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Introduction by the Organizers

The workshop Hyperbolic Balance Laws: Interplay between Scales and Random-
ness was organized by Rémi Abgrall (Zürich), Mauro Garavello (Milano), Mária
Lukáčová-Medvid’ová (Mainz), and Konstantina Trivisa (College Park). The
workshop was well attended with over 40 participants with broad geographic rep-
resentation from all continents.

We have discussed fundamental problems, including novel probabilistic solution
concepts, admissibility criteria for weak entropy solutions, non-local hyperbolic
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problems, randomness, and multiscale effects. These themes are inter-connected
through analytical and numerical methods developed by the hyperbolic balance
laws community over the last years. These mathematical techniques are now
emerging in a new light with the aid of control theory, mean field games, uncer-
tainty quantification and data science.

The Oberwolfach workshop gave a broad mix of talks covering modelling, anal-
ysis and numerics of hyperbolic balance laws. We had 30 talks given by senior and
junior researchers; on Wednesday afternoon we organized a trip to Saint Roman.
The atmosphere in Oberwolfach was stimulating, we enjoyed talks, afternoon cof-
fee and cake joined with a free discussion time. The extensive scientific exchange
has produced many new ideas that will be elaborated in the future. We also had
good luck having nice weather, blue sky, and shining sun...

The organizers and participants thank the “Mathematisches Forschungsinstitut
Oberwolfach” for having provided a comfortable and inspiring environment for the
workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant “US Junior Oberwolfach Fellows”.
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Abstracts

Preserving stationary states on unstructured grids

Wasilij Barsukow

(joint work with Raphaël Loubère, Pierre-Henri Maire)

1. Abstract

The consistency condition of Harten-Lax-van Leer [6] imposes equality of numerical
fluxes both sides of an interface between cells. We give up this condition (which
leaves us with free parameters in the definition of the approximate Riemann solver)
and impose that the sum of all fluxes around a node vanishes (which allows to fix
some of those parameters after imposing some additional identifications). For this
setup to work out one needs to consider half-cells with possibly different fluxes on
each of them (and on each of its sides). We show that a particular choice of such a
solver for 2-d linear acoustics admits a discrete analogue of curl grad = 0, and give
arguments why for any such node-based solver this identity can only be expected
on grids consisting of polygons with at most 4 edges.

2. Introduction

The paramount hyperbolic equation in 1 spatial dimension is linear advection

∂tq + c∂xq = 0 q : R+
0 × R → R(1)

Concepts such as stability and high order of accuracy for numerical methods, as
well as limiting and TVD traditionally are first developed for (1). Linear systems
in 1-d reduce to such equations componentwise by diagonalization.

This is no longer the case in multiple spatial dimensions, because Jacobians
in different directions may not commute and systems no longer reduce to a set
of decoupled advection equations. The most prominent system in this context is
that of linear acoustics

∂tv +∇p = 0 v : R+
0 × R

d → R
d(2)

∂tp+∇ · v = 0 p : R+
0 × R

d → R(3)

The behaviour of its solutions is very different from pure transport: For example,
solutions to bounded initial data can become L∞ unbounded ([1, 3]). System
(2)–(3) possesses an involutional constraint of stationary vorticity

∂t(∇× v) = 0(4)

and non-trivial stationary states governed by

∇p = 0 ∇ · v = 0(5)

The key question pursued here is: What are the stationary states of a numerical
method for (2)–(3)?
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3. Cartesian grids

Some answers for the case of Cartesian grids have already been given in [2]. They
shall be summarized next. Consider (for simplicity the modified equation of) an
upwind, dimensionally-split numerical method for (2)–(3) in two spatial dimen-
sions

∂tu+ ∂xp = ∆x∂2
xu(6)

∂tv + ∂yp = ∆x∂2
yv(7)

∂tp+ ∂xu+ ∂yv = ∆x(∂2
xp+ ∂2

yp)(8)

where v := (u, v) and ∆x = ∆y. If the initial data are chose to correspond to a
stationary state, one is, at least at initial time, left with

∂tu = ∆x∂2
xu(9)

∂tv = ∆x∂2
yv(10)

∂tp = 0(11)

i.e. a heat equation in x for u and in y for v. One thus concludes that

∂xu
t→∞−→ 0 ∂yv

t→∞−→ 0(12)

Summing up, one does still have ∂xu + ∂yv = 0, but (12) are a poor subset of
all divergencefree velocity fields, because ∂xu and ∂yv vanish individually already.
Such a method is called not stationarity preserving. The precise arguments involve
analyzing the behaviour of discrete Fourier modes of the upwind method and are
presented in [2]. They lead to the same conclusion (12). Moreover, (12) can be
easily observed in a numerical experiment.

On Cartesian grids a very convincing solution has been proposed in several
works (e.g. [9, 7, 10, 8, 2]). One aims at finding a numerical method whose
modified equation would be

∂tu+ ∂xp = ∆x∂x(∂xu+ ∂yv )(13)

∂tv + ∂yp = ∆x∂y( ∂xu + ∂yv)(14)

∂tp+ ∂xu+ ∂yv = ∆x(∂2
xp+ ∂2

yp)(15)

with the boxed terms having been added. The challenge is to achieve this dis-
cretely, and it turns out that special multi-dimensional finite differences are neces-
sary here. Note that the idea is not to make sure that terms cancel at leading order,
but to find discrete derivatives Dx, Dy, Dxx, Dxy, Dyy which mimic the behaviour
of their continuous versions (structure preservation):

Dx(Dxu+Dyv) = Dxxu+Dxyv Dy(Dxu+Dyv) = Dxyu+Dyyv(16)

Standard finite differences do not fulfill these relations. The methods developed
in the above-mentioned references are all using such special finite differences; they
are stationarity preserving. As has been mentioned in [8, 2] they also preserve a
discretization of the vorticity ∇× v exactly: they are vorticity preserving.
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4. A non-classical Finite Volume method

Inspired by challenges faced by collocated Lagrangian methods, a new kind of
approximate Riemann solver was introduced in [5, 4]. To this end recall that
the consistency condition of [6] arises upon integration of the conservation law
∂tq + ∂xf(q) = 0 over space time volumes [0, t] × [−λt, 0] and [0, t]× [0, λt]. One
assumes that at t = 0 Riemann data are given with the discontinuity at x = 0,
together with an approximate solution of this Riemann problem in the space-time
wedge bounded by the left-running and right-running waves (speeds ±λ). This
allows to compute the flux averages over [0, t] at the locations x = 0±. Continuity
of these fluxes is the consistency condition.

Here, it is proposed not to make use of it. This, on the one hand, implies less
conditions imposed during the construction of the approximate Riemann solver,
i.e. free parameters. On the other hand, this implies a loss of conservation. This,
however, is replaced by nodal conservation, which amounts to 1 equation per node.
Some additional assumptions allow to reduce the number of free parameters to one
per node, and this latter can then be imposed by applying nodal conservation.

Some notation is necessary to make these concepts more precise. We denote by

• C,N , E the sets of cells, nodes and edges on the grid,
• C(n), C(e) the sets of cells adjacent to a node n and to an edge e,
• N (c) the set of nodes around a cell c

We subdivide every edge e ∈ E in two, refer to them as subedges and denote their
set as SE . The set of subedges surrounding a cell c is denoted by SE(c), the set of
subedges around a node n is denoted by SE(n) and the set of (2) subedges around
a node n which are adjacent to cell c is denoted by SE(n, c).

We denote by f̂s,c a numerical flux from the cell c through the subedge s. The
Finite Volume update formula then reads

∂tqc +
1

|c|
∑

s∈SE(c)

|s|f̂s,c = 0(17)

where qc denotes the cell average of q in cell c ∈ C and |c| and |s| are the area of
c and the length of s. Global conservation implies

0 = ∂t

(
∑

c∈C

|c|qc
)

= −
∑

c∈C

∑

s∈SE(c)

|s|f̂s,c(18)

Reorganize the sum:

= −
∑

n∈N

∑

c∈C(n)

∑

s∈SE(n,c)

|s|f̂s,c(19)

Instead of the classical “localization” of conservation on an edge
∑

c∈C(e) f̂e,c = 0

we impose to localize the conservation on a node:
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∑

c∈C(n)

∑

s∈SE(n,c)

|s|f̂s,c = 0(20)

The free parameter that we choose to keep during the derivation of the Riemann
solver is a nodal pressure, for which condition (20) yields the following expression
(see [4] for details):

p∗n :=

∑

s∈SE(n)

|s|
(
pL + pR

2
− ns ·

vR − vL

2

)

∑

s∈SE(n)

|s|
(21)

Here, ns is a unit normal associated to a subedge s once and for all, and cells L/R
are such that ns is pointing from L to R. Denote by ns,c the unit normal to s
pointing out of c. Then, if ns = ns,c, then c is L, if ns = −ns,c, then c is R. Thus,
one can rewrite

∑

s∈SE(n)

|s|ns · (vR − vL) = −
∑

c∈C(n)

vc ·




∑

s∈SE(n,c)

|s|ns,c




︸ ︷︷ ︸
=:ℓncnnc

(22)

The vector nnc is called the unit node normal.

5. Some discrete operators on unstructured grids

Definition 1. Denote by

GRADcφ :=
1

|c|
∑

n∈N (c)

ℓncnncφn GRAD: N → C2(23)

DIVnv := − 1

|cn|
∑

c∈C(n)

ℓncnnc · vc DIV: C2 → N(24)

where cn is the dual cell around node n, i.e. the polygon consisting of cell centroids
and edge midpoints around n.

The dual cell is chosen only to guarantee
∑

c∈C

|c| =
∑

n∈N

|cn|+ b.t.(25)

Theorem 1. GRADφ is a consistent discretization of ∇φ in the sense that it is
exact for affine φ.

Theorem 2. DIVv is a weakly consistent discretization of ∇ ·v in the sense that
it is the ℓ2 dual of GRAD.
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Proof. Ignoring boundaries:

∑

n∈N

|cn|φnDIVnv = −
∑

n∈N

φn

∑

c∈C(n)

ℓncnnc · vc = −
∑

c∈C

vc ·
∑

n∈N (c)

ℓncnncφn

(26)

= −
∑

c∈C

vc ·GRADcφ(27)

�

One thus can rewrite the nodal pressure as

p∗n =

∑

s∈SE(n)

|s|pL + pR
2

− 1

2
|cn|DIVnv

∑

s∈SE(n)

|s|
(28)

6. Stationarity preservation of node-based methods

The full method, without giving the details of the derivation which are available
in [4], reads

d

dt
vc = − 1

|c|
∑

n∈N (c)

ℓncnncp
∗
n = −GRADcp

∗(29)

d

dt
pc = − 1

|c|
∑

n∈N (c)

∑

s∈SE(n,c)

|s|(pc − p∗n)(30)

One easily concludes the following

Theorem 3. If p = const and DIVnv = 0 ∀n ∈ N initially, then these data
remain stationary.

In view of what has been said in the Introduction, one needs to avoid that
stationary states of a numerical method for acoustics turn out to be a poor subset
of all divergencefree vector fields. As the discrete divergence here is defined on the
nodes, it is natural to make the following

Definition 2. A linear numerical method of the form (29)–(30) is called station-
arity preserving if it has as many linearly independent stationary states as there
are nodes on the grid (up to modifications related to boundaries).

The linear system DIV v = 0 consists of #N equations for 2#C variables. It
thus has at least 2#C − #N solutions. The same number appears in a different
context, too. Consider operators that annihilate GRAD identically. Seen as a
matrix, GRAD has 2#C rows and #N columns. Its left kernel thus has dimension
at least 2#C −#N .
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The number 2#C − #N can be estimated assuming that the grid consists of
cells with α edges. Then #E = α

2#C, and from Euler’s formula one obtains

2#C −#N =
6− α

α− 2
#N(31)

This proves

Theorem 4. The method (29)–(30) with the nodal pressure (28) is stationarity
preserving on triangular-quadrangular grids (#E(c) ≤ 4).

For hexagonal grids there are no non-trivial solutions of DIV v = 0.
Without proof (which can be found in [4]) we also state the following

Theorem 5. If #E(c) ≤ 4, then the method (29)–(30) is vorticity preserving,
i.e. it keeps the following weakly consistent discretization of the curl of v exactly
stationary:

CURLnv = − 1

|cn|
∑

c∈C(n)

ℓncnnc × vc(32)

and CURL GRAD = 0.

7. Conclusions

We have exemplified a numerical method that involves a nodal pressure. It has
been derived from the idea of nodal conservation and is characterized by discrete
differential operators that map from the primary (cells) to the dual (nodes) mesh.
The resulting method is collocated on the primary mesh. The particular choice
presented here is shown to be stationarity preserving on grids of cells with at most
4 edges; it reduces to well-known stationarity preserving methods of truly multi-
dimensional nature on Cartesian grids. Based on rather fundamental arguments it
was also shown, however, that a method which uses a gradient operator that maps
from nodes to cells cannot be vorticity preserving on grids containing pentagons
and other polygons with more than 4 edges, independently of further details of
the numerical method.
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High-Order Semi-implicit Schemes for Evolutionary Partial
Differential Equations with Higher Order Derivatives

Sebastiano Boscarino

Many time-dependent PDEs which arise in physics or engineering involve the com-
putation of high order spatial derivatives. In this paper, we are interested in
proposing a semi-implicit (SI) approach with an IMEX RK setting for solving
several types of PDEs with high order spatial derivatives.

We consider a sequence of such PDEs with increasingly higher order derivatives.
To simplify the presentation, the PDEs examples below are only one-dimensional
equations.

• The second order diffusion problem

(1) ut−(a(u)ux)x = 0,

where a(u) ≥ 0 is smooth and bounded and it is a PDE with second order
derivatives.

Many PDE of the form (1) which arise in physics or engineering, usually
involve the computation of nonlinear diffusion terms, such as: the miscible
displacement in porous media [6] which is widely used in the exploration of
underground water, oil, and gas, the carburizing model [8] which is derived
in the chemical heat treatment in mechanical industry, the high-field model
in semiconductor device simulations [9, 10], and so on.

In this paper we also consider one-dimensional version of the convection-
diffusion equation

(2) ut + f(u)x − (a(u)ux)x = 0.

• The dispersive equation [11, 16] with third derivatives

(3) ut + f(u)x + (r′(u)g(r(u)x)x)x = 0,

where f(u), r(u) and g(u) are arbitrary (smooth) functions. The Korteweg-
de Vries (KdV) equation [12] which is widely studied in fluid dynamics and
plasma physics, is a special case of Eq. (3) for the choice of the functions
f(u) = u2, g(u) = u and r(u) = u. The KdV-type equations play an im-
portant role in the long-term evolution of initial data [14], are often used
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to model the propagation of waves in a variety of nonlinear and dispersive
media [13].

