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ON DYKSTRA’S ALGORITHM WITH BREGMAN PROJECTIONS
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Abstract. We provide quantitative results on the asymptotic behavior of Dykstra’s algo-
rithm with Bregman projections, a combination of the well-known Dykstra’s algorithm and
the method of cyclic Bregman projections, designed to find best approximations and solve the
convex feasibility problem in a non-Hilbertian setting. The result we provide arise through
the lens of proof mining, a program in mathematical logic which extracts computational in-
formation from non-effective proofs. Concretely, we provide a highly uniform and computable
rate of metastability of low complexity and, moreover, we also specify general circumstances in
which one can obtain full and effective rates of convergence. As a byproduct of our quantitative
analysis, we also for the first time establish the strong convergence of Dykstra’s method with
Bregman projections in infinite dimensional (reflexive) Banach spaces.
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rithm; Bregman Projections; Legendre Functions; Rates of Convergence; Metastability; Proof
Mining
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1. Introduction

Let X, if not stated otherwise, be a real reflexive Banach space with norm ∥ · ∥ and let
C1, . . . , CN ⊆ X be finitely many closed and convex sets such that

C :=
N⋂
i=1

Ci ̸= ∅.

Finding a point c ∈ C is referred to as the convex feasibility problem and, in order to solve
this problem, a wide range of methods have been developed throughout the course of convex
analysis (see e.g. [1, 5, 14, 15]).

In this paper, we are concerned with the particular case of Dykstra’s algorithm which, say
over Rd, takes the following form: set q−(N−1) = · · · = q0 := 0, define Cn := CnmodN and let Pn

be the orthogonal projection onto Cn. Simultaneously define

xn := Pn(xn−1 + qn−N) and qn := xn−1 + qn−N − xn.

Then (xn) converges to PCx0. More concretely, Dykstra [16] first proved the convergence of
this iteration in the case where all the sets are closed convex cones and Boyle and Dykstra [7]
later extended this convergence result to arbitrary closed and convex sets as well as to infinite
dimensional Hilbert spaces, where now (xn) converges strongly to PCx0.
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2 PEDRO PINTO AND NICHOLAS PISCHKE

Beyond Hilbert spaces, complications start to arise already at the level of the orthogonal
projections which may not exist in general Banach spaces. One specific way of introducing a
meaningful class of projections in Banach spaces was considered in the pivotal work of Breg-
man [8], where projections along a certain distance relative to a convex function are considered
instead.

Concretely, let f : X → (−∞,∞] be a proper, lower-semicontinuous and convex function
which is Fréchet differentiable on intdomf ̸= ∅, i.e. for any x ∈ intdomf , there exists some
∇f(x) ∈ X∗ such that

lim
∥h∥→0

|f(x+ h)− f(x)− ⟨h,∇f(x)⟩|
∥h∥

= 0.

Relative to f , we can now define the corresponding Bregman distance Df : domf × intdomf →
[0,+∞) via

Df (x, y) := f(x)− f(y)− ⟨x− y,∇f(y)⟩.
If f is Legendre as defined in [3], then there naturally exists a unique minimizer of Df (·, y)
over S ∩ intdomf for a given closed and convex set S ⊆ X with S ∩ intdomf ̸= ∅. We call this
unique element the Bregman projection of y relative to f onto S and denote it by P f

S y (see [3]
for more details on this).

By substituting the orthogonal projections by these Bregman projections in the previous
method of Dykstra in Hilbert spaces, one obtains Dykstra’s algorithm with Bregman projec-
tions. This method was first proposed in the seminal work by Censor and Reich [12] where
the sets Ci are all halfspaces and then extended to general closed convex nonempty sets by
Bauschke and Lewis [6] in finite dimensional spaces under suitable additional conditions on the
function f which we will shortly discuss in the following:

The first additional assumption made, besides that that f is Legendre, is that f is co-finite,
i.e. that domf ∗ = X∗ where f ∗ : X∗ → (−∞,+∞] is the conjugate function to f defined by

f ∗(x∗) := sup
x∈X

(⟨x, x∗⟩ − f(x)) .

Further, as shown in [3], f being Legendre is equivalent to the function f ∗ being Legendre and
hence implies that f ∗ is Gateaux differentiable on intdomf ∗ ̸= ∅.
The second assumption made is that f is also very strictly convex, i.e. that f is twice contin-

uously differentiable on intdomf ̸= ∅ and that its second derivative ∇2f(x) is positive definite
for any x ∈ intdomf .

Under these assumptions, Bauschke and Lewis obtained the following result:

Theorem 1.1 ([6]). Let X be finite dimensional and let f be closed, convex, proper, Legendre,
co-finite and very strictly convex. Let C1, . . . , CN be finitely many closed and convex sets with
C ∩ intdomf ̸= ∅ where C :=

⋂
i Ci. Set q−(N−1) = · · · = q0 := 0 as well as Cn := CnmodN and

let P f
n be the Bregman projection onto Cn relative to f . Given x0 ∈ intdomf , simultaneously

define
xn := P f

n∇f ∗(∇f(xn−1) + qn−N) and qn := ∇f(xn−1) + qn−N −∇f(xn).

Then (xn) converges to P f
Cx0.

In this paper, we provide a quantitative version of this result in the form a computable and
highly uniform rate of metastability in the sense of Tao [32, 33]. By results from computability
theory due to Specker [31] (see also [25]), such a rate of metastability is in general the best
one can hope for in the context of many methods from nonlinear optimization when aiming
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for computational information. In particular, a computable rate of convergence in general does
not exist. However, under suitable regularity assumptions, such computable rates do exist and
we provide an abstract construction for this at the end of the paper.

