, and employing that V (t) ≤
C(V (0) +E(0)3/2). This bound in turn is proved in a buckling argument together
with the decay of the energy by testing with the solution of the linearized dual
equation, and thus extracting the nonlinear behaviour.

The generation of graph-structure relies on the observation that the scale-
invariant quantity ED2, if small enough, already prevents by Allard’s theorem
more than one connected component and overhangs, and in this case also controls
the Lipschitz constant of the thus apparent graph. The quantity ED2 must become
small during times of order E(0)3/2 due to the fact that −(ED2)1/2 = −E1/2D is
up to constants the derivative of E3/2 which is strictly decreasing.
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Phase separation on varying surfaces and convergence of diffuse
interface approximations

Matthias Röger

(joint work with Heiner Olbermann)

Variational models for multiphase membranes depend on both the shape of the
membrane and the internal composition. Typical ingredients are a bending energy
with phase-dependent parameters and a line tension energy between phases. In
the two-phase case an extension of the classical one-phase shape energies of Can-
ham and Helfrich has been proposed by Jülicher–Lipowsky [6]. Defined on tuples
(S, S1, S2), where S ⊂ R3 is a closed surface decomposed into a disjoint union of
open subsets S1, S2 of S representing the phases and their common boundary Γ,
the energy consists of a phase-dependent bending and a line tension contribution.

In many models and numerical simulations a diffuse description of the phases
and the line tension energy is used. Our interest is on the connection between
such diffuse and sharp interface description in the spirit of Modica–Mortola type
results. A corresponding result for the Jülicher–Lipowsky energy has been given
by Helmers [4] in rotational symmetry. We aim for a corresponding result for a
reduced Jülicher–Lipowsky energy but without restriction to special symmetries.
Mathematical results on multi-phase membrane energies are rather sparse, see
[3, 5, 4] for the rotationally symmetric and [2] for the general case.

Since the relevant shape energies do not guarantee good compactness proper-
ties in classes of differentiable surfaces we need to consider classes of generalized
surfaces and a suitable generalization of functions of bounded variations and sets
of finite perimeter.

We first consider an approximation result for a generalized perimeter energy of
phase interfaces. The class of underlying surfaces is chosen as reduced boundaries
∂∗E of finite perimeter sets E ⊂ Rn, n ≥ 2. We associate to E its characteristic
function χE ∈ BV (Rn, {0, 1}), the generalized inner unit normal field νE : ∂∗E →
S
n−1, and the associated unit density current S = [[∂∗E, ∗νE, 1]] ∈ In−1(Rn). We

follow the work of Anzellotti, Delladio, Scianna [1] and define functions of bounded
variation over S. Consider an Hn−1-measurable function u : ∂∗E → [0,∞] and
the subgraph

Eu,S = {(x, y) ∈ ∂∗E × Ry : 0 < y < u(x)} ⊂ R
n+1 .
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We associate to Eu,S the induced current

Σu,S := [[Eu,S ,−~en+1 ∧ ∗νE(x), 1]] ∈ Dn(Rn+1) .

The generalized graph Tu,S ∈ Dn−1(Rn+1) of u over S is defined as

Tu,S = −∂Σu,S(ω) + S .

We say that u is a function of bounded variation over S and write u ∈ BV (S) if
the total mass M(Tu,S) is finite.

A more general concept of BV functions over currents was considered in [1] and
a number of good properties of this notions have been derived, in particular a
co-area formula and a closure theorem.

We justify a suitable notion of jump set.

Proposition 1. Let E ⊂ Rn and S = [[∂∗E, ∗νE, 1]] be as above and consider
u ∈ BV (S) with u : ∂∗E → {0, b}, b > 0. Then the generalized jump set

Ju := supp
(
∂[[u−1(b), ∗νE, 1]]

)

is (n− 2)-rectifiable with M(Tu,S) −M(S) = bHn−2(Ju).

We next define the diffuse approximation of the generalized area of phase inter-
face. Fix the standard double-well potential W : R → R

+
0 , W = 1

4 t
2(1 − t)2 and

let k =
∫ 1

0

√
W (t) dt.

For ε > 0 and (Eε, uε) with Eε ⊂⊂ Rn a set of finite perimeter and uε ∈ C1
c (Rn)

we define the generalized Modica–Mortola functional

Iε(uε, Eε) =

∫

∂∗Eε

(
ε|Pε∇uε|2 + ε−1W (uε)

)
dH2 , Pε = id − νEε

⊗ νEε
.

Our first main result is the following compactness and lower bound statement.