Another choice of the functions f(u) = u3, r(u) = u2 and g(u) = u/2,
gives the so called general KdV equation [16]

(4) ut + (u3)x + (u(u2
xx))x = 0.

Eq. (4) is known to have compacton solutions of the form:

(5) u(x, t) =

{ √
2λ cos

(
x−λt

2

)
, |x− λt| ≤ π,

0, otherwise.

Furthermore, Eq. (4) is a particular case of the nonlinear dispersive equa-
tion [17]

(6) ut + (um)x + (u(un
xx))x = 0, m > 1, m = n+ 1,

with m = 3 and n = 2. In the numerical tests section we will consider Eq.
(6) with m = 3, n = 2 and m = 2, n = 1.

Note that in general, the prototype of nonlinear dispersive equations is
the K(m;n) equation (6), introduced by Rosenau and Hyman in [18]. For
certain values of m and n, the K(m;n) equation has solitary waves which
are compactly supported. These structures, the so-called compactons,
have several things in common with soliton solutions of the Korteweg–de
Vries (KdV) equation where a nonlinear dispersion term replaces the linear
dispersion term in the KdV equation.

• The fourth order diffusion equation

(7) ut + (a(ux)uxx)xx = 0,

is a special biharmonic-type equation, where the nonlinearity could be
more general but we just present (7) as an example. In this paper we will
also concentrate on the one dimensional case biharmonic type equation

(8) ut + f(u)x + (a(ux)uxx)xx = 0.

The fourth order diffusion problem has wide applications in the modeling
of thin beams and plates, strain gradient elasticity, and phase separation
in binary mixtures [15].

It is well known that the time discretization is a very important issue for time
dependent PDEs. For the k-th (k ≥ 2) order PDEs, explicit methods always suffer
from stringent and severe time step restriction, i.e., ∆t = O(∆xk), for the stability
where ∆t is the time step and ∆x is the mesh size. This time step is too small,
resulting in excessive computational cost and rendering the explicit schemes im-
practical. On the other hand, implicit methods can overcome the drastic time step
size restriction imposed by the stability condition for explicit schemes. However,
nonlinear algebraic system must be solved (e.g. by Newton iteration) at each time
step.

To cope with both the shortcomings of the explicit and implicit methods, one
possible approach is to use implicit-explicit (IMEX) methods. These methods
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have been proposed and studied by many authors, for example [2, 4, 25, 3]. IMEX
schemes have been successfully applied to various problems, such as convection-
diffusion-reaction systems [2, 31, 3], hyperbolic systems with relaxation [25, 5],
and collisional kinetic equations [7].

In the case of evolutionary partial differential equations with higher-order deri-
vatives, IMEX methods can be used to treat the different derivative terms differ-
ently. Specifically, the higher-order derivative terms are treated implicitly, while
the rest of the terms are treated explicitly. Using IMEX methods can help to
alleviate the stringent time step restriction and reduce the difficulty of solving
algebraic equations when the higher-order derivative terms are linear. However,
for equations with nonlinear high derivative terms, IMEX methods may be much
more expensive than explicit methods because nonlinear algebraic system must
be solved (e.g. by Newton iteration) at each time step. In order to overcome
this constraint in [24] the authors introduced the explicit-implicit-null (EIN) time-
marching method. This method consists to add and subtract a sufficiently large
linear highest derivative term on one side of the considered equation. After that,
the linear highest derivative term is treated implicitly, while the remaining term
is treated explicitly using an IMEX R-K setting.

In [1] we discuss an alternative approach to [24] for solving time dependent
PDEs with high order spatial derivatives by using high order IMEX-RK methods
in a much more general context than usually found in the literature, obtaining very
effective schemes. The basic idea is to propose a new strategy, called semi-implicit
(SI), based on IMEX Runge-Kutta methods (SI-IMEX-RK), for the construction
of a class of schemes for the solution of equations (1), (2), (6) (7) and (8). Further-
more, in the literature, IMEX-RK schemes have been already used in a SI-IMEX-
RK strategy for solving: relaxation problems containing degenerate and/or fully
nonlinear diffusion terms [20], a class of degenerate convection-diffusion problems
[21, 22], fourth order nonlinear degenerate diffusion equation and surface diffusion
of graph, [23].

The above strategy is really convenient and useful in the case in which we have
a linearly implicit evaluation for the unknown variable in the term involving high
order spatial derivatives, as in equations (1), (2), (6), (7) and (8). The linearly
implicit evaluation is the key to the methods working for our problems. However,
in other cases for time-dependent PDEs with fully nonlinear high order spatial
derivatives, as for example equation (3), the approach proposed in [24] is more
suitable.

In order to apply the SI-IMEX-RK idea, we take the nonlinear diffusion equation
(1) as an example to introduce the approach in detail. Assume that the semi-
discrete formulation of (1) can be written as

(9)
dU(t)

dt
=

1

∆x2
B(U(t))U(t),

where U(t) = (U1(t), U2(t), ..., UM (t))T , with Ui(t) is the approximate solution
at spatial position xi for i = 1, ...,M , i.e., Ui(t) ≈ (u(xi, t), for i = 1, ...,M ,
and uniform grid spacing ∆xi = xi+1 − xi. B ∈ RM×M is a tridiagonal matrix
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arising from the discretization of (a(u)ux)x. Here we emphasize that the matrix
B inherits its discontinuous dependence on U from that of a(u) on u. The SI-
IMEX-RK approach is based in choosing the time discretization by an implicit
and explicit RK scheme, respectively, of an IMEX pair of schemes accordingly.
Roughly speaking, in the product B(U)U the implicit treatment is applied only
to that second factor U , while the nonlinear term B(U) is treated explicitly. This
approach does not require solutions for nonlinear systems since the new methods
require only solving a discretized diffusion equation with a linear diffusion term in
which the matrix B(U) is given.

An advantage of this approach with respect to [24] is that we can use different
types of IMEX-RK schemes already exiting in the literature. In [24] the drawback
in the technique of adding and subtracting the same term on one side of the
considered equation is that the constant that stabilizes the scheme depends on the
specific type of IMEX RK method selected. In [1] we showed several examples of
equations of the form (1), (2), (6) (7) and (8) that can be efficiently solved with
the SI-IMEX-RK approach, choosing different IMEX RK tableaux.

Finally, we coupled high order finite difference schemes with high-order SI-
IMEX-RK time discretization for solving diffusion (1) (2), dispersive (6) and fourth
order diffusion equations (7) (8), respectively. We choose the finite difference
schemes to discretize the space because of its simplicity in design and coding.
However, other type of space discretization can be considered as local discontinuous
Galerkin schemes [26] with application to various high order PDEs, [16, 27, 28,
19, 29, 11, 30].
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New High-Order Numerical Methods for Hyperbolic Systems of
Nonlinear PDEs with Uncertainties

Alina Chertock

(joint work with Michael Herty, Arsen S. Iskhakov, Safa Janajra, Alexander
Kurganov, and Mária Lukáčová-Medvid’ová)

Many important scientific problems contain sources of uncertainties in parame-
ters, initial and boundary conditions (ICs and BCs), etc. In partial differential
equations (PDEs), uncertainties may be described with the help of random vari-
ables. In this paper, the focus is placed on hyperbolic systems of conservation and
balance laws with uncertainties. Such systems read as

(1) Ut +∇x · F = S,

where U(x, t, ξ) ∈ RN is an unknown vector-function, F (U) : RN → RN are the
flux functions, and S(U ,x, ξ) is a source term. Furthermore, t is time, and x ∈ Rd

are spatial variables. Without loss of generality, we assume that ξ ∈ Ξ ⊂ Rs are
real-valued random variables. We denote by (Ξ,F , ν) the underlying probability
space, where Ξ is a set of events, F(Ξ) is the σ-algebra of Borel measurable sets,
and ν(ξ) : Ξ → R+ is the probability density function (PDF), ν ∈ L1(Ξ).

The system (1) arises in many applications, including fluid dynamics, geo-
physics, electromagnetism, meteorology, and astrophysics, to name a few. Quan-
tifying uncertainties that appear as input quantities, as well as in the ICs and
BCs due to empirical approximations or measuring errors, is essential as it helps
to perform sensitivity analysis and provides guidance to improve models.

Several numerical methods have already been developed for (1). Monte Carlo-
type methods are reliable but not computationally efficient due to the large number
of realizations required to approximate statistical moments accurately. Another
widely used approach for solving (1) is the generalized polynomial chaos (gPC),
where the solution is sought in terms of a series of orthogonal polynomials with
respect to the probability density in ξ; see, e.g., [13]. There are two types of gPC
methods: intrusive and non-intrusive ones. In non-intrusive algorithms, such as
stochastic collocation (gPC-SC) methods, one seeks to satisfy the governing equa-
tions at a discrete set of nodes in the random space, employing the same numerical
solver as for the deterministic problem and then using interpolation and quadra-
ture rules to evaluate statistical moments numerically. In intrusive approaches,
such as stochastic Galerkin (gPC-SG) methods, the gPC expansions are substi-
tuted into the governing equations and projected by a Galerkin approximation to
obtain deterministic equations for the expansion coefficients. Solving the coeffi-
cient equations yields the statistical moments of the original uncertain problem
solution.

Several challenges are associated with applying the gPC-SC and gPC-SG meth-
ods to nonlinear hyperbolic systems (1). It is well-known that spectral-type gPC-
based methods exhibit fast convergence when the solution depends smoothly on
the random parameters. However, one of the main problems in using these meth-
ods is related to the lack of smoothness of their solutions, which may break down
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in finite time due to the development of shock and contact waves. Although these
discontinuities appear in spatial variables, their propagation speed can be affected
by uncertainty, causing discontinuities in random variables and triggering aliasing
errors and Gibbs-type phenomena. Another open question in gPC-based stochas-
tic methods is the representation of strictly positive quantities such as gas density
or water depth and/or the enforcement of discrete bound-preserving constraints.
It can also be shown that the gPC-based methods, which are highly accurate for
moment estimation, might fail to approximate PDF, even for one-dimensional (1-
D) noise [4]. An additional numerical difficulty associated with implementing the
gPC-SG methods is posed by the fact that the deterministic Jacobian of the pro-
jected system differs from the random Jacobian of the original system. Therefore,
when applied to general nonlinear hyperbolic systems, the gPC-SG method results
in a system for expansion coefficients, which is not necessarily globally hyperbolic
[3]. Consequently, additional effort is needed to develop stable numerical methods
for (potentially ill-posed) systems for the gPC coefficients.

In this talk, we present a new approach in which we conduct the approximation
in the random space using weighted essentially non-oscillatory (WENO) inter-
polants rather than orthogonal polynomial expansions, which are highly oscilla-
tory in the case of nonsmooth solutions. The new approach is realized in the semi-
discrete finite-volume framework. The system (1) is integrated over the (x, ξ)-cells
and the solution is obtained in terms of cell averages, which are evolved in time
using numerical fluxes in the x-directions. These fluxes are evaluated with the help
of a second-order piecewise linear reconstruction in x and a Gauss-Legendre quad-
rature in ξ implemented using high-order WENO interpolants. This allows one
to achieve high accuracy in ξ even in the generic case of discontinuous solutions.
We refer the reader to related work in [1, 2, 6, 10, 11], where a similar idea has
been used in the framework of stochastic finite-volume methods. In this work, we
implement a second-order finite-volume method in physical space. It is combined
with a high-order WENO interpolation in the random space. Notice that by using
a high-order WENO interpolation, we not only keep a high-order approximation
in the random space but also properly (without the Gibbs phenomenon) resolve
discontinuities that may propagate into the random directions.

The new family of methods may use different numerical fluxes, piecewise-linear
reconstructions, and high-order interpolations. A particular choice made in this
work is the following. We use the Riemann-problem-solver-free central-upwind
(CU) fluxes introduced in [7, 8]; the generalized minmod reconstruction in x;
the fifth-order Gauss-Legendre quadrature; and the recently proposed fifth-order
affine-invariant WENO-Z (Ai-WENO-Z) interpolation in ξ (see [5, 9, 12]), which is
a stabilized version of the original WENO-Z interpolation. It should be observed
that the lack of BCs in the random space imposes an additional difficulty, as it
requires the development of a special high-order interpolation technique near the
boundary. We overcome this difficulty by designing a new one-sided Ai-WENO-Z
interpolation. In addition, we restrict our consideration to the simplest 1-D case
(d = s = 1) and two higher-dimensional extensions (d = 1, s = 2 and d = 2,
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s = 1). We test the resulting scheme on several numerical examples for the Euler
equations of gas dynamics and the Saint-Venant system of shallow water equations,
both considered with different probability densities in random variables. For the
shallow water application, we enforce the well-balanced (WB) property, that is, to
make the scheme capable of exactly preserving “lake-at-rest”/still-water steady-
state solutions.
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Space Dependent Conservation Laws and Hamilton-Jacobi Equations

Rinaldo M. Colombo

(joint work with Vincent Perrollaz, Abraham Sylla)

We are concerned with conservation laws and Hamilton - Jacobi equations

(1) ∂tu+ ∂xH(x, u) = 0 ∂tU +H(x, ∂xU) = 0

in the scalar one dimensional case. The problems we address are:

(1) well posedness;
(2) correspondence between the solutions to the 2 equations;
(3) characterization of attainable sets and inverse design.

The explicit presence of the x variable in the flux/Hamiltonian H has a deep
influence on a variety of properties of the solutions to the equations in (1), see [12]
for a somewhat surprising example.

1. Well Posedness

A huge literature is devoted to the existence, uniqueness and continuous depen-
dence on initial data of the solutions to the Cauchy problems

(CL)

{
∂tu+ ∂xH(x, u) = 0
u(0, x) = uo(x)

(HJ)

{
∂tU +H(x, ∂xU) = 0
U(0, x) = Uo(x)

where t ∈ R+ and x ∈ R. As sample references, in the case of (CL) we recall [6,
14, 16, 19] while (HJ) is considered, for instance, in [4, 5, 13, 17]. However,
only in few cases are these results obtained under the same assumptions for the 2
equations, see [8] for the x independent case.