Further, our quantitative version is valid in general normed spaces where a suitable corre-
sponding function f exists. By “forgetting” about the quantitative aspects and using that
having a rate of metastability is equivalent to the convergence of a sequence, we are therefore
able to establish an “infinitary” convergence result of Dykstra’s algorithm with Bregman pro-
jections which extends the above also to infinite dimensional Banach spaces. The proof of the
quantitative result that we give here arises as a generalization of the recent quantitative analysis
of Dykstra’s method in Hilbert spaces by the first author in [26]1 in combination with recent
work of the second author and Kohlenbach [29] on quantitative results for iterations in the con-
text of Bregman distances and Legendre functions. Both of these works were obtained, similar
to the results presented here, by methods from proof mining, a program in mathematical logic
that aims at the extraction of computational information from prima facie non-computational
proofs (see [19, 21] and in particular the recent [28] where the underlying logical methods have
been extended to also cover the dual of a Banach space, gradients of convex functions and
Bregman distances, etc.). However, as usual for results from the proof mining program, this
whole paper requires no logical background.

2. (Quantitative) assumptions and lemmas

The construction of the rate of metastability that we give in the following section relies on
certain (quantitative) assumptions on the function f together with quantitative reformulations
of the central lemmas used in [6] which we discuss in this section. These preliminary results are
taken, or adapted, from either [29] or [26], where the former recently provided the first general
quantitative treatment of methods related to Bregman distances and Legendre functions from
the perspective of proof mining, and the latter analyzed the computational content of Dykstra’s
method in Hilbert spaces from that perspective.

Throughout, we will assume that f : X → (−∞,+∞] is a proper, convex and co-finite Le-
gendre function that is Fréchet differentiable on intdomf ̸= ∅ with a gradient ∇f .

The main assumption on f used in Theorem 1.1 that warrants for a quantitative treatment is
that of very strict convexity. As shown in [6], this assumption in particular entails the existence
of certain moduli regarding the associated Bregman distance and the gradient:

Proposition 2.1 ([6]). Let X be finite dimensional and f be very strictly convex. Then, for
any convex and compact set K ⊆ intdomf , there exist reals 0 < θ and Θ < +∞ such that for
every x, y ∈ K:

(1) Df (x, y) ≥ θ ∥x− y∥2,
(2) ∥∇f(x)−∇f(y)∥ ≤ Θ ∥x− y∥.

In the following, instead of considering very strict convexity, we will immediately assume
that there exist two monotone non-decreasing functions θ,Θ : (0,∞) → (0,∞) such that

(C1) Df (x, y) ≥ θ(b) ∥x− y∥2,
(C2) ∥∇f(x)−∇f(y)∥ ≤ Θ(b) ∥x− y∥,

1In particular, one can obtain rates of similar complexity as derived in [26] by instantiating the results given

here with the function f = ∥·∥2 /2 and the respective moduli in a given (pre-)Hilbert space.
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for any b > 0 and x, y ∈ Bb(0)∩ intdomf . That only the assumption of such moduli, witnessing
the conclusion of Proposition 2.1, suffices for carrying out the proof of Theorem 1.1 was al-
ready mentioned in [6] and we will find that the same holds also in the infinite-dimensional case.

The existence of such moduli θ,Θ in particular guarantees that f is uniformly continuous on
bounded sets and, even further, that it is sequentially consistent, i.e. that

Df (xn, yn) → 0 (n → ∞) implies ∥xn − yn∥ → 0 (n → ∞)

for any two bounded sequences (xn), (yn) ⊆ intdomf . In particular, by the results from [10],
this implies that f is totally convex on intdomf .

As (essentially) shown in [29], sequential consistency is equivalent to the existence of a so-
called modulus of consistency for f , i.e. a function ρ : (0,∞)2 → (0,∞) such that

∀ε > 0 ∀b > 0 ∀x, y ∈ Bb(0) ∩ intdomf (Df (x, y) ≤ ρ(ε, b) → ∥x− y∥ ≤ ε) ,

and such a function can easily be constructed from θ by just setting ρ(ε, b) = θ(b)ε2.

We will also always assume that the convex feasibility problem is consistent on intdomf , i.e.
that C ∩ intdomf ̸= ∅. From a quantitative perspective, we will in the following fix some data
relating to this condition:

(C3)

{
p ∈ C ∩ intdomf and x0 ∈ intdomf

as well as b ∈ N \ {0} such that b ≥ Df (p, x0).

Lastly, next to θ and Θ, we will assume the existence of a function o : (0,∞) → (0,∞)
satisfying

(C4) ∀y ∈ intdomf ∀α > 0 (Df (p, y) ≤ α → ∥y∥ ≤ o(α))

with the p fixed in (C3). Without loss of generality, we assume that o(α) ≥ α and that o is
monotone non-decreasing.

In Theorem 1.1, besides guaranteeing that the main iteration is well-defined, the assumption
that f is co-finite is mainly used to derive that the level sets

L(x, α) = {y ∈ intdomf | Df (x, y) ≤ α}
are bounded for every α > 0 and x ∈ intdomf . This boundedness of the level sets is a common
requirement on Bregman distances (e.g. featuring in the list of conditions regarding so-called
Bregman functions exhibited in [10, 17]). In the context of finite-dimensional spaces, as shown
in [2, Theorem 3.7], if f is essentially strictly convex and domf ∗ is open (which in particular is
true when f is Legendre and co-finite), then Df (x, ·) is coercive for any x ∈ intdomf and thus
L(x, α) is bounded. In reflexive Banach spaces, as shown in [3, Lemma 7.3], the boundedness
of all these level sets is in particular implied by f being supercoercive.
However, for our quantitative result, it will suffice to assume the above (C4) which is just a

quantitative rendering for this property for x = p.

These assumptions in turn entail a further crucial quantitative property on the associated
Bregman distance Df :

Lemma 2.2. The distance Df is reverse consistent as defined in [29], i.e.

∀r, ε > 0 ∀x, y ∈ Br(0) ∩ intdomf (∥x− y∥ ≤ P (ε, r) → Df (x, y) ≤ ε) ,

with a modulus P (ε, r) :=
√

ε/Θ(r).
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Proof. Let x, y ∈ Br(0) ∩ intdomf . As ∇f(x) is a subgradient of f at x, we get

f(y)− f(x) ≥ ⟨y − x,∇f(x)⟩
for any y, and so

Df (x, y) = f(x)− f(y)− ⟨x− y,∇f(y)⟩
≤ ⟨x− y,∇f(x)−∇f(y)⟩
≤ Θ(r) ∥x− y∥2

and this immediately yields the claim with the given modulus. □

We now move to further properties of the Bregman distance and the associated Bregman
projections. The first main properties of the Bregman distance are the so-called 3- and 4-point
identities.