Theorem 2. Let a family (Eε, uε)ε as above be given with supε>0 Iε(uε, Eε) < Λ.
Assume χEε

→ χE strictly in BV (Rn) for some set E, and let S = [[∂∗E, ∗νE, 1]].
Then there exist u ∈ BV (S, {0, 1}) and a subsequence ε→ 0 such that

(
|∇χEε

|, uε
)
→
(
|∇χE |, u

)
as measure-function pairs in L2 ,

lim inf
ε→0

Iε(uε, Eε) ≥ 2kHn−2 (Ju) .

The measure-function pair convergence means

lim
ε→0

∫

Rn

ϕ(x, uε(x)) d|∇χEε
|(x) =

∫

Rn

ϕ(x, u(x)) d|∇χE |(x) ∀ϕ ∈ C0
c (Rn+1)

and lim
R→∞

sup
ε>0

∫

{|uε|>R}

|uε|2 d|∇χEε
| = 0 .

Our second main result concerns a reduction of the Jülicher–Lipowsky energy in
a generalized diffuse- and sharp-interface formulation. Consider a finite perimeter
set E ⊂ R3 as above, S = [[∂∗E, ∗ν, 1]] ∈ I2(R3), u ∈ BV (S, {0, 1}). Assume that
∂∗E has weak mean curvature H ∈ L2(|∇χE |,R3), in the sense of

∫

∂∗E

(id − νE ⊗ νE) : Dη +H · η dH2 = 0 for all η ∈ C1
c (R3,R3) .
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For given constants a1, a2, k > 0 define the sharp interface energy

E(u,E) :=

∫

∂∗E

(
a1u+ a2(1 − u)

)
|H |2 dH2 + 2kH1(Ju) .

For Eε, Sε as above, uε ∈ C1(R3) and a(r) = (1− r)a2 + ra1 we define the diffuse
interface energy

Eε(uε, Eε) =

∫

∂∗Eε

a ◦ uε|Hε|2 dH2 +

∫

∂Eε

(
ε|∇tanuε|2 + ε−1W (uε)

)
dH2 .

Theorem 3. Consider (Eε, uε)ε as above and assume

sup
ε>0

(
Hn−1(∂∗Eε) + Eε(uε, Vε)

)
<∞ ,

∫

∂∗Eε

a ◦ uε|Hε|2 dH2 < 8πmin{a1, a2} − δ .

Then there exists a subsequence ε → 0, a finite perimeter set E ⊂ R3 such that
χEε

→ χE strictly in BV (R3), and u ∈ BV (S, {0, 1}) such that

∂∗E has weak mean curvature H ∈ L2(|∇χE |,R3) ,

(|∇χEε
|, uε) → (|∇χE |, u) as measure-function pairs in L2 ,

lim inf
ε→0

Eε(uε, Vε) ≥ E(u, V ) .

In both theorems a key point is that the functionals are considered of pairs
of surfaces and phase partitioning. We can extend the result to the case uε ∈
H1

|∇uε|
(Rn), where H1

|∇uε|
(Rn) is a suitably defined generalized Sobolev space. A

crucial assumption in Theorem 2 is the strict BV-convergence of the χEε
. This is

related to a corresponding condition in the closure theorem in [1]. In Theorem 3
the assumption of small (phase-dependent) Willlmore energy allows to apply the
Li–Yau inequality and to deduce the strict BV-convergence of χEε

. Finally, we
also obtain existence of minimizer for the diffuse perimeter functional Iε and for
the reduced diffuse Jülicher–Lipowsky energy Eε under constraints on the mass of
the two phases.

See [7] for the proofs and more details.
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Finite element approximation with tangential motion for fourth order
geometric curve evolutions

Klaus Deckelnick

(joint work with Robert Nürnberg)

Let Γ be a closed curve in Rd (d ≥ 2). Two of the most frequently studied geometric
energies associated with Γ are the length functional and the elastic energy, given
by

L(Γ) :=

∫

Γ

1ds and E(Γ) :=
1

2

∫

Γ

|~κ|2ds+ λL(Γ).

In the above, s denotes arclength, while τ and ~κ = τs are the unit tangent and
the curvature vector of Γ, respectively. In what follows, we focus on two gradient
flows for these energies which give rise to fourth order parabolic PDEs, namely
curve diffusion as the H−1-gradient flow of L and elastic flow as the L2-gradient
flow of E. Using a parametric approach in order to describe the evolving curves,
i.e. Γ(t) = x(I, t) for some mapping x : I × [0, T ] → Rd (I = R/Z), one is led to
the following equations, see [6]:

Pxt = −∇2
s~κ; (curve diffusion)(1)

Pxt = −∇2
s~κ− 1

2 |~κ|2~κ+ λ~κ. (elastic flow)(2)