A unique framework where both Cauchy problems (CL) and (HJ) are well
posed is established in [9]. The assumptions defining this framework are:

Smoothness : H ∈ C3(R2;R) .(C3)

Compact NonHomogeneity :
∃X > 0: ∀ (x, u) ∈ R2

if |x| > X then ∂xH(x, u) = 0
(CNH)

Uniform Coercivity :
∀h ∈ R ∃Uh ∈ R : ∀ (x, u) ∈ R2

if |H(x, u)| ≤ h then |u| ≤ Uh
(UC)

Weak Genuine NonLinearity :
for a.e.x ∈ R the set{
w ∈ R : ∂2

wwH(x,w) = 0
}

has empty interior
(WGNL)

Note that no convexity assumption is required. Indeed, (WGNL) allows also the
presence of a convergent sequence of inflection points of the map u 7→ H(x, u).
Moreover, in the case of conservation laws, the above assumptions allow to consider
fluxes that do not meet all the classical Kružkov requirements in [19], see [9,
Example 1.1]. Technically, among the above assumptions, it seems that (UC) is
the hardest one to be weakened, if possible.
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Under the assumptions (C3)-(CNH)-(UC)-(WGNL) entirely specular well
posedness theorems for (CL) and (HJ) can be stated, see [9, Theorem 2.18] and [9,
Theorem 2.19]. Indeed, these results yield Lipschitz continuous semigroups

SCL : R+ × L∞(R;R) → L∞(R;R) and SHJ : R+ × Lip(R;R) → Lip(R;R)

whose orbits are weak entropy solutions to (CL) and viscosity solutions to (HJ).
Technically, the difficulty of providing a priori L∞ bounds on solutions to (CL)

is overcome providing a sufficient endowment of stationary solutions, see [11].

2. Correspondence between the Solutions to (CL) and (HJ)

If U is a smooth solution to Hamilton-Jacobi equation with Hamiltonian H , it is
evident that ∂xU solves the conservation law with flux H . However, when dealing
with weak entropy solutions to (CL) and with viscosity solutions to (HJ), exhibit-
ing a rigorous correspondence is not immediate. The case whereH does not depend
on x was closed in [8], following the previous results obtained in [18], see also [7].
Under the assumptions (C3)-(CNH)-(UC)-(WGNL), [9, Theorem 2.20] proves
that the following diagrams commute in the general — x dependent — case (1):

Uo −→ SHJ
t Uo

∂x
y y ∂x
uo −→ SCL

t uo

Uo −→ SHJ
t Uo´ x x x [9, Formula (2.28)]

uo −→ SCL
t uo

Remarkably, it turns out that the stability properties of the two semigroups are
not in full correspondence, see [9] for details.

3. Characterization of Attainable Sets and Inverse Design

Given T > 0 and profiles w ∈ L∞(R;R), W ∈ Lip(R;R), consider the sets

ICL
T (w) =

{
uo ∈ L∞(R;R) : SCL

T uo = w
}
,

IHJ
T (W ) =

{
Uo ∈ Lip(R;R) : SHJ

T Uo = W
}
.

Characterizing those w, resp. W , such that ICL
T (w) 6= ∅, resp. IHJ

T (W ) 6= ∅, is the
characterization of the attainable set for (CL), resp. (HJ). By inverse design we
refer to the problem of characterizing the set ICL

T (w), resp. IHJ
T (W ). Results in

this direction were obtained by several authors, see for instance [1, 2, 3, 8, 15, 20].
Substituting both (UC) and (WGNL) with the (stronger) condition

(CVX) Strong Convexity:
∀x ∈ R, p 7→ ∂pH(x, p) is an increasing
C1 − diffeomorphism of R onto itself

a full characterization of the attainable set for (HJ) is presented in [10, Theo-
rem 3.2]. This is obtained through an explicit construction based on the connec-
tions of (HJ) to the optimal control of ODEs. It is then possible to explicitly
characterize IHJ

T (W ), see [10, Theorem 3.3]. Note however that, differently from
the x independent case considered in [8], the set ICL

T (w) apparently does not admit
a simple direct characterization.
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As a consequence of these results one proves that ICL
T (w) is a closed cone (with

respect to the L1

loc
topology). This seemingly fundamental property currently

lacks an a priori justification, also at an heuristic level.
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On well-balanced finite volume and discontinuous Galerkin schemes
for the Einstein-Euler system of general relativity

Michael Dumbser

(joint work with Olindo Zanotti, Ilya Peshkov, Elena Gaburro, Gabriella Puppo)

In this talk we present a new family of well-balanced discontinuous Galerkin (DG)
finite element schemes with subcell finite volume (FV) limiter for the numerical
solution of the Einstein–Euler equations of general relativity based on a first order
hyperbolic reformulation of the Z4 formalism. The first order Einstein-Euler Z4
system, which is composed of 64 equations, is analysed and proven to be strongly
hyperbolic for a general metric. The well-balancing is achieved for arbitrary but a
priori known equilibria by subtracting a discrete version of the equilibrium solu-
tion from the discretized time-dependent PDE system. Special care has also been
taken in the design of the numerical viscosity so that the well-balancing property
is achieved. As for the treatment of low density matter, e.g. when simulating
massive compact objects like neutron stars surrounded by vacuum, we have intro-
duced a new filter in the conversion from the conserved to the primitive variables,
preventing superluminal velocities when the density drops below a certain thresh-
old, and being potentially also very useful for the numerical investigation of highly
rarefied relativistic astrophysical flows.

We furthermore present a novel family of centralWENO finite difference schemes
for a new first order reformulation of the classical BSSNOK system.

Thanks to these improvements, all standard tests of numerical relativity are
successfully reproduced, reaching four main achievements: (i) we are able to obtain
stable long term simulations of stationary black holes, including Kerr black holes
with extreme spin, which after an initial perturbation return perfectly back to the
equilibrium solution up to machine precision; (ii) a (standard) TOV star under
perturbation is evolved in pure vacuum (ρ = p = 0) up to t = 1000 with no
need to introduce any artificial atmosphere around the star; and, (iii) we solve the
head on collision of two punctures black holes, that was previously considered un–
tractable within the FO-Z4 formalism, (iv) we perform a stable long-time evolution
of a rotating binary black hole merger based on the new CWENO schemes for first
order reformulation of the BSSNOK system.
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Monte Carlo method and the isentropic Euler system

Eduard Feireisl

(joint work with Mária Lukáčová-Medvid’ová, Hana Mizerová)

We consider one of the iconic examples of hyperbolic systems in fluid dynamics –
the Euler system – in its simplified isentropic version:

∂tρ+∇ · (ρ~u) = 0,(1)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) + a∇ργ = 0, a > 0, γ > 1

supplemented with the physically relevant impermeability conditions

~u · ~n|∂Ω = 0.

The problem is closed by prescribing the initial state

ρ(0, ·) = ρ0, ρ~u(0, ·) = ρ0~u0.

The Euler system features the well known mathematical difficulties summarized
in the following list of “bad” and “good” news:

• Good: The problem is (locally) well–posed in a class of Sobolev data of
high regularity.

• Bad: “Many” solutions develop singularities after a finite time – shock
waves (standard), implosions (new results [4] and others).

• Good: Weak solutions exist globally in time for any sufficiently smooth
initial data (or Riemann data).

• Bad: There infinitely many weak solutions for given initial data (without
imposing any admissibility conditions), see the pioneering paper [2] and
many more recent related results.

• Good: Admissible solutions (satisfying some form of energy inequality)
satisfy the weak–strong uniqueness principle. In particular, the Euler sys-
tem is locally well posed in the class of weak solutions if the data are
smooth enough.

• Bad: The set of “wild” initial data giving rise to infinitely many admissible
weak solutions (on arbitrarily short time interval) is dense in Lp, see [1].

Our main objective is to study convergence of numerical methods with uncertain
data, specifically the Monte–Carlo method. We consider the class of generalized
dissipative solutions satisfying

∂tρ+∇ · ~m = 0, ~m ≡ ρ~u,

∂t ~m+∇ ·
(
~m⊗ ~m

ρ

)
+ a∇ργ = −∇ ·R,

d

dt
E(t) ≤ 0, E(t) ≤ E0, E0 =

ˆ
Ω

[
1

2

|~m0|2
ρ0

+
a

γ − 1
ργ
]

dx,

E ≡
ˆ
Ω

[
1

2

|~m|2
ρ

+
a

γ − 1
ργ
]

dx+ c(γ)

ˆ
Ω

d trace[R],
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with the energy defect represented by Reynolds stress

R ∈ L∞(0, T ;M+(Ω;Rd×d
sym )).

The dissipative solutions can be “identified” with limits of consistent (numerical)
approximations of the original Euler system, see [3].

As the Euler system is essentially ill–posed, our approach is based on multival-
ued solution mappings and abstract version of the Strong law of large numbers in
this framework. Specifically, we consider the mapping

(ρ0, ~m0) ∈ (data space) 7→ U(ρ0, ~m0) ⊂ T (trajectory space),

U(ρ0, ~m0) =
{
(ρ, ~m) ∈ T

∣∣∣ (ρ, ~m) a dissipative solution of the Euler system,

(ρ, ~m)(0, ·) = (ρ0, ~m0)
}

Here, the trajectory space

T =
{
(ρ, ~m)

∣∣∣ (ρ, ~m) ∈ Cweak([0, T ];L
γ(Ω)× L

2γ
γ+1 (Ω;Rd))

}

is endowed either with the strong topology

Tstrong →֒ Lq((0, T )× Ω;Rd+1), 1 < q ≤ 2γ

γ + 1
= min

{
γ;

2γ

γ + 1

}

or with the weak topology

Tweak →֒ C([0, T ];W−ℓ,2(Ω;Rd+1)), ℓ > d.

We claim the following results concerning convergence of the Monte–Carlo
method applied to random consistent approximations of the Euler system:

Monte–Carlo method, weak form: Suppose (ρ0,n, ~m0,n)
∞
n=1 is a family of

pairwise i.i.d. copies of initial data (ρ0, ~m0) satisfying

1

L
≤ ρ0(x) ≤ L, |~m0(x)| ≤ L for a.a. x ∈ Ω.

with a deterministic constant L.
Let (~Uh)h>0, ~Uh = (ρn, ~mh) be a consistent approximation.
Then

E

[
distW−ℓ,2((0,T )×Ω;Rd+1)

[
1

N

N∑

n=1

~Uh(ρ0,n, ~m0,n);E
[
U(ρ0, ~m0)

]]]
→ 0

as h → 0, N → ∞ for any ℓ > d+ 1.

Monte–Carlo method, strong form: Suppose (ρ0,n, ~m0,n)
∞
n=1 are a pairwise

i.i.d. representations of random data (ρ0, ~m0) satisfying

1

L
≤ ρ0(x) ≤ L, |~m0(x)| ≤ L for a.a. x ∈ Ω

with a deterministic constant L.
Let (~Uh)h>0 be a consistent approximation of the Euler system.
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Then any sequence hm → 0 contains a subsequence (hmk
)∞k=1 such that

E



∥∥∥∥∥

1

NK

N∑

n=1

K∑

k=1

~Uhmk
(ρ0,n, ~m0,n)− E

[
(ρ, ~m)

]∥∥∥∥∥
Lq((0,T )×Ω;Rd+1)


→ 0

as K, N → ∞ for any 1 ≤ q < 2γ
γ+1 , where (ρ, ~m) ∈ U(ρ0, ~m0) is a measurable

selection.

References

[1] E. Chiodaroli and E. Feireisl, Glimm’s method and density of wild data for the Euler system
of gas dynamics, Nonlinearity 37 (2024), Paper No. 035005, 12
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A posteriori error estimates for finite volume approximations of one
dimensional systems of hyperbolic conservation laws

Jan Giesselmann

(joint work with Sam G. Krupa, Aleksey Sikstel)

We are interested in the numerical approximation of systems of hyperbolic conser-
vation laws endowed with one convex entropy/entropy flux pair. In particular, we
derive a posteriori error bounds for first order finite volume approximations which
are useful for (provable) error control and mesh adaptation.

We follow the paradigm of reconstruction-based a posteriori error estimates pre-
sented in [9]: A suitable reconstruction of the numerical solution is interpreted as
the exact solution to a perturbed version of the system of hyperbolic conservation
laws, where the perturbation – called “residual” – is computable. Then, a stability
theory for hyperbolic conservation laws is used in order to bound the difference be-
tween the exact solution and the reconstruction of the numerical solution in terms
of the residual. In this context, one crucial feature of a “suitable” reconstruction
is that the reconstruction is an element of a suitable set of functions such that the
stability theory can be applied.

In our recent manuscript [6], we present results based on stability results ob-
tained by Bressan, Chiri and Shen in [1] that relate the L∞(0, T ;L1(R))-norm
of the error to the W−1,1([0, T ] × R)-norm of the residual – provided the to-
tal variation and the total oscillation of the numerical solution are sufficiently
small. Our main contribution is to have found a way to actually compute the
W−1,1([0, T ] × R)-norm of the residual locally, i.e. on space-time cells. In con-
trast, in [1], it was a priori shown for a variety of schemes that the global–in–space
residual decays with a certain rate with respect to the mesh width. Being able to
compute norms of residuals locally pavess the way for mesh adaptation based on
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residual equi-distribution. To be more precise, the localization of the residual is
achieved by introducing numerical fluxes in the definition of local residuals such
that their contributions vanish when local residuals are added in order to obtain
global residuals. We compute dual norms of residuals, by exploiting the fact that
the residuals live in a rather low dimensional space so that it is sufficient to test
with test functions from another low dimensional space. We make this rigorous
by introducing a specifically designed projection operator.

A specific challenge of the stability estimates from [1] is that these require
us to decompose the computational domain into trapezoids distinguishing be-
tween trapezoids that contain (sufficiently strong and separated) discontinuities
and those that do not. We achieve this by multiresolution analysis techniques
that enable us to identify discontinuities of any prescribed strength in a reliable
way. Additionally, Hartens prediction strategy provides a heuristic to detect shock
formation in presumably smooth parts of the domain, [8].

In another recent manuscript, [5], we derive a posteriori error estimates based
on novel quantitative stability estimates that extend the theory of shifts, and in
particular, the framework for proving stability developed by Krupa and Vasseur [7].
This is the first time the theory of shifts has been used for quantitative estimates.
This is made possible by linking shifts to relative entropy dissipation so that we
obtain computable upper bounds for the sizes of shifts. Although we only consider
scalar problems in [5] we provide a framework that we believe can be extended
to also cover systems. Indeed, we work entirely within the context of the theory
of shifts and a-contraction, techniques that can be extended to systems as can be
seen in the recent publication [2]. This is possible since the theory of shifts relies
on only one entropy.

In a certain sense, our approach is close to the one pursued in [3] and [4] where
Lipschitz continuous reconstructions of the numerical solution were computed and
the relative entropy framework was used to bound the L∞(0, T ;L2(R))-norm of the
error by the L1(0, T ;L2(R))-norm of the residual. The results in [5] significantly
improve upon those in [3] and [4] as they provide an estimator that is convergent
post shock formation. This is closely linked with the fact that the theory of shifts
can consider solutions from a broader class than the original weak-strong theory
based on relative entropy. In particular, the theory of shifts is not restricted to
studying the stability of a smooth solution ū among the class of weak solutions u,
but can allow for arbitrarily many shocks to exist in the otherwise smooth solution
ū. Moreover, the theory of shifts and a-contraction have no small-data limitations,
and are able to treat large shocks. Thus, we hope that the results from [5] can
be extended in such a way that a posteriori stability of large-data solutions to
hyperbolic systems becomes available.