Proposition 2.3 (folklore, see e.g. [13]). For any x, y, z, w ∈ intdomf , it holds that

⟨x− w,∇f(x)−∇f(y)⟩ = Df (w, x) +Df (x, y)−Df (w, y)

as well as

⟨z − w,∇f(x)−∇f(y)⟩ = Df (w, x) +Df (z, y)−Df (z, x)−Df (w, y).

Crucial for Dykstra’s method and the accompanying convergence proof in Hilbert spaces is
a characterization of the projection using the inner product. An analogous result also holds for
Bregman projections and it will similarly play an important role in this paper.

Proposition 2.4 ([11]). Let S be a closed convex subset of X such that S ∩ intdomf ̸= ∅.
Consider y ∈ intdomf . Then the Bregman projection P f

S y is characterized by

P f
S (y) ∈ S ∩ intdomf and ∀x ∈ S

(
⟨x− P f

S (y),∇f(y)−∇f(P f
S (y))⟩ ≤ 0

)
.

Moreover, it holds that

∀x ∈ S ∩ dom(f)
(
Df

(
P f
S (y), y

)
≤ Df (x, y)−Df

(
x, P f

S (y)
))

.

The following quantitative projection result is adapted from [29] (which in turn is adapted
from [18, 20]). From here on out, we write [n;m] = [n,m] ∩ N for n,m ∈ N.

Proposition 2.5 (essentially [18, 20, 29]). Let r > 0 and u ∈ intdomf as well as q ∈ C ∩
intdomf be such that r ≥ ∥u∥ , ∥q∥ , Df (q, u). Then for any ε > 0 and function δ : (0,∞) →
(0,∞), there exists η ≥ β(r, ε, δ) and x ∈ Br(0) ∩ intdomf such that

∧m
j=1 ∥x− P f

j (x)∥ ≤ δ(η)
and

∀y ∈ Br(0) ∩ intdomf

(
m∧
j=1

∥y − P f
j (y)∥ ≤ η → Df (x, u) ≤ Df (y, u) + ε

)
,

where β(r, ε, δ) := min{δ(i)(1) | i ≤ ⌈r/ε⌉}.

Proof. Let ε > 0 and a function δ be given. Assume towards a contradiction that for all
η ≥ β(r, ε, δ) and x ∈ Br(0)∩ intdomf such that ∥x−P f

j (x)∥ ≤ δ(η) for all j ∈ [1;m], we have

(†) ∃y ∈ Br(0) ∩ intdomf

(
m∧
j=1

∥y − P f
j (y)∥ ≤ η ∧ Df (y, u) < Df (x, u)− ε

)
.

We define a sequence y0, . . . , yR, for R := ⌈r/ε⌉ in the following way. We take y0 := q. Then,

y0 ∈ Br(0) ∩ intdomf and clearly ∥y0 − P f
j (y0)∥ ≤ δ(R)(1) for all j ∈ [1;m]. Assume that for
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i ≤ R− 1, we have yi ∈ Br(0) ∩ intdomf such that ∥yi − P f
j (yi)∥ ≤ δ(R−i)(1) for all j ∈ [1;m].

Since δ(R−i−1)(1) ≥ β(r, ε, δ), by (†) there exists some y ∈ Br(0) ∩ intdomf such that

m∧
j=1

∥y − P f
j (y)∥ ≤ δ(R−i−1)(1) and Df (y, u) < Df (yi, u)− ε,

and we take yi+1 to be one such y. Hence, by construction, we have

∀i ≤ R− 1 (Df (yi+1, u) < Df (yi, u)− ε) ,

which in turn, using (C3), entails the contradiction that

Df (yR, u) < Df (q, u)−Rε ≤ Df (q, u)− r ≤ 0. □

We require the following two technical lemmas from [26].

Lemma 2.6 ([26]). Let (an) ∈ ℓ1+(N) and consider B ∈ N such that
∑

an ≤ B. Then,

∀ε > 0 ∀g ∈ NN ∃n ≤ Ψ(B, ε, g) ∀i ∈ [n;n+ g(n)] (ai ≤ ε) ,

where Ψ(B, ε, g) := ǧ(R)(0) with ǧ(p) := p+ g(p) + 1 and R := ⌊B
ε
⌋.

Lemma 2.7 ([26]). Let (an) ∈ ℓ2+(N) and consider B ∈ N such that
∑

a2n ≤ B. For all n ∈ N,
set sn :=

∑n
k=0 ak, and let m ≥ 2 be given. Then,

lim inf sn(sn − sn−m−1) = 0 with lim inf -rate ϕB(m, ε,N) :=

⌊
e(

(m+1)B
ε )

2
⌋
· (N + 1),

i.e.

∀ε > 0 ∀N ∈ N ∃n ∈ [N ;N + ϕB(m, k,N)] (sn(sn − sn−m−1) ≤ ε) .

Note that the above lemma is a quantitative version of [5, Lemma 30.6].

3. Main results

We recall here the definition of Dykstra’s method. Let C1, · · · , Cm be m ≥ 2 closed convex
subsets of X such that C∩intdomf ̸= ∅ where C :=

⋂m
j=1 Cj. For any n ≥ 1, let jn := [n−1]+1

with [r] := r mod m. For n ≥ 1, we consider Cn := Cjn and denote with P f
n the Bregman

projection onto Cn. Dykstra’s algorithm with Bregman projections is defined by the following
equations:

(DB)

{
x0 ∈ intdomf,

q−m+1= · · ·=q0 :=0.
∀n ≥ 1

{
xn := P f

n∇f ∗ (∇f(xn−1) + qn−m) ,

qn := ∇f(xn−1) + qn−m −∇f(xn).

For the remaining sections, unless stated otherwise, we consider (xn) to be the iteration
generated by (DB), and that the conditions (C1) – (C4) hold.

3.1. Fundamental identities and bounds. We start by stating some facts that follow easily
from the definition of the algorithm, all of which are proven (explicitly or in passing) in [6].