In the above, P = Id − τ ⊗ τ is the projection onto the part normal to Γ and
∇sη = P ηs for a vector field η. Note that the laws (1) and (2) only prescribe the
motion in normal direction.
Finite element schemes that approximate the systems xt = −∇2

s~κ and xt =
−∇2

s~κ − 1
2 |~κ|2~κ + λ~κ, respectively, have been proposed in [6, 4], with [4] also

presenting a corresponding error analysis. In these approaches the curves move
in normal direction, which may lead to clustering of grid points and a potential
breakdown of the simulation. A possible remedy for this issue is the introduction
of a suitable tangential motion. The BGN–schemes in [1, 2, 3] have the property
that mesh points are distributed almost uniformly along the discrete curve, but
so far there are no error bounds for these schemes. The paper [7] examines a
modified elastic flow, which arises as the L2–gradient flow for the energy that is
obtained by replacing the length in the definition of E above by the Dirichlet en-
ergy

∫
I |xρ|2dρ. The resulting flow is no longer geometric but is still related to the

elastic flow (2) in that it has the same stationary points. For a semidiscrete finite
element approximation, error estimates are shown while the scheme also exhibits
good properties with respect to the distribution of grid points.

Concentrating first on curve diffusion, our aim is to introduce a suitable tan-
gential component xt · τ such that the resulting system of PDEs
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• is strictly parabolic,
• is amenable to discretization by continuous, piecewise linear finite ele-

ments,
• exhibits good behaviour with respect to the distribution of grid points.

To do so, we follow the common approach of splitting the fourth order problem
into two second order problems via the introduction of a second variable, which
we choose to be y =

xρρ

|xρ|2
. By expressing the operator ∇2

s~κ in terms of x and y,

one finds that solutions of the system

xt =
1

|xρ|2
(
−yρρ + 2(yρ · xρ)y + 2(y · xρ)yρ − 2(y · xρ)2y + |xρ|2|y|2y

)
+ α

xρ
|xρ|2

,

satisfy (1), so that d
dt

∫
I |xρ|dρ ≤ 0. The scalar function α multiplying the tan-

gential term is then chosen in such a way that the solution of the above system
satisfies in addition d

dt

∫
I |xρ|2dρ ≤ 0. This leads to the choice

α = 2y · xρ|y|2 − 2yρ · y,

and the resulting system takes the form

|xρ|2xt + yρρ = Fcd(xρ, y, yρ)y,(3)

|xρ|2y − xρρ = 0,(4)

where Fcd(a, b, c) ∈ Rd×d is given by Fcd = F1 + F2 with

F1(a, b, c) =
(
2a · c+ |a|2|b|2

)
Id,

F2(a, b, c) = 2
(
c⊗ a− a⊗ c

)
+ 2a · b

(
a⊗ b− b⊗ a

)
,

see [5] for details. A similar system, with Fcd replaced by a suitable matrix–
valued function Fel, can be derived for the elastic flow, although the inequality
d
dt

∫
I |xρ|2dρ ≤ 0 will in general no longer hold in this case. In order to discretize

(3), (4) in space we denote by Vh the set of continuous, piecewise linear finite
elements which are periodic on [0, 1] and look for a pair xh, yh : I × [0, T ] → Rd

such that xh(·, t), yh(·, t) ∈ V d
h and

∫

I

xh,t · χ|xh,ρ|2dρ−
∫

I

yh,ρ · χρdρ =

∫

I

F (xh,ρ, yh, yh,ρ)yh · χdρ ∀ χ ∈ V d
h ,(5)

∫

I

yh · η|xh,ρ|2dρ+

∫

I

xh,ρ · ηρdρ = 0 ∀ η ∈ V d
h ,(6)

xh(·, 0) = x0h.(7)

Here, F = Fcd or F = Fel and the initial function x0h ∈ V d
h is given by

∫

I

x0h,ρ · ηρdρ+

∫

I

x0h · ηdρ =

∫

I

πhx0 · ηdρ−
∫

I

πh
[ x0,ρρ
|x0,ρ|2

]
· η |(πhx0)ρ|2dρ

for all η ∈ V d
h . Our main result then reads:
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Theorem. If (3), (4) has a smooth solution (x, y), then there exists h0 > 0 such
that for 0 < h ≤ h0 the semidiscrete problem (5)–(7) has a unique solution (xh, yh)
and the following error bounds hold:

max
t∈[0,T ]

[‖x(·, t) − xh(·, t)‖L2 + ‖y(·, t) − yh(·, t)‖L2 ] ≤ Ch2,

max
t∈[0,T ]

[‖xρ(·, t) − xh,ρ(·, t)‖L2 + ‖yρ(·, t) − yh,ρ(·, t)‖L2 ] ≤ Ch,

(∫ T

0

‖xt − xh,t‖2L2dt
) 1

2 ≤ Ch2.

The proof is carried out in §4 of [5]. Furthermore, numerical experiments show
that the schemes behave very well with respect to the distribution of mesh points
along the curves. In the case of curve diffusion, heuristic arguments show that one
obtains parametrizations that are almost proportional to arclength as t increases.
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