However, a posteriori error estimates based on the theory of shifts come with
a certain cost. As mentioned above, the theory of shifts allows us to generalize
the relative entropy theory to allow for shocks in an otherwise smooth solution
ū. However, to achieve this, it must allow for the discontinuities in ū to move
somewhat unpredictably, not necessarily following the Rankine-Hugoniot jump
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condition. Due to this uncertainty of discontinuity positions, we need to numer-
ically simulate extensions for each continuous piece of ū. These extensions are
global in space and time. Therefore, instead of solving one initial value problem
numerically we need to solve as many initial value problems as there are discon-
tinuities in the initial data. In addition, we have to track approximate positions
and position error bounds for each discontinuity in order to have control on which
numerical solution might be revealed where and when. This is a significant addi-
tional computational load but it is somewhat mitigated by the fact that all the
individual solutions will remain smooth so that we may use high order numerical
schemes without stabilization. For each numerical solution, we use reconstructions
as described in [3] and [4] that lead to residuals that scale optimally with mesh
width for smooth solutions (and for certain classes of numerical fluxes). By com-
bining relative entropy estimates in the smooth regions with control on the error
of discontinuity positions we can, overall, control the L∞(0, T ;L2(R))-norm of the
error in terms of the L1(0, T ;L2(R))-norms of the residuals.
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Towards the Development of Fully Discrete Active Flux Methods

Christiane Helzel

(joint work with Erik Chudzik, Yannick Kiechle, Donna Calhoun,
and Mária Lukáčová-Medvid’ová)

The Active Flux method is a finite volume method for hyperbolic conservation
laws which uses cell average values as well as point values as degrees of freedom.
The method was introduced by Eymann and Roe [5] and is in its simplest form,
i.e. for one-dimensional linear advection, equivalent to scheme V described in van
Leer’s influential paper from 1977.

The point values in Active Flux methods are typically located along the grid
cell boundaries and used both for the reconstruction as well as for the computation
of numerical fluxes. The numerical fluxes are typically computed using Simpson’s
rule. During the last years, Active Flux methods have been developed using either
a method of lines approach [1, 2] or a fully discrete approach [5, 8, 9]. A common
feature of both approaches is that the governing equations are used twice, once
in characteristic form to evolve the point values and once in conservative form to
update the cell average values.

Our current work, which was presented at the workshop, is concerned with the
further development of fully discrete Active Flux methods. Klingenberg presented
recent work of his group related to semi-discrete Active Flux methods which use
a method of lines approach. Fully discrete methods use a compact stencil in space
as well as time. This leads to methods which use as little information as possible
outside the true domain of dependence. Roe [8] pointed out that such methods
produce accurate results even on coarse grids.

In fully discrete Active Flux methods, the point values are evolved in time using
truly multi-dimensional evolution operators. For linear advection and acoustics ex-
act evolution operators are known and have been used in one- and two-dimensional
Active Flux methods. For nonlinear scalar hyperbolic problems characteristic the-
ory can be used to evolve the point values. As an example we recently developed an
Active Flux method for the Vlasov-Poisson system [6]. For higher-dimensional ki-
netic equations accuracy on coarse grids is an important property and thus Active
Flux methods are interesting candidates. For more complex hyperbolic systems ex-
act evolution operators are in general not available. We therefore used the method
of bicharacteristics [7] to obtain truly multi-dimensional approximative evolution
operators. Our recent results, which were presented in the talk, are described in
[3]. Furthermore, we recently developed Cartesian grid Active Flux methods for
adaptively refined grids [4] that make use of the compact stencil.
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Global existence of dissipative solutions to the Camassa–Holm
equation with transport noise

Helge Holden

(joint work with Luca Galimberti, Kenneth H. Karlsen, Peter H. C. Pang)

We consider the nonlinear stochastic partial differential equation that equals the
Camassa–Holm equation perturbed by a convective, position-dependent, noise
term. Specifically, we study the Cauchy problem for

(1)
0 = du+

[
u ∂xu+ ∂xP

]
dt+ σ∂xu ◦ dW,

− ∂2
xxP + P = u2 +

1

2
|∂xu|2 , for (t, x) ∈ (0, T )× S

1,

where S1 = R/(2πZ) is the 1D torus (circle), T is a positive final time, σ =
σ(x) ∈ W 2,∞(S1) is a position-dependent noise function, and W is a 1D Wiener
process defined on a standard filtred probability space S =

(
Ω,F , {Ft}t∈[0,T ],P

)
.

Formally, by the Itô–Stratonovich conversion formula, the Stratonovich differential
σ ∂xu ◦ dW in (1), normally denoted as a gradient, transport or convection noise
term, can be expanded into − 1

2σ(x)∂x (σ(x)∂xu) dt+σ(x)∂xu dW . Moreover, the
elliptic equation for P can be solved to yield

(2) P = P [u] := K ∗
(
u2 +

1

2
|∂xu|2

)
, K(x) =

cosh
(
x− 2π int

(
x
2π

)
− π

)

2 sinh(π)
,

where K is the Green’s function of 1 − ∂2
xx on S1, int(x) is the integer part of x,

and ∗ means convolution in x. Consequently, (1) takes the form of the nonlinear
nonlocal stochastic partial differential equation

(3)

0 = du+
[
u ∂xu+ ∂xP

]
dt− 1

2
σ∂x (σ∂xu) dt+ σ∂xu dW,

P = K ∗
(
u2 +

1

2
|∂xu|2

)
.

The deterministic Camassa–Holm equation, studied in [1], is obtained by setting
σ = 0.
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We start by establishing existence of solutions for a regularized version (1) by
adding a viscous term ε∂2

xxuε. Thus we study

(4)

0 = duε +
[
uε ∂xuε + ∂xPε − ε∂2

xxuε

]
dt− 1

2
σε∂x (σε∂xuε) dt+ σε∂xuε dW,

Pε = P [uε] := K ∗
(
u2
ε +

1

2
|∂xuε|2

)
.

This is carefully analyzed in [3].
Subsequently, we analyze the limit as ε → 0, and we obtain the following result.

The detailed analysis can be found in [2].

Theorem 6. Let σ ∈ W 2,∞(S1), and fix some p0 > 4. For any initial probability
distribution Λ supported on H1(S1), satisfyingˆ

H1(S1)

‖v‖p0

H1(S1)Λ(dv) < ∞,

there exists a dissipative weak martingale solution
(
S̃, ũ, W̃

)
to the stochastic CH

equation (3) with random initial data ũ0 distributed according to Λ (ũ0 ∼ Λ),

where S̃ =
(
Ω̃, F̃ , {F̃t}t∈[0,T ], P̃

)
is a stochastic basis. Besides, the following energy

inequality holds P̃–a.s., for a.e. s ∈ [0, T ) and every t with s < t ≤ T ,

(5)

ˆ
S1

(
ũ2 + |∂xũ|2

)
dx

∣∣∣∣
t

s

≤
ˆ t

s

ˆ
S1

(1
4
∂2
xxσ

2ũ2 +

(
|∂xσ|2 −

1

4
∂2
xxσ

2

)
|∂xũ|2

)
dxdt′

+

ˆ t

s

ˆ
S1

∂xσ
(
ũ2 − |∂xũ|2

)
dxdW̃ .

Specifically, it holds for s = 0 and any t ∈ (0, T ], with
´
S1

(
ũ2 + |∂xũ|2

)
dx
∣∣
s=0

replaced by
´
S1

(
ũ2
0 + |∂xũ0|2

)
dx.

The talk is based on the two papers [3, 2]. Further references can be found in
the cited papers.
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A new genuinely multi-dimensional structure preserving numerical
method for compressible flow equations

Christian Klingenberg

Multi-dimensional conservation laws possess many more phenomena than their
one-dimensional counterparts. Examples are vortices in turbulent flow and also low
Mach number flow, where the flow is almost incompressible (a solenoidal velocity
is multi-dimensional).

We propose a new hybrid finite element - finite volume method (based on [2]),
that achieves upwinding by locally evolving continuous data, instead of solving
Riemann problems. In particular cell averages of the solution and its moments are
updated together with point values of the solution in a semi-discrete fashion. The
original Active Flux method (see [3]) had been presented as a fully discrete third
order method, that required an exact evolution operator for the point value up-
dates. For nonlinear problems such an operator is difficult to obtain, in particular
for multiple space dimensions. The new approach makes it possible to apply the
Active Flux method to any system of multi-dimensional conservation laws, and
this method now is of arbitrary high order.

As a first step, in [1] the new generalized Active Flux method is presented in
two space dimension for the compressible Euler equations, it is of third order. It
includes a limiting strategy.

It can be proven that this new scheme, when applied to the linear hyperbolic
equations, is asymptotic preserving for Mach number going to zero, maintains vor-
tices and also preserves stationary states. These properties are shown to hold in
numerical experiments when applied to the non-linear compressible Euler equa-
tions. In upcoming work we will present an arbitrary high order version of [1].

This is joint work among others with Wasilij Barsukow and Lisa Lechner (Würz-
burg).
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Stochastic NSE with Lp data

Igor Kukavica

(joint work with Fanhui Xu, Fei Wang, and Mohammed Ziane)

For the stochastic Navier-Stokes equations with a multiplicative white noise on
Ω = T

3 or Ω = R
3, we prove that there exists a unique strong solution locally in

time when the initial datum belongs to Lp(Ω;Lp) for p > 3. We also prove the
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existence of global strong solutions for small data. The local existence result also
holds in Rn. All results are joint with Fanhui Xu (Harvard). Also, some are done
in collaboration with Fei Wang (Shanghai) and M. Ziane (USC).

Central-upwind schemes for hyperbolic system with uncertainties

Alexander Kurganov

(joint work with Alina Chertock, Michael Herty, Mária Lukáčová-Medvid’ová)

We study nonlinear hyperbolic systems with uncertainties. In the one-dimensional
case, such systems of balance laws read as

Ut + F (U)x = S(U , x, ξ),

where x is the spatial variable, t is time, ξ is a random variable, U = U(x, t, ξ)
is the unknown random vector function, F is the flux, and S is the source term.
The uncertainties may appear in the system parameters as well as in the initial
and/or boundary data due to empirical approximations or measuring errors.

Nonlinear hyperbolic systems with uncertainties appear in a wide variety of
applications. Quantifying the uncertainties is important since it helps to conduct
sensitivity analysis and provide guidance for improving the models.

In recent years, a wide variety of uncertainty quantification methods for non-
linear hyperbolic systems has been proposed and investigated. One of the popular
class methods employ Monte Carlo-type simulations, which are robust, but not
very efficient due to a possibly large number of realizations required. In addition
to the Monte Carlo methods, a widely used approach for random PDEs is the
generalized polynomial chaos (gPC), where stochastic processes are represented in
terms of orthogonal polynomials series of random variables. In principle, there are
two distinct gPC approaches: intrusive and non-intrusive ones. In non-intrusive
algorithms, like stochastic collocation methods, one seeks to satisfy the govern-
ing equations at a discrete set of points in the random space and then use global
interpolation and quadrature rules to numerically evaluate statistical moments.
Therefore, in the stochastic collocation approach, as well as in the Monte-Carlo
methods, one can use numerical methods designed for the corresponding deter-
ministic systems.

In the case of an intrusive approach, like stochastic Galerkin (SG) methods,
gPC expansions are substituted into the governing equations and projected by a
Galerkin approximation to obtain deterministic equations for the expansion co-
efficients. Solving the coefficient equations gives the stochastic moments of the
random solution. The equations for the expansion coefficients are, in general, non-
linear and coupled. Nevertheless, the gPC methods are typically more accurate
than their non-intrusive counterparts when the same number of modes in the gPC
expansion is used and therefore a higher accuracy of the numerical solution can
be achieved with a lower degree of the gPC expansion.

Development and implementation of the SG methods for nonlinear hyperbolic
PDEs are, however, especially challenging due to a possible loss of hyperbolicity.
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This is not the case for linear hyperbolic systems and kinetic equations. In the
scalar case several approaches exist to prevent this loss. In the case of isentropic
Euler equations and full Euler equations a transformation to either Roe or entropy
variables has proven successful to circumvent the loss of hyperbolicity. In the case
of the Saint-Venant system of shallow water equations, the hyperbolicity may be
enforced by ensuring that the computed water depth is nonnegative.

However, neither of these approaches can be directly extended to the studied
hyperbolic system of balance laws since they may not lead to a WB and positivity
preserving method.

We consider the Saint-Venant system of shallow water equations, which is widely
used for modeling flows in rivers, lakes and coastal areas, as well as in models
emerging in oceanography and atmospheric sciences.

In the one-dimensional case, the studied system reads as

(1)





ht + qx = 0,

qt +
(
hu2 +

g

2
h2
)
x
= −ghZx,

where the water depth h, mean velocity u, and water discharge q := hu are func-
tions of x, t, and ξ. In the current setting, the bottom topography Z(x, ξ) is a
random field independent of time and g is the acceleration due to gravity. The
system (1) is considered subject to random initial data

h(x, 0, ξ) = h0(x, ξ), q(x, 0, ξ) = q0(ξ).

It is well-known that the random shallow water system (1) is hyperbolic as
long as h(x, t, ξ) ≥ 0. It is also easy to show that (1) admits a family of smooth
steady-state solutions

(2) q(x, ξ) = C1(ξ),
u2(x, ξ)

2
+ g
[
h(x, ξ) + Z(x, ξ)

]
= C2(ξ),

Among all of the solutions in (2), the simplest “lake at rest” equilibria satisfying

(3) q(x, ξ) ≡ 0, w(x, ξ) := h(x, ξ) + Z(x, ξ) = C2(ξ)

are often physically relevant since in many practical situations the water waves
can be viewed as small perturbations of a “lake at rest” state. Capturing such
waves numerically is a challenging task even in the deterministic case, because
the magnitude of these perturbations may be smaller than the size of the trunca-
tion error, especially when a practically affordable course mesh is used. In order
to overcome this difficulty one needs to develop a so-called well-balanced (WB)
schemes, which are capable of exactly preserving the corresponding deterministic
version of the steady-states solutions (2) (or at least of the “lake at rest” states
(3)) at the discrete level. An additional difficulty arises due to the fact that the
water depth must remain non-negative during the evolution. In the deterministic
case, a number of positivity preserving schemes were proposed. Development of
WB and especially positivity preserving numerical methods for the random system
is even more challenging.
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We implement the gPC-SG method for the Saint-Venant system (1) with uncer-
tainty. We numerically solve the system for the gPC coefficients by a semi-discrete
second-order central-upwind scheme. The choice of the central-upwind scheme is
motivated by the fact that this scheme is Riemann-problem-solver-free and thus
can be applied as a “back-box solver” to any hyperbolic system as long as the
largest and smallest eigenvalues of its Jacobian can be estimated. The system for
the gPC coefficients is a 2(K + 1) × 2(K + 1) system as we use K + 1 terms in
each of the gPC expansions

U(x, t, ξ) ≈ UK(x, t, ξ) =
K∑

i=0

Ûi(x, t)Φi(ξ).