Lemma 3.1 ([6]). For all n ≥ 1 :

(i) ∇f(xn−1)−∇f(xn) = qn − qn−m,
(ii) ∇f(x0)−∇f(xn) =

∑n
k=n−m+1 qk,

(iii) xn ∈ Cn ∩ intdomf and ∀z ∈ Cn (⟨xn − z, qn⟩ ≥ 0),
(iv) ⟨xn − xn+m, qn⟩ ≥ 0.
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Further, for all n ∈ N:

(v)
n∑

k=n−m+1

∥qk∥ ≤
n−1∑
k=0

∥∇f(xk)−∇f(xk+1)∥.

Lastly, for all z ∈ intdomf and i, n ∈ N with i ≥ n and arbitrary x−(m−1), · · · , x−1 ∈ intdomf ,
we have

Df (z, xn) =Df (z, xi) +
i−1∑
k=n

(Df (xk+1, xk) + ⟨xk−m+1 − xk+1, qk−m+1⟩)

+
i∑

k=i−m+1

⟨xk − z, qk⟩ −
n∑

k=n−m+1

⟨xk − z, qk⟩,(vi)

and in particular

(vii) Df (z, xi) ≤ Df (z, xn) +
n∑

k=n−m+1

⟨xk − z, qk⟩ −
i∑

k=i−m+1

⟨xk − z, qk⟩.

The first quantitative result is the following lemma which provides a bound on the Bregman
distances of the sequence.

Lemma 3.2. For all n ∈ N:

Df (p, xn),
n∑

k=0

Df (xk+1, xk) ≤ b.

Proof. By (C3), we have b ≥ Df (p, x0). The first bound is now immediate from Lemma 3.1.(vii)

with z = p and n = 0 using Lemma 3.1.(iii) and the fact that
∑0

k=−(m−1)⟨xk − p, qk⟩ = 0. The

second bound similarly follows from Lemma 3.1.(vi) (using also Lemma 3.1.(iv)). □

The following lemma is then immediate:

Lemma 3.3. Define θ0 := θ(o(b)) and Θ0 := Θ(o(b)). Then, for all k ∈ N:
(1) ∥xk∥ ≤ o(b),
(2) Df (xk+1, xk) ≥ θ0∥xk+1 − xk∥2,
(3) ∥∇f(xk+1)−∇f(xk)∥ ≤ Θ0∥xk+1 − xk∥.

Using Lemma 2.7, we derive the following lim inf-rate (akin to Proposition 3.5 in [26]).

Proposition 3.4. We have lim infn
∑n

k=n−m+1 |⟨xk − xn, qk⟩| = 0, and moreover, for all ε > 0
and N ∈ N

∃n ∈ [N ;N + Φ(b,m, ε,N)]

(
n∑

k=n−m+1

|⟨xk − xn, qk⟩| ≤ ε

)
,

where Φ(b,m, ε,N) := ϕb/θ0(m, ε/Θ0, N), with ϕ as defined in Lemma 2.7.

Proof. Let ε > 0 and N ∈ N be given. As we have seen
∑

Df (xk+1, xk) ≤ b and so, by the
previous lemma,

∑
∥xk+1−xk∥2 ≤ b/θ0. Hence, we can apply Lemma 2.7 (with an = ∥xn−xn+1∥

and B = b/θ0) to conclude that there exists n ∈ [N ;N + Φ(b,m, ε,N)] such that(
n∑

k=n−m+1

∥xk − xk+1∥

)
·

(
n∑

k=0

∥xk − xk+1∥

)
= (sn − sn−m)sn ≤ ε

Θ0

.
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By triangle inequality, for all k ∈ [n−m+ 1;n],

∥xk − xn∥ ≤
n−1∑
ℓ=k

∥xℓ − xℓ+1∥ ≤
n−1∑

ℓ=n−m+1

∥xℓ − xℓ+1∥,

and thus using the definition of the dual norm and Lemma 3.1.(v), we get
n∑

k=n−m+1

|⟨xk − xn, qk⟩| ≤
n∑

k=n−m+1

∥xk − xn∥ · ∥qk∥

≤

(
n∑

k=n−m+1

∥qk∥

)(
n−1∑

ℓ=n−m+1

∥xℓ − xℓ+1∥

)

≤

(
n∑

k=0

∥∇f(xk)−∇f(xk+1)∥

)(
n∑

k=n−m+1

∥xk − xk+1∥

)

≤ Θ0

(
n∑

k=0

∥xk − xk+1∥

)(
n∑

k=n−m+1

∥xk − xk+1∥

)
≤ ε.

□

Note that the above function Φ is monotone non-decreasing in N .

3.2. Asymptotic regularity. Here we discuss the asymptotic regularity of the sequence (xn).
Since we can obtain the bound

∑n
k=0 ∥xk+1 − xk∥2 ≤ b/θ0 using Lemma 3.2 and Lemma 3.3,

by Lemma 2.6 we have the following result:

Proposition 3.5. We have lim ∥xk − xk+1∥ = 0 and, moreover,

∀ε > 0 ∀g ∈ NN ∃n ≤ Ψ(b/θ0, ε
2, g) ∀k ∈ [n;n+ g(n)] (∥xk − xk+1∥ ≤ ε) ,

where Ψ is as defined in Lemma 2.6.

Therefore, the sequence (xn) is asymptotically regular in the sense of [9]. Furthermore, the
sequence (xn) is asymptotically regular with respect to the individual Bregman projection maps
in the following sense:

Proposition 3.6. For all j ∈ [1;m], we have lim ∥xn − P f
j (xn)∥ = 0 and, moreover,

∀ε > 0 ∀g ∈ NN ∃n ≤ α(b,m, ε, g) ∀k ∈ [n;n+ g(n)]

(
m∧
j=1

∥xk − P f
j (xk)∥ ≤ ε

)

where α(b,m, ε, g) := Ψ
(
b/θ0,

ε2θ0
(m−1)2Θ0

, ĝm

)
, with ĝm(n) = g(n) +m− 2 and with Ψ as defined

in Lemma 2.6.