Here, {Φi(ξ)}Ki=0 are orthonormal polynomials of degree up to K ≥ 1. The choice
of the polynomials depends on the distribution function of ξ. For instance, a
Gaussian distribution defines the Hermite polynomials; a uniform distribution
defines the Legendre polynomials, etc.

As mentioned above, the main attractive feature of the gPC-SG method is its
spectral accuracy in the stochastic space, which allows one to use relatively small
number of gPC coefficients. This makes the central-upwind scheme plausible as the
eigenvalues of the Jacobian can be efficiently computed numerically. In addition,
we ensure that the developed central-upwind scheme is WB in the sense it is
capable of exactly preserve the “lake at rest” steady states (3) by extending the
techniques developed in the deterministic case.

Implementing the WB central-upwind scheme may be, however, not enough for
computing a reliable solution as negative values of the water depth may appear and
the method then fails. The latter is related to the emergence of spurious oscillations
which may be generated during the time evolution of the gPC coefficients. In order
to control these oscillations, one may apply filters. This, however, can yield the
loss of statistical information on the solution if the filtering is used to damp large
magnitude oscillations, for instance, in the case of the Gibbs phenomenon. We
propose another approach for controlling the nonnegativity of the water depth
using the “draining timestep” technique originally developed in the deterministic
case. In addition, we use the positivity correction procedure from to ensure the
non-negativity of the water depth mean, which is the zeroth coefficient in the gPC
expansion of h.

We have tested the developed gPC-SG method on a number of challenging
numerical examples, in which we demonstrate both WB and positivity preserving
properties. Though in some of the considered benchmarks, we obtain accurate
mean and standard deviation of the stochastic solution, we have realized that
when strong dicontinuities and almost dry areas are present, small oscillations
appearing near the discontinuities propagate into the stochastic field and cause
quite significant oscillations in both spatial and random spaces. In our numerical
examples, we demonstrate that enforcing the nonnegativity of the computed water
depth (and thus the hyperbolicity!) does not guarantee the lack of oscillations
attributed to the Gibbs phenomenon. This demonstrates the limitations in the
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applicability of the stochastic Galerkin method to the problems with discontinuous
solutions.

An arbitrarily high-order well-balanced active flux like method for
shallow water models

Yongle Liu

(joint work with Rémi Abgrall, Wasilij Barsukow)

I will introduce an arbitrarily high-order accurate fully well-balanced numerical
method for the one-dimensional shallow water models, including the Saint-Venant
systems of equations and blood flow model in an artery. The developed method is
based on a continuous representation of the solution and a natural combination of
the conservative and primitive formulations of the studied PDEs [1]. The degrees
of freedom are defined as point values at cell interfaces and moments of the con-
servative variables inside the cell [2, 3]. The well-balanced property, in the sense
that capable of exactly preserving both the zero and non-zero velocity equilibria, is
achieved by a well-balanced approximation of the source term in the conservative
formulation and a well-balanced residual computation in the primitive formula-
tion. Several numerical tests are shown to prove its well-balanced and high-order
accuracy properties.
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A node-conservative cell-centered Finite Volume method for solving
multidimensional Euler equations over unstructured grids

Pierre-Henri Maire

(joint work with Vincent Delmas, Raphaël Loubère)

The numerical simulation of hypersonic flows remains a domain of primary impor-
tance not only to design hypersonic flight vehicles but also to assess their aerody-
namic and aerothermal characteristics [1]. The hypersonic regime is characterized
by very strong shock waves and rarefaction ones, among other things, and is thus
particularly demanding in terms of robustness and accuracy with respect to the
employed numerical methods. Here, we shall focus more precisely on the numerical
discretization of the inviscid part of the flow which is governed by the compressible
Euler equations. Since its introduction at the beginning of the eighties, the shock
capturing Finite Volume (FV) method has become the cornerstone of any modern



604 Oberwolfach Report 10/2024

aerodynamics code. A quite complete panorama of this classical approach might
be found for instance into [10]. The cell-centered FV method consists in writing
the integral formulation of the conservation laws of mass, momentum and total
energy over each cell of the computational grid. The primary unknowns are the
cell-averaged values of mass, momentum and total energy. For a given cell, the
time increment of the cell-averaged value results from the summation of the nor-
mal fluxes located at each cell face. In this classical framework, the normal flux
approximation is obtained in a unique manner at each face through the use of an
approximate Riemann solver such as the Roe one [9], which is probably one of the
most popular among the available ones [10]. Even if this type of method is char-
acterized by a positive return of experience it is also admitted that it is plagued
by several flaws such as the so-called odd-even decoupling and carbuncle numeri-
cal instabilities, refer to [7, 8]. There is thus still a strong need to design robust
and accurate Finite Volume methods able to cope with production engineering
simulations of hypersonic flows on any type of grids.

As quoted by Candler and his co-authors [2]: There remain a number of outstand-
ing numerical issues in the simulation of hypersonic flows. A particular difficulty
is associated with the simulation of high Mach number blunt capsule geometries
that have a very large region of subsonic flow near the stagnation point. This class
of flow magnifies numerical error generated at the strong shock wave; this error
then accumulates in the stagnation region and corrupts the solution. The main
remedies for this problems are:

• The grid must be aligned with the bow shock.
• Eigenvalue limiters must be used judiciously; other forms of dissipation
can also be used to counter-act the error generated by the strong gradients
across the bow shock.

None of these “fixes” actually solve the underlying problem, rather they reduce its
magnitude and mask its effects with additional dissipation. Clearly, fundamental
work needs to be done to reduce the sensitivity of the solution to the grid and specific
details of the numerical method. The present work is an attempt to answer to
this difficult question. This presentation describes a novel subface flux-based FV
method for discretizing multi-dimensional compressible Euler equations on general
unstructured grids [5]. This novel numerical method relies on the partition of the
cell interfaces into subfaces. The subface flux numerical approximation stems
from the notion of simple Riemann solver introduced in the seminal work [4]. The
approximate Riemann solver utilized in this work is constructed by decomposing
the intermediate fluxes into a convection part plus a pressure part. This peculiar
splitting of the numerical flux allows to define the wave speeds of this Riemann
solver in a very natural manner contrarily to what is done for the HLLC solver
[10]. Moreover, it is worth noting that this decomposition of the intermediate flux
implies that the present Riemann solver has an underlying Lagrangian structure
through a discrete Lagrange-to-Euler mapping introduced in [4]. This fundamental
feature ensures the transfer of good properties such as positivity preservation and
entropy stability [3]. The subface flux computation relies not only on the mean
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values of the cells located on both sides of the subface by means of the foregoing
approximate Riemann solver but also on the velocity of the node from which the
subface emanates. The normal component of this nodal velocity with respect to the
unit normal of the subface might be viewed as a parameter in the aforementioned
approximate Riemann solver. Thus, the interface flux is not uniquely defined and
the Finite Volume method is not conservative anymore in the classical sense. The
conservation of total momentum and energy is obtained enforcing a local balance at
each node which writes under the form of a vectorial equation, the solution of which
provides the expression of the nodal velocity. The resulting numerical method is
able to guarantee the positivity of mass density and specific energy while ensuring
entropy stability provided an explicit time step condition is satisfied. We have thus
obtained a novel multi-dimensional conservative and entropy-stable FV scheme
wherein the numerical fluxes are computed through a nodal solver, which is exactly
the one designed for compressible Lagrangian hydrodynamics [6]. The robustness
and the accuracy of this novel FV scheme are assessed through various numerical
tests run on various unstructured grids. This novel Finite Volume methods appears
to be insensitive to the numerical pathologies (odd-even decoupling, carbuncle)
occurring when utilizing the classical shock capturing methods such as the Roe
or HLLC schemes. We plan to utilize this novel FV method as a building block
for the FV discretization of the Navier-Stokes equations on unstructured grids.
It remains also to investigate the theoretical properties of this FV discretization
to better understand its insensitivity to the carbuncle phenomenon, topic which
remains a subject of active research.
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Efficient iterative arbitrary high order methods: an adaptive bridge
between low and high order

Lorenzo Micalizzi

(joint work with Davide Torlo, Walter Boscheri, Maria Han Veiga)

The focus of the talk is an efficient modification of general families of arbitrary
high order numerical methods, characterized by an iterative procedure gaining one
order of accuracy at each iteration, e.g., DeC and ADER methods. In particular,
the modification consists in introducing intermediate embeddings between the it-
erations in order to increase the accuracy of the discretization together with the
order of accuracy along the iterative procedure. The modified methods have sev-
eral advantages, among which: they are cheaper than the original ones and they
have a natural adaptive character, which allows to easily prescribe p-adaptivity. In
the talk, the application of the proposed modification to several different schemes
will be discussed. More in detail: to ADER-DG for hyperbolic PDEs [2], to ADER
methods for ODEs with stability analysis and applications to hyperbolic PDEs via
the method of lines [3], and to DeC methods for ODEs with stability analysis and
applications to mass matrix-free continuous Galerkin formulations for hyperbolic
PDEs [1].
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High-Order Moment Scaling of Near-Wall Turbulence for Arbitrary
Velocities: An Extended Symmetry Approach

Martin Oberlack

(joint work with Simon Görtz, Jonathan Laux, Sergio Hoyas)

Introduction. Presently, we derive and validate scaling laws for arbitrary tur-
bulent one-point velocity moments in wall-bounded flows, focusing on moments
from spanwise and wall-normal velocity components. The scaling laws are derived
using a symmetry analysis of the underlying set of Navier-Stokes equations from
which the infinite moment hierarchy is derived and are therefore first principle-
based. They are subsequently validated using new direct numerical simulation
(DNS) data, revealing a hidden Reynolds number dependency and the fact that
scaling is determined by the lowest order moment. Consistency with DNS data
confirms the validity of the scaling laws even for sensitive fluctuating moments.

Derivation of Scaling Laws. The subsequent analysis is based on the Navier-
Stokes equations,

(1)
∂Ui

∂t
+ Uk

∂Ui

∂xk
+

∂P

∂xi
− ν

∂2Ui

∂xk∂xk
= 0 ,

∂Uk

∂xk
= 0,

where t ∈ R+, x ∈ R3, U = U(x, t), P = P (x, t), and ν represent time, position
vector, instantaneous velocity vector, pressure, and kinematic viscosity, respec-
tively. In contrast to Reynolds’ decomposition, i.e. Uk = Ūk + uk, where (·)
and uk are respectively mean and fluctuation quantities, we consider statistical
moments based on the instantaneous flow quantities. Consequently, the generic
multipoint velocity moments in multi index notation are defined by

(2) Hi{n}
= Hi(1)...i(n)

= Ui(1)(x(1), t) · . . . · Ui(n)
(x(n), t) .

With that definition and analogous to [8], the multipoint moment equation
(MPME) for the velocity yields
(3)

∂Hi{n}

∂t
+

n∑

l=1

[
∂Hi{n+1}[i(n) 7→k(l)][x(n) 7→ x(l)]

∂xk(l)

+
∂Ii{n−1}[l]

∂xi(l)

− ν
∂2Hi{n}

∂xk(l)
∂xk(l)

]
= 0.

The moment Ii{n−1}[l] refers to the pressure-velocity correlation and correlates the

pressure at l-th. point with n− 1 velocities [10, 11].
In the following, we carry out a symmetry analysis, based on the Navier-Stokes

equation (1) and the infinite dimensional system (3). Details on the symmetry
theory for generic multipoint moments are presented in depth in the planned
publication by [1]. In the current work we aim to compare the theory with
new DNS data, why we restrict the consideration to on one-point statistics, i.e.
x = x(1) = x(2) = . . . = x(n). The corresponding one-point moments are ac-

cordingly denoted by H
(0)
i{n}

. As the theory was successfully presented in [8] and
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validated in [3] for mean velocity moments composed of U1, we focus in the cur-
rent work on the nth moments of U2 and U3, i.e. U[i], where the square bracket
indicates that no summation is applied.

Very briefly, let us introduce the idea of a form-invariant Lie symmetry trans-
formation x∗ = φ(x,y; a), y∗ = ψ(x,y; a), leaving a differential equation F = 0
unchanged. Globally, this means that
(4)

F
(
x,y,y(1),y(2), . . . ,y(p)

)
= 0 ⇔ F

(
x∗,y∗,y∗(1),y∗(2), . . . ,y∗(p)

)
= 0,

with the pth derivatives of y is defined as y(p).
The symmetry transformations of the system (3) known so far are divided into

(i) those inherited from the Navier-Stokes equations (1) to (3) and (ii) those based
on the statistical treatment which are found only in (3) and are therefore called
statistical symmetries.

Of the nine symmetries of the inviscid Navier-Stokes equations (1), i.e. the
Euler equations, the combined space-time scaling symmetry, including scaling of
pressure and velocity, transforms for in the moment frame to
(5)

T̄Sx/St : t∗ = eaStt, x∗
(i)

= eaSxx(i), Ū
∗
= eaSx−aStŪ

∗
,H∗

{n} = en(aSx−aSt)H{n}.

The translation symmetry of space is simply preserved in the moment frame,

(6) T̄xi : t∗ = t, x∗
(i)

= x(i) + ax, Ū
∗
= Ū

∗
, H∗

{n} = H{n}.

The proof of form invariance is easily obtained by substituting (5) and (6) into
(3).

As mentioned before, different scalings in space and time require vanishing of
the viscous term. Therefore, caution is required at this point, because in principle,
the Navier-Stokes equation (1) admits only one scaling symmetry. Only the Euler
equations admit the two scaling symmetries (5). A detailed explanation why
preservation of both scaling symmetries and consideration of the asymptotic limit
ν → 0+ is reasonable for the construction of scaling laws is presented in [1].
There, we carry out a boundary layer-like singular asymptotics in distance space
r(i) = x(i) − x(0). The small expansion parameter is the Kolmogorov length scale
η determining the small scales where viscosity and dissipation act. This expansion
was first derived in [9] for isotropic turbulence and the two-point moment equation.
Subsequently, the MPME decompose into two equations. The large scales, much
larger than η, are simply determined by equation (3) with ν = 0. Therefore,
scaling laws for moments even of high order are based on this equation why it
is, together with its special scaling symmetry (5), the basis for the subsequent
analyses. The second equation stemming from the asymptotic analysis is similar
to the classical boundary layer equation. It acts on small scales on the order of η
where viscosity and dissipation are dominant.

As mentioned above, the statistical symmetries play a central role in the deriva-
tion of scaling laws. They were first derived in [10] and in [13] their physical
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meaning were pointed out. The translation symmetry in the moments

(7) T̄ ′
{n} : t∗ = t , x∗

(i) = x(i) , Ū
∗
= Ū + a , H

∗
{n} = H{n} + a

H
{n}

conforms to non-gaussianity. The statistical scaling symmetry in the moments
only

(8) T̄ ′
s : t∗ = t , x∗

(i) = x(i) , Ū
∗
= eaSsŪ , H

∗
{n} = eaSsH{n} ,

can be traced back to intermittency. It stems from the linearity of the infinite
system (3).

Finally for the consideration of plane shear flows as it is done in this work, the
MPME (3) admits additional symmetries. With x2 the wall-normal coordinate it
allows translation of moments with a linear term in x2,

(9) T̄ ′
L : t∗ = t , x∗

(i)
= x(i) , Ū

∗
= Ū , H

∗
{n} = H{n} + x2a

L
{n} ,

This symmetry has already been discovered in [12] and is further specified in [1].
As we will see later, it leads to a linear correction of the scaling laws in the log
region of the channel flow. For the core region, this symmetry is broken as it is
inconsistent with the requirement of scaling symmetric to the center of the channel.
We see later that the prefactor of the linear term is very small for both the U2 and
U3 moments in the logarithmic region, but by no means negligible.

With this, invariant solutions for Un
[i] for i = 2, 3 and n ≥ 2 are derived from the

discussed symmetries, rather similar to Un
1 in [8]. Also in this work, we restrict

ourselves to one-point statistics in comparison with the DNS data. One point
moments arise as special case of the complete set of invariant solution for arbitrary
multi-point moments H{n} derived in [1]. There, also the symmetry reduction of
the MPME (3) is proven. We combine the groups (5), (7), (8) and (9), which gives
us the global form of the transformation,

T̄ : x∗
2 = eaSxx2, U1

∗
= eaSx−aSt+aSsU1, ,(10)

U2
[i]

∗
= e2(aSx−aSt)+aSsU2

[i] + x2a
L
[i]{2}

+ aH[i]{2} , . . . ,

Un
[i]

∗
= en(aSx−aSt)+aSsUn

[i] + x2a
L
[i]{n}

+ aH[i]{n}

Here, aSx, aSt, and aSs are the parameters of the combined three-parameter scaling
group. The first moment of i = 2, 3 does not appear, since there is no mean flow
in these directions. The characteristic system, describing invariant solutions of the
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spanwise and wall-normal velocity moments, reads

(11)
dx2

aSxx2 + ax2

=
dU1

[aSx − aSt + aSs]U1 + aH[1]{1}

= . . .

dU2
[i]

[2(aSx − aSt) + aSs]U2
[i] + aH[i]{2}

+ x2aL[i]{2}

= . . .

=
dUn

[i]

[n(aSx − aSt) + aSs]Un
[i] + aH[i]{n}

+ x2aL[i]{n}

.

For details on deriving the characteristic system from the global form of transfor-
mations, we refer to [1].

In the context of integrating (11), we need to distinguish two cases, i.e. the
solutions corresponding to the logarithmic and the center region of the channel
flow [8]. Depending on where scaling laws are considered, different parameters
turn out to be symmetry breaking, i.e. restricting the group parameters. The piv-
otal parameter governing the logarithmic wall-near region is the wall shear stress
velocity uτ =

√
τw/ρ, where τw is the wall shear stress, and ρ represents density.

uτ subsequently forms the exclusive near-wall velocity scale. Consequently, for a
prescribed specific value, adherence to the scaling of the mean velocity as dictated
by Eq.(10), the wall shear stress velocity leads to the symmetry-breaking and,
hence, aSx − aSt + aSs = 0. Consequently, the integration of Eq.(11) under this
restriction leads to a reduced parameter dependence for the scaling laws in the
logarithmic region due to integration of the first two terms in (11), and the higher
moments follow from the first and further terms.

Un
[i] = C̃[i]{n}

(
x2 +

ax2

aSx

)ω(n−1)

+
aL[i]{n}

aSx(1 + ω(1− n))
x2

+
aH[i]{n}

(1 + ω(1− n))− aL[i]{n}

ax2

aSx

aSxω(1− n)(1 + ω(1− n))
.(12)

Here, ω = 1 − aSt/aSx is a universal constant, and C̃n,[i] emerges as constant of
integration. Similar to the results in [8] for the U1 moments, we find three key
results: (i) moments n ≥ 2 have a power law behavior, where (ii) all nth-order
moments are linked with each other by the exponent ω, (iii) the power law behavior
is the same for all three Ui components, which will later clearly be proven by the
DNS data.

For the scaling laws in the channel core region, as mentioned above, the symme-
try of the flow with respect to the channel center is symmetry breaking, i.e. aL{n} =

0. Subsequently, in eq. (11), the factors (aSx − aSt + aSs), . . . , n(aSx − aSt) + aSs

are all non-zero. This again gives us power-laws for all moments n, including the
mean flow component of U1, i.e. the first moment. We further find that we can
summarize aSx, aSt, and aSs as two free parameters, since they only occur as
ratios. From the exponents for the first two moments, σ1 and σ2, the scaling laws
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for the channel core region follow as

(13) Un
[i] = C̃′

[i]{n}

(
x2 +

ax2

aSx

)n(σ2−σ1)+2σ1−σ2

−
aH[i]{n}

n(aSx − aSt) + aSs
,

Again, all C̃′ are constants of integration, and the group parameters are summa-
rized as σ1 = 1 − aSt/aSx + aSs/aSx and σ2 = 2(1 − aSt/aSx) + aSs/aSx. As
can be seen from the scaling laws, the latter exponents of the first two moments
determine the exponent of all power laws for the higher order moments.

Comparison With DNS Data. The scaling laws (12) and (13) are in the fol-
lowing validated using new DNS data of a plane turbulent channel flow, with a
Reynolds number of Reτ = 104 using the code LISO with a grid of about 80 billion
points. For further details on this simulation, the reader is referred to [3], where,
however, for the current comparison, the length of the DNS was doubled again
compared to the aforementioned work. In addition to the validation presented in
[8], we will in the following validate the scaling laws for moments from velocity
components i = 2, 3. These are of special interest since no mean flow in this di-
rection exists. Therefore, in this case instantaneous moments are identical with
the fluctuating moments. In other words, the scaling laws derived in the previous
section hold for fluctuating as well as for instantaneous moments.

Validation in the logarithmic region. In the following, the wall normal coor-
dinate in the logarithmic region is denoted by y+, i.e. y+ = 0 defines the wall.
Accordingly, the scaling laws to be validated in the logarithmic region are given
by

Un
[i]

+
= C[i]{n}

(
y+ +A

)ω(n−1)
+B[i]{n}

+ L[i]{n}
y+, for n ≥ 2,(14)

where we have summarized the various constant group parameters appearing in
eq. (12). For a similar validation of the logarithmic law for the averaged mean
velocity, see [3] where the von Kármán constant a value was obtained to κ = 0.394.
It is subject of ongoing research whether the data below shows that Cn and Bn

result in a simple exponential function in n as already shown for the U1-moments
in [8].

Fig. 1a and Fig. 1b show the higher U2 and U3-moments for n = 2, 4, 6 in the
logarithmic layer. Therein, we find a comparison between the DNS data and the
fitted theoretical result (12). The power law scaling behavior is clearly visible by
the double logarithmic plotting. The universal scaling factor is chosen to ω = 0.1,
matching the DNS data and obtaining the best fit for both figures. This again
reveals that both moments obey the same scaling behavior.

The two key results of these fits are (i) an extremely good match of the power law
with the DNS data for all moments. Their power law scaling is solely determined
by the single parameter ω and (ii) the validity of the scaling laws in the log
law’s range of validity of y+ ≃ 400 . . .2500. This range of validity is obtained by
considering a power law indicator function analogous to the consideration in [8].
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Figure 1. Comparison of moments between theory (solid) and
DNS data at Reτ = 10000 in the range y+ ∈ [400, 2500] for U2

(a) and U3-moments (b) of order 2, 4, 6 in the logarithmic region.
The mentioned y+ range corresponds to the range of validity of
the log-law for the given Reynolds number as shown in [8].

Validation in the centre region. In the centre region of the channel, we use
the common way to formulate moments in deficit form. This is done by using a
shifted coordinate x2, with origin x2 = 0 on the channel center. First ideas on
a symmetry based power law similar to (13) in the centre of a channel flow were
formulated in [7]. Therein, the mean velocity was derived in deficit form, which is
in the current work used for arbitrary moments of Ui with i = 2, 3. Therefore, the
power law scaling (13) is transformed to the universal deficit form

Un
i

(0) − Un
i

un
τ

= C′
i,n

(x2

h

)n(σ2−σ1)+2σ1−σ2

(15)

The exponent (0) in Un
i

(0)
refers to the value of the moment in the centre of the

channel at x2 = 0 and, similar to Eq. (14), α′ and β′ subsume various constants
and are presumed to be universal in the core region.

In Fig. 2, we show the moments from the DNS at Reτ = 104 according to the
deficit form up to order n = 6. It is obvious that for a large range, the moments
show identical gradients, independent from the order n. This behavior is, according
to the scaling law (15), reachable if σ1 = σ2. Consistent with this, the parameters
in eq. (15) were fitted, namely to σ1 = 1.95 and σ2 = 1.94. Indeed, the fit of the
core moments here shows a larger relative deviation from the DNS data than for
the U1-moments in [8], which might be due to the extremely sensitive fluctuating
moments here. However, we argue that against this background eq. (15) represents
the scaling very well, which is further supported by it being an invariant solution
of the moment equations, as we show in [1].

Summing up, like the U1 moments, all U2 and U3 moments in the core region
scale with a single exponent which is independent of n, i.e. these moments clearly
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U
2

U
3 Theory

Figure 2. Comparison between theory (solid) and DNS data at
Reτ = 10000 for U2 and U3-moments of order 2, 4, 6 (from bottom
to top) in the core region.

admit strong anomalous scaling. This is accompanied by strongly intermittent
instantaneous velocities in the channel center, to which we will assign the initially
indeterminate velocity scale u∗. Regarding the symmetries in (5) shows that the
constant exponent for all velocity moments is accompanied by symmetry breaking

aSx = aSt.

Thus, the scaling of the instantaneous velocities in (5) is broken by the velocity
scale u∗ and the scaling of moments by the intermittency symmetry (8) alone
is preserved, leading to the observed anomalous scaling. Summing up, scaling
of moments in the channel center is fundamentally determined by the statistical
symmetries.

Reynolds number dependency. In [1] we show how viscosity and Reynolds
number affect the scaling laws via deriving an integral constraint for the con-
stants and group parameters in the scaling laws, which subsequently depend on
the Reynolds number. This integral constraint includes an integration over the
interface between logarithmic region and viscous sublayer. At this surface, values
of moments and pressure-velocity correlations are determined by viscous dissipa-
tion in the sublayer. This effect is carried through the logarithmic region up into
the core region, even though, according to the asymptotic expansion in [1], the
large structures are mainly determined by inviscid equations. Consequently, in
comparison to the logarithmic region, the Reynolds number dependency of the
parameters in the deficit law core region is significantly weaker than in the log
region, which is right next to the viscous sublayer. For reasons of shortness, the
analysis in the current work is restricted to the Reynolds number dependency of
the parameters in the logarithmic region. However, as we aim to compare the
coefficients for a broad number of Reynolds numbers, we are restricted to second
order U1 moments, since for these moments a large number of data sets exists.
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Figure 3. Values for scaling prefactor C[1]{2} from eq. (16) fitted

for Reτ = 180 . . .9.4 · 104

Recall that the scaling law for these moments in the log region is given by

U2
1

+
= C[1]{2}

(
y+ +A

)ω
+B[1]{2} + L[1]{2}y

+,(16)

admitting the same power law form as for higher U2 and U3 moments as given
in (14). It is to point out that the exponent ω = 0.1, determining the power law
behavior, is universal and the same for all velocities.
From the statement made above, we assume the Reynolds number dependency to
be hidden in C,A,B, L, which are in the following compared for different Reynolds
numbers. For the fits of (16), we used DNS data as well as experimental data.
The set of experimental data contains data from [4] measured at the Princeton
Superpipe for Reτ = 2000 . . .9.4 · 104 and [15] and [16] measured at the CICLoPE
facility of the University of Bologna for Reτ = 5200 . . .3.5 ·104. Fitted parameters
referring to experimental data are marked with a triangle . Regarding DNS data,
we used data from [2] in a Reynolds number range between Reτ = 180 . . .2000,
[6] at Reτ = 5200, [14] at Reτ = 8000 and DNS from [3] at Reτ = 104, 1.5 · 104.
Fitted parameters referring to DNS data are marked with a square . Note that
the fitting range, i.e. the range of y+ where the constants in the scaling law are
fitted, depends on the Reynolds number. This is quite intuitive as the logarithmic
region increases with increasing Reynolds number. For the sake of shortness, the
fitting range is not displayed here. Figs. 3-6 show the values for the parameters in
(16) displayed in semi-logarithmic form over different Reynolds numbers. The first
central result, universal for all parameters, is that all data points, regardless of the
source of the data, lie consistently on a line, tending to a constant value for high
Reynolds numbers. This indicates that from a certainly high Reynolds number,
the scaling and therefore the values of the coefficients is truly independent from
the Reynolds number. From fig. 4, we further find that the linear term in (16)
tends to zero for sufficiently high Reynolds number and is only of notably relevance
in the case of lower Reynolds numbers. For the DNS data, the linear term is fitted
to zero from a lower Reynolds number than it is for the experimental data. The
reason for that might lie in the quality of the measured data but is to be further
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Figure 4. Values for constant L[1]{2} from eq. (16), fitted for

Reτ = 180 . . .9.4 · 104

Figure 5. Values for constant B[1]{2} from eq. (16), fitted for

Reτ = 180 . . .9.4 · 104

investigated in future work. It is to note that the offset A, displayed in fig. 6,
is universal for all higher moments, independent from their direction and order.
This is since A is defined as the ratio between the group parameters ax2/aSx and
therefore universal for the logarithmic region. In the present work, we have set it
to zero throughout due to the sufficiently high Reynolds number.