Proof. For given ε > 0 and g : N → N, by Proposition 3.5 there is n ≤ α(b,m, ε, g) such that

(‡) ∀k ∈ [n;n+ g(n) +m− 2]

(
∥xk − xk+1∥ ≤

√
ε2θ0

(m− 1)2Θ0

=
P (ε2θ0, o(b))

m− 1

)
for P as in Lemma 2.2. Consider k ∈ [n;n + g(n)]. By the definition, we have xk ∈ Cjk with
jk := [k − 1] + 1. Then as [k; k +m− 2] ⊂ [n;n+ g(n) +m− 2] by (‡), we have

∥xk+i − xk∥ ≤
k+i−1∑
ℓ=k

∥xℓ − xℓ+1∥ ≤
k+m−2∑
ℓ=k

∥xℓ − xℓ+1∥ ≤ P (ε2θ0, o(b))
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for any i ∈ [0;m− 1]. Since ∥xk+i∥, ∥xk∥ ≤ o(b), Lemma 2.2 for the function P gives

Df (xk+i, xk) ≤ ε2θ0.

Hence, by the fact that xk+i ∈ Cjk+i and using the definition of the projection P f
jk+i, we derive

Df (P
f
jk+i(xk), xk) ≤ Df (xk+i, xk) ≤ ε2θ0.

By Lemma 3.3, we get ∥P f
jk+i(xk) − xk∥ ≤ ε, and the conclusion now follows from observing

that for any k ∈ N, {P f
jk+i | i ∈ [0;m− 1]} = {P f

1 , · · · , P f
m}. □

Note that the above function α is monotone non-increasing in ε.

3.3. Metastability and strong convergence. The following is the fundamental combinato-
rial lemma of the convergence analysis of Dykstra’s method with Bregman distances presented
here (and in that way is modeled after Proposition 3.10 in [26]).

Proposition 3.7. Let ε > 0 and a function ∆ : N → (0,∞) be given. Then,

∃n ≤ γ(b,m, ε,∆) ∃x ∈ Bo(b)(0) ∩ intdomf(
m∧
j=1

∥x− P f
j (x)∥ ≤ ∆(n) ∧Df (x, xn) ≤ ε ∧

n∑
k=n−m+1

⟨xk − xn, qk⟩ ≤ ε

)
,

where γ(b,m, ε,∆) := α(β) + Φε

(
α(β)

)
with

β := β
(
o(b),

ε

3
, δ
)
,

δ(η) := min

{
ε

6o(b)Θ0

(
α(η) + Φε

(
α(η)

)) , ∆̃(α(η) + Φε

(
α(η)

))}
,

α(η) := α(b,m, η,Φε),

Φε

(
N
)
:= Φ

(
b,m,

ε

3
, N
)
,

∆̃(k) := min{∆(k′) | k′ ≤ k},

and α, β,Φ are as in Propositions 3.6, 2.5 and 3.4, respectively.

Proof. By Proposition 2.5 with u = x0 and q = p, noting that o(b) ≥ b and o(b) ≥ ∥p∥ since

b > 0, there are η0 ≥ β and x ∈ Bo(b)(0) ∩ intdomf such that ∥x − P f
j (x)∥ ≤ δ(η0) for all

j ∈ [1;m], and

(∗) ∀y ∈ Bo(b)(0) ∩ intdomf

(
m∧
j=1

∥y − P f
j (y)∥ ≤ η0 → Df (x, x0) ≤ Df (y, x0) +

ε

3

)
.

Considering Proposition 3.6 with ε = η0 and g = Φε, we obtain

∃N0 ≤ α(η0) ∀i ∈ [N0;N0 + Φε

(
N0

)
]

(
m∧
j=1

∥xi − P f
j (xi)∥ ≤ η0

)
.

Since (xn) ⊆ Bo(b)(0) ∩ intdomf , by (∗) we have

∀i ∈ [N0;N0 + Φε(N0)]
(
Df (x, x0) ≤ Df (xi, x0) +

ε

3

)
.
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On the other hand, from Proposition 3.4 (with ε = ε/3 and N = N0) and the definition of the
function Φε, there exists n0 ∈ [N0;N0 + Φε(N0)] such that

(∗∗)
n0∑

k=n0−m+1

⟨xk − xn0 , qk⟩ ≤
ε

3
.

At this point, we remark that n0 ≤ γ(b,m, ε,∆). Indeed, as α and Φ are monotone and using
the fact that η0 ≥ β:

n0 ≤ N0 + Φε(N0) ≤ α(η0) + Φε

(
α(η0)

)
≤ α(β) + Φε

(
α(β)

)
= γ(b,m, ε,∆).

The definition of the functions δ and ∆̃ then entail

δ(η0) ≤ ∆̃
(
α(η0) + Φε(α(η0))

)
≤ ∆(n0).

It remains to verify that Df (x, xn0) ≤ ε. Note that the definition of δ also entails

δ(η0) ≤
ε

6o(b)Θ0(α(η0) + Φε(α(η0)))
≤ ε

6o(b)Θ0(N0 + Φε(N0))
≤ ε

6o(b)Θ0n0

.

Thus, by the 3-point identity and Lemma 3.1, we get

Df (x, xn0) = ⟨x− xn0 ,∇f(x0)−∇f(xn0)⟩+Df (x, x0)−Df (xn0 , x0)

≤ ⟨x− xn0 ,∇f(x0)−∇f(xn0)⟩+
ε

3

=

n0∑
k=n0−m+1

⟨x− xn0 , qk⟩+
ε

3

=

n0∑
k=n0−m+1

⟨x− xk, qk⟩+
n0∑

k=n0−m+1

⟨xk − xn0 , qk⟩+
ε

3

≤
n0∑

k=n0−m+1

⟨x− P f
k (x), qk⟩+

n0∑
k=n0−m+1

⟨P f
k (x)︸ ︷︷ ︸
∈Ck

−xk, qk⟩+
2ε

3

≤
n0∑

k=n0−m+1

⟨x− P f
k (x), qk⟩+

2ε

3

≤
n0∑

k=n0−m+1

∥x− P f
k (x)∥ · ∥qk∥+

2ε

3

≤ δ(η0)

n0−1∑
k=0

∥∇f(xk)−∇f(xk+1)∥+
2ε

3

≤ δ(η0)

n0−1∑
k=0

Θ0 ∥xk − xk+1∥+
2ε

3

≤ δ(η0) · n0 · 2o(b)Θ0 +
2ε

3
≤ ε

6o(b)Θ0n0

· n0 · 2o(b)Θ0 +
2ε

3
= ε,

which concludes the proof. □

Remark 3.8. Note that in the above proposition, the use of the Bregman distance actually
revealed that the analogous argument from [26] (for Proposition 3.10 therein) in the context of
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Hilbert spaces can be slightly optimized. Namely, we can change the definition of the function
β in [26, Proposition 2.5] to