Conclusion. From the above considerations and scaling laws, two main aspects
can be concluded. First, for the U2 and U3 moments, the exponent of the sec-
ond order moment is sufficient to obtain the scaling of all higher moments. The
scaling is determined in the logarithmic region by ω and for the deficit law by
σ1 respective σ2. Second, we have shown how the scaling laws are affected by
the Reynolds number and how this influence is reduced when moving towards the
core region. This has practical importance for turbulence models, especially if
statistical symmetries are included as for example in [5].

Summarizing, in this work we have extended the ideas from the works of [8] and
[3] to higher moments from U2 and U3. Compared to the considerations in these
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Figure 6. Values for constant A = ax2/aSx from eq. (16) fitted
for Reτ = 180 . . .9.4 · 104

two works, the instantaneous moments in the current work are not affected by the
mean flow in x1-direction and are therefore identical with the fluctuating moments
in the respective direction. For these moments, we have shown that scaling laws
derived from first principle symmetry theory and based on the underlying set
of Navier-Stokes and statistical equations are valid and therefore hold even for
fluctuating moments with much smaller absolute values and much more sensitive
behavior than the moments in mean flow direction.
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Convergence of structure-preserving FE schemes for the Euler
equations - Extension to the stochastic Euler system

Philipp Öffner

(joint work with Rémi Abgrall, Dominic Breit, Dmitri Kuzmin, Thamsanqa
Castern Moyo, Mária Lukáčová-Medvid’ová)

Many problems in computational fluid dynamics are described via the compressible
Euler or Navier-Stokes (NS) equations. Recently, dissipative weak (DW) solutions
have been introduced as a generalization to classical solution concepts. In the first
part of the talk, we focus on the Euler equation of gas dynamics given by

(1)

∂t̺+ divx(̺u) = 0

∂t(̺u) + divx (̺u⊗ u) +∇xp = 0 ⇐⇒ ∂tU+ divx f(U) = 0.

∂tE + divx [(E + p)u] = 0

Here, ̺ denotes the density, E the total energy, u the velocity, m = ρu the mo-
mentum, and p the pressure. We further denote by U = (̺,m, E)T the conserved
vector and by f i(U) = (̺ui, uim + p, ui(E + p))T the flux function. We focus on
perfect gas and consider the Euler system (1) with no-flux or periodic boundary
condition and certain initial data. The second law of thermodynamics dictates
that the convex entropy function η must satisfy the inequality

∂tη + divx F ≤ 0.
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Following the work of [4] and guided by numerical insights, we introduce DW
solutions and revisit their key properties. DW solutions need not satisfy the equa-
tions weakly but rather up to certain measures of defect and oscillations. They
serve as a natural extension of classical solutions, as they coincide with them
under conditions such as the existence of classical solutions (referred to as the
weak-strong uniqueness principle) or certain degrees of smoothness. Moreover,
DW solutions can be identified as limits of consistent and stable approximations.
Convergence towards DW solutions has been demonstrated for various structure-
preserving numerical methods [1, 4, 5, 6]. Here, we particularly focus on high-order
flux-corrected finite-element (FC-FE) schemes and establish their convergence to
DW solutions for the multi-dimensional Euler equations. Crucially, this conver-
gence relies on three essential properties:

• A priori estimates on the approximate solutions,
• structure-preserving properties of the schemes, and
• consistency relation with the continuous system.

We delve into each of these properties in depth and provide a detailed sketch of the
proof for the consistency of the FC-FE schemes. It’s noteworthy that consistency,
in this context, differs from the typical approach in numerical methods where
a smooth solution is assumed within the scheme, and the local truncation error
is analyzed. In our context, consistency entails utilizing the numerical solution
within the weak formulation of the Euler equations (1), with the remaining error
diminishing as the grid is refined. We draw parallels to similar research based on
this concept and provide a few examples. Subsequently, we prove the following
convergence theorem [5]:

Theorem 7. Let Uh = {̺h,mh, ηh}h→0 be a family of numerical solutions ob-
tained by the consistent and structure-preserving FE schemes on a shape regular
mesh. Then, there exists a subsequence (also denoted by Uh) such that

̺h → ̺ weakly-(∗) in L∞((0, T )×O)

ηh → η weakly-(∗) in L∞((0, T )×O)

mh → m weakly-(∗) in L∞((0, T )×O;Rd)

as h → 0 where U = (̺,m, η)T is a DW solution of the Euler system.

Additionally, we find that strong convergence is achieved when U represents
a weak entropy, strong, or classical solution. In numerical simulations, we con-
firm strong convergence towards classical solutions. Employing Cesàro averaging,
we convert weak-(∗) convergence into strong convergence, concentrating on the
Kelvin-Helmholtz test case. Ultimately, we demonstrate strong convergence for
this particular test case.
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In the second part of the discussion, we broaden our exploration to include the
stochastic Euler equations [7]:

(2)

d ̺+ divxm d t = 0,

dm + divx

(m⊗m

̺

)
d t+∇xp d t = ̺φ dW,

dE + divx

(
(E + p)

m

̺

)
d t =

1

2
̺‖φ‖2ℓ2 d t+ φ ·m dW,

where W is a (cylindrical) Wiener process on a filtered probability space
(Ω,F, (Ft)t≥0,P) and φ is the diffusion coefficient (a Hilbert-Schmidt operator).
We commence our exploration by establishing a comparison with the deterministic
scenario. Initially, the incorporation of stochastic perturbations aimed to introduce
a regularization effect. However, in the Euler case, this alone proves insufficient
to salvage well-posedness. Even in multi-dimensions, the problem remains ill-
posed [3]. Consequently, we introduce the concept of dissipative measure-valued
martingale solution [7] and reiterate some recent findings within this framework.
Specifically, we concentrate on

• existence of dissipative martingale solutions,
• pathweise weak-strong uniqueness, and
• convergence of FE schemes.

To prove convergence, we need

• a priori estimates on the approximate solutions, and
• structure-preserving and consistent schemes from the deterministic setting.

In the subsequent discussion, we highlight that a straightforward assumption mir-
roring the deterministic case, such as uniformly bounding the density from below
and the energy from above, is unrealistic for stochastic PDEs. Thus, we refine
this assumption by introducing a stopping time. Consequently, we conduct our
investigation under the following premise:

Assumption 1. There is a stopping time t with P(t > 0) = 1 and deterministic
constants K > 0 such that P-a.s.

inf
t∈[0,t],x∈O

̺h(t, x) ≥ 1

K
, sup

t∈[0,t],x∈O
Eh(t, x) ≤ K,

uniformly in h.

We finally summarize and explain further our main results from [2], namely we
are able to prove:

• Ensuring consistency between a DG/FV discretization and dissipative
martingale solutions.

• Achieving convergence in law up to a subsequence using stochastic com-
pactness arguments.

• Demonstrating convergence to a pathwise strong solution throughout their
lifespan.
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• Establishing convergence rates of at least order 1/2 in the L1-norm of the
relative energy.

Towards the conclusion of the presentation, we provide an outlook on forthcom-
ing projects. Currently, our focus lies on numerically validating our convergence
results and error estimates for dissipative martingale solutions, particularly in the
context of high-order methods. Moreover, we aim to extend the concept of DW so-
lutions and the construction of high-order, structure-preserving numerical methods
to encompass the Navier-Stokes-Korteweg equations and multicomponent/phase
flows. Additionally, we are actively working on adapting our investigation to ad-
dress incompressible equations.

References
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On the linear growth of the mixing zone in a semi-discrete model of
Incompressible Porous Medium (IPM) equation

Yulia Petrova

(joint work with Sergey Tikhomirov, Yalchin Efendiev)

We present a semi-discrete model (5)–(8) of the two-dimensional viscous incom-
pressible porous medium (IPM) equation describing gravitational fingering insta-
bility. The IPM equation describes evolution of concentration carried by the flow
of incompressible fluid determined via Darcy’s law in the field of gravity:

∂tc+ div(uc) = ν∆c,(1)

div(u) = 0,(2)

u = −∇p− (0, c).(3)

Here c = c(t, x, y) is the transported concentration, u = u(t, x, y) is the vector
field describing the fluid motion, p = p(t, x, y) is the pressure, and ν ≥ 0 is
a dimensionless parameter equal to an inverse of the Peclet number. Usually the
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spatial domain (x, y) is either the whole space R2 or cylinder [0, 1]×R with periodic
or no-flux boundary conditions, but here we consider a discretization in x.

We are interested in studying the exact rate of the linear growth of mixing zone
(see Fig. 1) formed when the initial condition is close to the unstable stratification:

c(0, x, y) =

{
+1, y ≥ 0, (heavy fluid)

−1, y < 0. (light fluid)
(4)

The theoretical bounds on the speed of the linear growth for (1)–(3) are obtained
in [2], see also numerical results both for gravitational and viscous fingering [3, 4, 6].
Our goal is to answer the question: can the bounds in [2] be improved?

The semi-discrete model consists of a system of advection-reaction-diffusion
equations on concentrations ck = ck(t, y), velocities uk = uk(t, y), pressures pk =
pk(t, y), describing motion of miscible liquids in several vertical tubes (n real lines,
y ∈ R, k = 1..n) and interflow between them (governed by velocities wk+1/2).

Figure 1. Left: gravitational fingering instability, h(t) ∼ αt —
scaling of the size of the mixing zone. Right: the n-tubes model

The advantage of the semi-discrete model is that it explicitly shows the possible
(interconnected) mechanisms of slowing down the fingers’ growth: (1) the convec-
tion in the transverse direction of the flow; (2) intermediate concentration, that is
the typical concentration inside the finger is c∗ ∈ (−1, 1), see also discussion in [5].

Let n ∈ N, n ≥ 2, be the number of tubes. The n-tubes IPM model is obtained
as a formal limit of the upwind finite-volume scheme and reads as follows, k = 1..n:

(transport eq. in k-th tube) ∂tck + ∂y(ukck)− ν∂yyck = fk−1/2 − fk+1/2,(5)

(incompressibility condition) l · ∂yuk − wk−1/2 + wk+1/2 = 0.(6)

Function fk+1/2 is responsible for the interflow between k-th and (k + 1) tubes:

fk+1/2 =

{
ck · wk+1/2

l , wk+1/2 ≥ 0, (fluid flows from tube k to (k + 1))

ck+1 · wk+1/2

l , wk+1/2 ≤ 0. (fluid flows from tube (k + 1) to k)
(7)

The velocities uk and wk+1/2 are given by the Darcy’s law:

uk = −∂ypk − ck, wk+1/2 =
pk+1 − pk

l
.(8)

Here l > 0 is a parameter equal to the distance between the tubes. We assume
that the last, n-th tube, is connected with the 1-st tube, thus all the indexes in
the equations should be understood modulo n.
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Numerical modelling shows that the typical asymptotic solution as t → ∞ for
initial data close to (4) for a small number of tubes looks like a stacked combination
of traveling waves which we call a propagating terrace (see Fig. 2).
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Figure 2. Typical asymptotic solution ck, k = 1..n for n = 2, 3, 4
tubes

In the talk we present a rigorous justification of the existence of a propagating
terrace in the simplest setting of two tubes (see preprint [1]). The main result
of [1] claims that for fixed ν > 0 and sufficiently small values of l > 0 there exist
two intermediate concentrations c∗1(l) ∈ (−1, 1), c∗2(l) ∈ (−1, 1) and two traveling
wave (TW) solutions that connect the states:

(−1,−1)
TW−−→ (c∗1(l), c

∗
2(l))

TW−−→ (1, 1).(9)

Moreover, the speeds of the traveling waves approach −1/4 and 1/4 as l → 0.
The main tool in the proof in [1] is geometric singular perturbation theory.

We represent the travelling wave dynamical system for the n-tubes IPM model
as a singular perturbation of the pressure-free transverse flow equilibrium (TFE)
model.1 The only difference between the n-tubes IPM and n-tubes TFE models
is the Darcy’s law — instead of (8), TFE model states

uk =

(
1

n
·

n∑

i=1

ci

)
− ck =: c̄− ck,

n∑

i=1

wk−1/2 = 0.(10)

The TFE model turns out to be easier to analyze, in particular, for the two-tubes
TFE model (5)–(7) and (10) we find explicit solutions in terms of traveling waves.2

There are several interesting open questions on the n-tubes IPM/TFE models:

(1) describe all possible asymptotic solutions of (5)–(8) as t → ∞ for n ≥ 3.
For n ≥ 4, we observe that the asymptotic solution is non-unique. In
many situations a propagating terrace as in Fig. 2 appear.

• how to determine the constant states between the traveling waves?

1In the literature describing viscous fingering TFE model has an analogue called vertical
(flow) equilibrium, see e.g. [7].

2In this case the Hugoniot loci form straight lines and coincide with the rarefaction curves,
making the 2-tubes TFE system to be of Temple type [8].
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• the speeds of the fastest and the slowest traveling waves play an
important role as they determine the rate of growth of the mixing
zone — how to find them explicitly?

(2) study the limit as the number of tubes n → ∞. Do the solutions of the
system (5)–(8) approximate the solutions of the original IPM model (1)–
(3) as n → ∞? In which sense?

(3) study the well-posedness of the “hyperbolic” problem (5)–(8) with ν = 0.
What can we say about the vanishing viscosity limit as ν → 0?

(4) study the existence of the propagating terrace (9) for the two-tubes model
for all values of l > 0 (now the result of [1] is valid only for l small enough).
Study the stability properties of the propagating terrace.

(5) study the above questions for the n-tubes model for viscous fingering:

u = −Km(c)∇p, K — permeability tensor, m(c) — mobility function.
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Implicit Quinpi schemes for systems of conservation laws

Gabriella Puppo

(joint work with Matteo Semplice, Giuseppe Visconti)

Systems of hyperbolic conservation laws often present different scales linked to
the magnitude of the eigenvalues of the Jacobian of the flux function. Numer-
ical schemes used to integrate hyperbolic problems usually are explicit, because
in many applications one is interested in resolving all scales. Borrowing our ter-
minology from the most typical example of this class of problems, given by gas
dynamics, explicit schemes resolve both convective and acoustic waves.

However, when the flow is considerably slower than the sound speed, the sta-
bility condition required by an explicit scheme may become too restrictive. In this
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case, an implicit integration may become attractive. Implicit schemes typically
require more computational work in each time step, but permit to use much larger
steps. Thus, in many cases, they become competitive with respect to explicit
schemes. The issue is how to reduce the computational load required by implicit
schemes per time step, without giving up accuracy and the lack of spurious oscil-
lations.

The literature on implicit schemes for hyperbolic problems is not yet well de-
veloped. Our work on implicit schemes [5] stems from previous work appeared in
[1] and [3].