β(r, ε, δ) := min{δ(i)(1) | i ≤ ⌈r2/ε⌉},

and now instead conclude that there exist η ≥ β(r, ε, δ) and x ∈Br(p) such that for all j ∈ [1;m],
it holds that ∥x− Pj(x)∥ ≤ δ(η) and

∀y ∈ Br(p)

(
m∧
j=1

∥y − Pj(y)∥ ≤ η → ∥x− u∥2 ≤ ∥y − u∥2 + ε

)
.

Then [26, Proposition 3.10] is adapted to this new β instead, and the argument there proceeds
similarly, now instead making use of the identity

∥x− xn0∥2 = 2⟨x− xn0 , x0 − xn0⟩+ ∥x− x0∥2 − ∥xn0 − x0∥2,

which is analogous to the use of the 3-point identity in the above Proposition 3.7.

We are now ready to prove our central result.

Theorem 3.9. Let f be a proper, convex and co-finite Legendre function which is Fréchet
differentiable on intdomf ̸= ∅ with gradient ∇f . Let C1, · · · , Cm be m ≥ 2 convex sets such
that C ∩ intdomf ̸= ∅ for C :=

⋂m
j=1Cj. Assume that the conditions (C1) – (C4) hold. Then,

the sequence (xn) generated by (DB) is a Cauchy sequence and, moreover, for all ε > 0 and
g : N → N,

∃n ≤ Ω(b,m, ε, g) ∀i, j ∈ [n;n+ g(n)] (∥xi − xj∥ ≤ ε) ,

where Ω(b,m, ε, g) := γ(b,m, ε̃,∆ε,g) with

ε̃ := min

{
ρ

(
ρ

12o(b)Θ0

, o(b)

)
,
ρ

6

}
, ρ := ρ

(ε
2
, o(b)

)
∆ε,g(k) :=

ρ

6o(b)Θ0 ·max{k + g(k), 1}
,

and γ is defined as in Proposition 3.7.

Proof. Let ε > 0 and a function g : N → N be given. Using Proposition 3.7, there exist
n0 ≤ Ω(b,m, ε, g) and x ∈ Bo(b)(0) ∩ intdomf such that

(a)
∧m

j=1 ∥x− P f
j (x)∥ ≤ ∆ε,g(n0),

(b) Df (x, xn0) ≤ ε̃ ≤ min
{
ρ
(

ρ
12o(b)Θ0

, o(b)
)
, ρ
3

}
,

(c)
∑n0

k=n0−m+1⟨xk − xn0 , qk⟩ ≤ ε̃ ≤ ρ
6
.

In order to verify that the result holds for such an n0, we consider i ∈ [n0;n0 + g(n0)]. We
assume that g(n0) ≥ 1, and thus max{n0+ g(n0), 1} = n0+ g(n0), otherwise the result trivially
holds. Since i ≥ n0, by Lemma 3.1.(vii) and using (b), we have

Df (x, xi) ≤ Df (x, xn0) +

n0∑
k=n0−m+1

⟨xk − x, qk⟩ −
i∑

k=i−m+1

⟨xk − x, qk⟩

≤ ρ

3
+

n0∑
k=n0−m+1

⟨xk − x, qk⟩︸ ︷︷ ︸
t1

+
i∑

k=i−m+1

⟨x− xk, qk⟩︸ ︷︷ ︸
t2

.
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Using (b), (c) and Lemma 3.1.(ii), we get

t1 =

n0∑
k=n0−m+1

⟨xk − xn0 , qk⟩+
n0∑

k=n0−m+1

⟨xn0 − x, qk⟩

≤ ρ

6
+ ⟨xn0 − x,∇f(x0)−∇f(xn0)⟩

≤ ρ

6
+ ∥xn0 − x∥ · 2o(b)Θ0 ≤

ρ

6
+

ρ

12o(b)Θ0

· 2o(b)Θ0 =
ρ

3
,

and, using (a) as well as Lemma 3.1.(v), we get

t2 =
i∑

k=i−m+1

⟨x− P f
k (x), qk⟩+

i∑
k=i−m+1

⟨P f
k (x)︸ ︷︷ ︸
∈Ck

−xk, qk⟩

︸ ︷︷ ︸
≤ 0

≤
i∑

k=i−m+1

⟨x− P f
k (x), qk⟩ ≤

i∑
k=i−m+1

∥x− P f
k (x)∥∥qk∥

≤ ∆ε,g(n0)
i∑

k=i−m+1

∥qk∥ ≤ ∆ε,g(n0) ·
i−1∑
k=0

∥∇f(xk)−∇f(xk+1)∥

≤ ∆ε,g(n0) ·
i−1∑
k=0

Θ0 ∥xk − xk+1∥ ≤ ∆ε,g(n0) · 2o(b)Θ0 · i

=
ρ

6o(b)Θ0(n0 + g(n0))
· 2o(b)Θ0 · i ≤

ρ

3
,

using in the last inequality the fact that i ≤ n0 + g(n0). Overall, we conclude that

Df (x, xi) ≤
ρ

3
+

ρ

3
+

ρ

3
= ρ

(ε
2
, o(b)

)
,

and, by the properties of ρ, we get ∥xi−x∥ ≤ ε/2, which entails the result by triangle inequality.
□

In particular, from this result we obtain rates of metastability for Dykstra’s method in Hilbert
spaces by instantiating the above result (with all its moduli) to the special case of f = ∥·∥2 /2.
These rates are of a similar complexity to those obtained in [26].

As a byproduct of our analysis, we then also obtain the following “infinitary” convergence
result. Also, this result in particular entails Theorem 1.1.

Theorem 3.10. Let X be a reflexive Banach space and f be a proper, convex and co-finite
Legendre function that is Fréchet differentiable on intdomf ̸= ∅ with gradient ∇f and assume
that the conditions (C1) – (C2) hold. Assume further that all level sets L(x, α) for x ∈ intdomf
and α > 0 are bounded. Let C1, · · · , Cm be m ≥ 2 closed and convex subsets of X such that
C∩intdomf ̸= ∅ for C :=

⋂m
j=1Cj. Then, the sequence (xn) defined by (DB) is norm convergent

towards P f
C(x0).

Proof. By assumption, all level sets L(x, α) for x ∈ intdomf and α > 0 are bounded. Therefore,
in particular, there exists an o satisfying (C4) and since we have assumed C ∩ intdomf ̸= ∅,
(C3) is easily satisfied with corresponding p and b. Therefore, Theorem 3.9 entails the strong
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convergence of (xn). Indeed, as the sequence (xn) satisfies the metastability property it is a
Cauchy sequence, and by completeness it converges to some point of the space, say z = limxn.
Now, as f is totally convex on intdomf (as discussed in Section 2), Proposition 4.3 of [30]

implies the continuity of the projection maps P f
j on intdomf . Thus, by Proposition 3.6, we

conclude that z must be a common fixed point for all projections, and so z ∈ C. It only remains
to argue that the limit point is actually the feasible point Df -closest to x0, i.e. P

f
C(x0).

For this, let o′ be a modulus of boundedness for the level sets L(z, α), i.e.

∀y ∈ intdomf ∀α > 0 (Df (z, y) ≤ α → ∥y∥ ≤ o′(α))

and let b′ ≥ Df (z, x0). With b > 0 and p as in (C3), for an arbitrary ε > 0 we define
ρ := ρ(ε/2,max{o(b), o′(b′)}). Since z = limxn, consider N0 ∈ N such that

∀n ≥ N0

(
∥xn − z∥ ≤ min

{
P

(
ρ

4
, o(b)

)
,

ρ

8o(b)Θ0

,
ε

2

})
.

As per Proposition 3.4, we may consider some n0 ≥ N0 such that
n0∑

k=n0−m+1

⟨xk − xn0 , qk⟩ ≤
ρ

2
.

First note that, since (xn) ⊆ Bo(b)(0) ∩ intdomf , we also have ∥z∥ ≤ o(b). Moreover, by
Proposition 2.4, we have

Df (z, P
f
C(x0)) ≤ Df (z, x0)−Df (P

f
C(x0), x0) ≤ Df (z, x0) ≤ b′,

and hence by assumption on o′, we have ∥P f
C(x0)∥ ≤ o′(b′). Since ∥xn0 − z∥ ≤ P (ρ/4, o(b)), by

Lemma 2.2 it follows that Df (z, xn0) ≤ ρ/4. As z ∈ C, by the definition of P f
C , we have

Df (P
f
C(x0), x0)−Df (xn0 , x0) ≤ Df (z, x0)−Df (xn0 , x0),

and using the 3-point identity, we get

Df (z, x0)−Df (xn0 , x0) = Df (z, xn0) + ⟨xn0 − z,∇f(x0)−∇f(xn0)⟩
≤ Df (z, xn0) + ∥xn0 − z∥ · 2o(b)Θ0

≤ ρ

4
+

2o(b)Θ0ρ

8o(b)Θ0

=
ρ

2
.

Using again the 3-point identity, we now obtain

Df (P
f
C(x0), xn0) = Df (P

f
C(x0), x0)−Df (xn0 , x0) + ⟨P f

C(x0)− xn0 ,∇f(x0)−∇f(xn0)⟩

≤ ρ

2
+ ⟨P f

C(x0)− xn0 ,∇f(x0)−∇f(xn0)⟩

=
ρ

2
+

n0∑
k=n0−m+1

⟨P f
C(x0)− xn0 , qk⟩ by Lemma 3.1.(ii)

=
ρ

2
+

n0∑
k=n0−m+1

⟨P f
C(x0)− xk, qk⟩+

n0∑
k=n0−m+1

⟨xk − xn0 , qk⟩

≤ ρ

2
+

ρ

2
= ρ,

which, by the properties of ρ together with ∥xn0 − z∥ ≤ ε/2, entails ∥P f
C(x0)− z∥ ≤ ε and so,

as ε is arbitrary, z = P f
C(x0). □
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3.4. A rate of convergence. Lastly, we study full rates of convergence for Dykstra’s algorithm
where, as discussed in the introduction, we provide an abstract construction of such rates under
an additional quantitative regularity assumption in the form of a certain modulus adapted from
[26].

Definition 3.11 (essentially [26]). We call a function µ : (0,∞)2 → (0,∞) satisfying for all
ε > 0 and r > 0:

(⋆) ∀x ∈ Br(0) ∩ intdomf

(
m∧
j=1

∥x− P f
j (x)∥ ≤ µr(ε) → ∃z ∈ C ∩ intdomf (∥x− z∥ ≤ ε)

)
,

a modulus of regularity for the sets C1, · · · , Cm.

We refer to [26] for a discussion on when and how such moduli can be obtained and how they
further relate to rates of convergence (in the context of Hilbert spaces).

In the case where a modulus of regularity is available, we can actually give highly uniform
rates of convergence and the construction of such a rate is contained in the following theorem,
modeled after Theorem 4.2 from [26] which provided such a result in the context of Hilbert
spaces.

Theorem 3.12. Let µ be a modulus of regularity for the sets C1, · · · , Cm. Then,

∀ε > 0 ∀i, j ≥ Θ(b,m, ε) (∥xi − xj∥ ≤ ε) ,

where Θ(b,m, ε) := α(b,m, µo(b)(ε̃),Φε) + Φε(α(b,m, µo(b)(ε̃),Φε)) with

ε̃ :=
ρ(ε/2, o(b))

4o(b)Θ0

and Φε(N) := Φ

(
b,m,

ρ(ε/2, o(b))

2
, N

)
,

and α,Φ are as in Propositions 3.6 and 3.4, respectively.

Proof. By Proposition 3.6, there is N0 ≤ α(b,m, µo(b)(ε̃),Φε) such that

∀n ∈ [N0;N0 + Φε(N0)]

(
m∧
j=1

∥xn − P f
j (xn)∥ ≤ µo(b)(ε̃)

)
.

Since (xn) ⊆ Bo(b)(0) ∩ intdomf , by the assumption (⋆) on µ it follows that

(◦) ∀n ∈ [N0;N0 + Φε(N0)] ∃z ∈ C ∩ intdomf

(
∥xn − z∥ ≤ ε̃ =

ρ(ε/2, o(b))

4o(b)Θ0

)
.

Applying Proposition 3.4 (with ε = ρ(ε/2,o(b))
2

and N = N0), we have

∃n0 ∈ [N0;N0 + Φε(N0)]

(
n0∑

k=n0−m+1

⟨xk − xn0 , qk⟩ ≤
ρ(ε/2, o(b))

2

)
.
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By (◦), let ẑ ∈ C be such that ∥ẑ − xn0∥ ≤ ρ(ε/2,o(b))
4o(b)Θ0

. Thus, for any i ≥ n0

i∑
k=i−m+1

⟨xk − xn0 , qk⟩ =
i∑

k=i−m+1

⟨xk − ẑ, qk⟩︸ ︷︷ ︸
≥0, by Lemma 3.1.(iii)

+
i∑

k=i−m+1

⟨ẑ − xn0 , qk⟩

≥ ⟨ẑ − xn0 ,
i∑

k=i−m+1

qk⟩

= ⟨ẑ − xn0 ,∇f(x0)−∇f(xi)⟩ by Lemma 3.1.(ii)

≥ −∥ẑ − xn0∥∥∇f(x0)−∇f(xi)∥
≥ −∥ẑ − xn0∥Θ0 ∥x0 − xi∥

≥ −2o(b)Θ0ρ(ε/2, o(b))

4o(b)Θ0

= −ρ(ε/2, o(b))

2
.

Now by Lemma 3.1.(vii) (with n = n0 and z = xn0),

Df (xn0 , xi) ≤
n0∑

k=n0−m+1

⟨xk − xn0 , qk⟩ −
i∑

k=i−m+1

⟨xk − xn0 , qk⟩ ≤ ρ(ε/2, o(b)),

and by the properties of ρ, we get ∥xi − xn0∥ ≤ ε/2 which entails the result by triangle
inequality. □

Remark 3.13. In the context of Dykstra’s method in Hilbert spaces, it was recently recognized
in a work of the first author together with Kohlenbach [24] that the fact that such moduli of
regularity suffice to construct a rate of convergence is due to Dykstra’s method being Fejér
monotone in a certain generalized sense. If the generalized Fejér monotonicity from [24] would
be adapted to incorporate more general distance functions than metrics, e.g. along the line
of the recent work [27] of the second author (which simultaneously extends works on Fejér
monotone sequences in metric spaces as considered in [22, 23] and Bregman monotone methods
as considered in [4]), then a respective combined result should be attainable which provides a
similar Fejér-type perspective also for Dykstra’s method with Bregman projections as considered
here.

References

[1] H.H. Bauschke and J.M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM
Review, 38(3):367–426, 1996.

[2] H.H. Bauschke and J.M. Borwein. Legendre functions and the method of random Bregman projections.
Journal of Convex Analysis, 4(1):27–67, 1997.

[3] H.H. Bauschke, J.M. Borwein, and P.L. Combettes. Essential smoothness, essential strict convexity, and
Legendre functions in Banach spaces. Communications in Contemporary Mathematics, 3(4):615–647, 2001.

[4] H.H. Bauschke, J.M. Borwein, and P.L. Combettes. Bregman monotone optimization algorithms. SIAM
Journal on Control and Optimization, 42(2):596–636, 2003.

[5] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. CMS
Books in Mathematics. Springer, 2nd edition, 2017.

[6] H.H. Bauschke and A.S. Lewis. Dykstras algorithm with Bregman projections: A convergence proof. Op-
timization, 48(4):409–427, 2000.

[7] J.P. Boyle and R.L. Dykstra. A method for finding projections onto the intersection of convex sets in Hilbert
spaces. In R.L. Dykstra, T. Robertson, and F.T. Wright, editors, Advances in order restricted statistical
inference (Iowa City, Iowa, 1985), volume 37 of Lecture Notes in Statistics, pages 28–47. Springer, Berlin,
1986.



16 PEDRO PINTO AND NICHOLAS PISCHKE

[8] L.M. Bregman. The relaxation method of finding the common point of convex sets and its application to
the solution of problems in convex programming. U.S.S.R. Computational Mathematics and Mathematical
Physics, 7(3):200–217, 1967.

[9] F.E. Browder and W.V. Petryshyn. The solution by iteration of nonlinear functional equations in Banach
spaces. Bulletin of the American Mathematical Society, 72:571–575, 1966.

[10] D. Butnariu and A.N. Iusem. Totally Convex Functions for Fixed Points Computation and Infinite Dimen-
sional Optimization, volume 40 of Applied Optimization. Springer Dordrecht, 2000.

[11] D. Butnariu and E. Resmerita. Bregman distances, totally convex functions and a method for solving
operator equations in Banach spaces. Abstract and Applied Analysis, 2006. Art. ID 84919, 39pp.

[12] Y. Censor and S. Reich. The Dykstra algorithm with Bregman projections. Communications in Applied
Analysis, 2(3):407–419, 1998.

[13] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using Bregman
functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

[14] P.L. Combettes. The convex feasibility problem in image recovery. Advances in imaging and electron physics,
95:155–270, 1996.

[15] P.L. Combettes. Hilbertian convex feasibility problem: Convergence of projection methods. Applied Math-
ematics and Optimization, 35:311–330, 1997.

[16] R.L. Dykstra. An algorithm for restricted least squares regression. Journal of the American Statistical
Association, 78(384):837–842, 1983.

[17] J. Eckstein. Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex
Programming. Mathematics of Operations Research, 18(1):202–226, 1993.
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