In the scheme we propose, the system is first integrated implicitly with a back-
ward Euler scheme based on a piecewise constant reconstruction. This provides a
first estimate of the solution at the new time step tn+1, that we call the predictor,
un+1
P . It is well known that backward Euler with piecewise constant reconstruc-

tion yields an unconditionally stable, total variation non increasing solution. The
predictor therefore possesses these characteristics. However, this solution is very
diffusive.

To increase the order of the scheme, it is necessary to use higher order schemes,
based on piecewise polynomials in space, and a correspondingly high order time
integrator. The problem is that to prevent spurious oscillations, one must rely
on algorithms which are heavily non linear. In this work, we use the CWENO
reconstruction of [2], which produces a local polynomial in each cell of the form

Rj(x) =

p∑

ℓ=−p

ωj+l(u
n+1
j )un+1

j+ℓ ,

where j denotes a general space cell, 2p + 1 yields the amplitude of the stencil
on which the reconstruction is based (linked to the degree of the interpolating
polynomial), uj denotes all the data in the stencil of the j-th cell, un+1

j is the so-
lution sought at the new time step, and ωj+ℓ are the non linear weights, computed
extracting information on the local smoothness of the solution from the data uj

contained in the stencil of the j-th cell.
In our approach, we use the solution obtained with the predictor to estimate

the non linear weights. Thus the reconstruction becomes

Rj(x) =

p∑

ℓ=−p

ωj+l(uP
n+1
j )un+1

j+ℓ .

In this fashion, the weights depend on information provided by the scheme uP at
the correct time, i.e. tn+1, and the reconstruction is linear in the solution one
wants to compute. Next, we apply a high order implicit time integrator, such as
a DIRK scheme. The final high order solution un+1 is high order accurate, non
oscillatory in space, and it is linear on linear problems. Its non linearity depends
only on the non linearity of the flux.

The scheme we obtain still contains spurious oscillations on shocks and dis-
continuities. This is due to the fact that underlying each DIRK scheme, sits a
polynomial interpolation in time, which can develop oscillations in the presence
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of shocks. In other words, time limiting is also necessary. We achieve this with
an a posteriori blending of the low order non oscillatory solutions provided by
the predictor un+1

P and the high order solution un+1. The blending is driven by
a smoothness indicator based on the local cell entropy production defined in [4]
produced by the two schemes.

Numerical results on the non linear Euler equations of gas dynamics can be
found in the forthcoming [6].
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A (global flux) quadrature based framework to construct arbitrary
order steady state preserving schemes in 1D and multi-D

Mario Ricchiuto

(joint work with Wasilij Barsukow, Mirco Ciallella, Maria Kazolea, Yogiraj

Mantri, Lorenzo Micalizzi, Philipp Öffner, Carlos Parés, Davide Torlo)

We consider the approximation of solutions to hyperbolic balance laws

ut + divF (u) = S(u, ~x)

in one as well as multiple dimensions. The above equation many admit com-
plex steady states of practical interest in themselves, or as a background state of
which perturbations are pf practical interest. The construction of steady state
preserving, also called well balanced, numerical discretization tackles the issue
of approximating non-trivial steady states with high precision. This talk gives
an overview of recent and ongoing work [1, 2, 3, 4, 5] which proposes numerical
discretizations based on a modified quadrature of the source term S(u, x) which
allow great enhancements in the resolution of steady equilibria. The main focus
of the presentation is on the issue of characterizing explicitly the discrete steady
equilibria. The main issue is summarized in the sketch below.

We can associate to the continuous PDE its steady state limit, and to this the
steady equilibrium ueq. For the discrete problem we can say the same. The discrete
equations have a steady limit, and we can denote by ueq

h the solution satisfying
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this limit. We are interested in characterizing explicitly the map from ueq to ueq

h .
The reason for this is to

• characterize quantitatively the quality of the steady equilibrium and the
expected enhancements for a well balanced method;

• understand if the above properties can be modified and/or further im-
proved and by which modification to the scheme;

• possibly construct a projection operator P : ueq 7→ ueq

h allowing, without
running the actual steady simulations, to construct initial discrete states
which are preserved by the scheme to machine accuracy.

The approach used in the ongoing work is to systematically replace local values of
the source terms (nodal values, cell average) with the derivative of a source prim-
itive computed with appropriate quadrature formulas. In one space dimention,
this allows to write the original problem in the modified form

ut +

[
F (u)− I

(
S(u, x)

)]

x

Where the operator I is essentially a linear operator associated to a well chosen
quadrature formula. The remaining spatial derivative can be approximated with
any classical approach (DG, continuous FEM. WENO FV or FD). The main result
is now that of course the pointwise values of the steady states of the above method
are described by

F (u)− I
(
S(u, x)

)
= F0

which is nothing else that an ODE integrator applied to

F ′ = S(u(F ), x)

If the operator I is now appropriately chosen, we can embed in this formulation
exact consistency with higher order ODE integrators, such as collocation of high
order multi-step methods. The talk reviews some application of this principle in
finite elements and WENO finite differences.

In two space dimensions, we use a tensor/dimension by dimension generalization
on Cartesian grids in the finite element setting. The notion of In this case, we
show the existence of

(1) a high order approximation of the div operator, which for elements of
degree p has consistency hp+1 instead of the usual hp;

(2) a projection of given continuous vectorial fields on the a discrete space
which is discretely div free if the initial field is solenoidal;
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(3) estimates proving for the above projection nodal consistency of ordre hp+1

for general vectorial fields, and hp+2 for solenoidal fields;
(4) a generalization allowing to include sources in order to preserve a non-

homogenous constraint of the type div~v = S with the same consitency
properties.

Some details on each aspect, discussed in [5], are included in the talk. Numerical
experiments in one and two dimensions confirm all the theoretical predictions.
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A multiscale model for weakly nonlinear quasilinear
hyperbolic systems

Giovanni Russo

(joint work with David Ketcheson)

Waves propagating in media with periodic structures have attracted a lot of at-
tention in recent years. These media show interesting macroscopic properties,
which may be quite different from those of the individual materials constituting
the stratified system. More recently, waves on fluids and gases with an underlying
periodic structure have been studied. On a macroscopic scale, such a system can
be considered a sort of fluid meta material.

These waves present a peculiar, somehow unexpected, behavior. For example,
there is evidence that in spite of the fact that the waves are governed by genuinely
quasi-linear hyperbolic system, they do not break into a shock.

As specific case, we study the propagation of small amplitude waves in shallow
water over a periodic bathymetry [1]. We assume the wavelength is much larger
than the period δ of the bathymetry.

The evolution equations for the water elevation η(x, t) and the discharge q(x, t)
over a δ-periodic bathymetry b(x) are written below, and the setup is illustrated
in the figure to the right of the equations.
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ηt + qx = 0

qt +

(
q2

η − b

)

x

+ g(η − b)ηx = 0.

It is shown that an initial pulse of small amplitude will not produce a shock.
Indeed, after a long time, an initial Gaussian pulse splits into several waves of var-
ious amplitude. The phenomenon is not related to the dispersive waves generated
from deep water effect, and is explained in terms of dispersive waves satisfying a
model system obtained from the original one by suitable asymptotic expansion,
truncated at various orders in the small parameter δ denoting the periodicity of
the bathymetry.

The evolution of an initial Gaussian pulse η(x, 0) centered at the origin is il-
lustrated below at various times (see Figure 1). The accurate computations are

Figure 1. Evolution of an initial Gaussian pulse over periodic
bathymetry. The surface elevation is shown, measured in meters.
For comparison, the dashed blue line shows the solution for flow
over a flat bottom.

obtained using package SharpClaw [2], which is based on WENO 5 reconstruction
in space and Runge-Kutta 4 in time. The grid is refined until the relative error
between the numerical solution obtained with ∆x and with ∆x/2 is less that 10−5.

The numerical computation shows that the behaviour of the waves in presence
of a periodic bathymetry is quite different than in the case of a flat bottom. In
particular, no shock develops, rather several waves form, and evolve with a pattern
characteristic of dispersive systems.

In order to understand the phenomenon, we adopted a technique developed by
Yong and Kevorkian [3], and already adopted in a different context by LeVeque
and Young [4].
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Figure 2. Comparison between the direct solution of the shallow
water equations and the solutions of the homogenized equations.
Left panel: comparison of the traveling waves, plotted as a func-
tion of time. The red line represents the value of η(x̄, t− τ). The
parameter τ is adjusted to align the computed solution with the
traveling wave solutions. The black line is the O(δ3)-accurate
solitary wave, while the blue dashed line is accurate up to O(δ5).
Right panel: time dependent solutions at various times. The
bathymetry is piecewise constant. The surface elevation η− η0 is
shown, with the x-axis shifted to show the wave structure at each
time.

The technique is based on the so called multiple scale expansion. The solution is
assumed to depend on a slow variable x, on time t, and on a fast variable x/δ. The
dependence on the latter, induced by the bathymetry, is assumed to be 1-periodic.

An asymptotic expansion of the solution in the small parameter δ is performed,
and a set of equations with space independent coefficients is derived to various
order in the small parameter δ. In particular the set of equations, neglecting
terms of O(δ3), takes the form

ηt + qx = 0

qt + c2ηx + δβ1((q
2)x − ηqx) + δ2(F1(η, q, qx, qt)− µ1qttt) = 0

with suitable function F1. Linear stability analysis show that the initial value
problem for this system is ill posed. To the same accuracy, one obtains a different
form of the system, namely

ηt + qx = 0

qt + c2ηx + δα0

(
c2η ηx + (q2)x

)
+ δ2(F2(η, ηx, q, qx)− µqxxt) = 0

Linear stability analysis shows well posedness of such system for all wave num-
bers. A similar system, which contains fifth order derivatives, can be derived by
continuing the expansion and neglecting terms of O(δ5).
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The two systems admit traveling waves that depend only on ξ = x − V t. A
comparison between the traveling waves of the homogenised systems and one that
emerges from the original shallow water system is illustrated in Figure 2 together
with a comparison between time dependent solutions.

In both cases, it is evident that by increasing the order of the expansion in δ
the solution of the homogenised system become closer and closer to the numerical
solution of the original shallow water system.

A similar behaviour is observed in several other hyperbolic systems, including
the classical Euler equations of compressibe gas dynamics.
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Compressible Navier-Stokes equations with potential temperature
transport: strong solutions and conditional regularity

Andreas Schömer

(joint work with Mária Lukáčová-Medvid’ová)

A model for the fluid flow in meteorological applications is given by the com-
pressible Navier-Stokes equations with potential temperature transport; see [2],
[3]. Neglecting external forces such as gravity, this system reads

∂t̺+ divx(̺u) = 0,

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺θ) = divx(S(∇xu)),(1)

∂t(̺θ) + divx(̺θu) = 0,

where ̺ denotes the density, u the velocity, and θ the potential temperature of the
fluid. The viscous stress tensor S is given by

S(∇xu) = µ

(
∇xu+ (∇xu)

T − 2

3
divx(u) I

)
+ λdivx(u) I

with the viscosity constants µ > 0, λ ≥ −µ/3. The system is closed by the pressure
state equation

p(̺θ) = a(̺θ)γ

with constants a > 0 and γ > 1. Weak solutions to (1) are known to exist under
the assumption γ ≥ 9/5; see [10, Theorem 1]. However, the physically relevant
values of the adiabatic index γ lie in the interval (1, 5/3]. To circumvent this
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problem, we can move on to the framework of dissipative measure-valued (DMV)
solutions, where we can ensure existence of solutions to (1) for all γ > 1; see [5].
It should be noted that there is a DMV-strong uniqueness principle for (1) stating
that if there are a DMV solution and a strong solution to (1) emanating from the
same initial data, then they coincide as long as the latter exists; see [4].

The aim of this talk (based on [6]) is to uncover the full importance of the DMV-
strong uniqueness principle. To this end, we prove the local-in-time existence of
strong solutions to (1) using the approach of Valli [8] and Valli, Zajączkowski [9]
based on Schauder’s fixed-point theorem. In a second step, we prove a conditional
regularity result for the strong solution following Sun, Wang, Zhang [7] and Huang,
Xin [1]. More precisely, we show the following result: If the maximal existence
time Tmax of the strong solution is finite, then

lim sup
t ↑Tmax

(||̺(t)||L∞ + ||u(t)||L∞) = ∞.

Consequently, if the density and the velocity remain uniformly bounded, then the
strong solution is global in time and, in particular, every DMV solution starting
from the same initial data coincides with it.
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Monte Carlo for random Navier–Stokes–Fourier system

Bangwei She

(joint work with Mária Lukáčová-Medvid’ová, Yuhuan Yuan)

Randomness is an inherent property of models in science and engineering. Model
parameters as well as initial and boundary data are typically known only from
observations or measurements that can be affected by several errors. In order
to investigate data uncertainty in the solution of an underlying model, different
methods have been developed in the recent years. Monte Carlo method that is
based on statistical sampling is probably the most popular among them.

The aim of the present paper is to rigorously analyze Monte Carlo method for
heat conductive, viscous compressible fluid flows subjected to random data. We
recall the Navier–Stokes–Fourier system governing the motion of such fluid flows

∂t̺+∇ · (̺u) = 0,

∂t(̺u) +∇ · (̺u⊗ u) +∇p = ∇ · S(µ, λ,∇u) + ̺g,

cv(∂t(̺ϑ) +∇ · (̺uϑ))− κ∆ϑ = S(µ, λ,∇u) : ∇u− p∇ · u,

cv = 1/(γ − 1), γ > 1, S(µ, λ,∇u) = µ
(
∇u+∇tu− 2

d
∇ · uI

)
+ λ∇ · uI

on T ≡
(
[−1, 1]|{−1,1}

)d
, d = 2, 3, with the initial data

̺(0, ·) = ̺0, u(0, ·) = u0, ϑ(0, ·) = ϑ0.

Here ̺,u and ϑ are the fluid density, velocity, and absolute temperature, respec-
tively. For pressure p, we assume the perfect gas law, i.e. p = ̺ ϑ. Further, γ is
the adiabatic coefficient, cv is the specific heat per constant volume.

We consider the initial data, external force, viscosity coefficients, and heat con-
ductivity coefficient as random model data
driving force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .g = g(x);
viscosity coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .µ > 0, λ ≥ 0;
heat conductivity coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . κ > 0;
initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ̺0, u0, ϑ0.

In order to study such a problem numerically, we combine Monte Carlo method
with a convergent finite volume (FV) method [3]. Our goal is to derive rigorous
convergence and error analysis both with respect to statistical sampling as well as
space-time discretizations. Although Monte Carlo approximations, such as Monte
Carlo FV methods, are routinely used for uncertainty quantification in compu-
tational fluid dynamics or in meteorology, their rigorous convergence and error
analysis for compressible viscous and heat conducting fluid flows is still missing in
the literature. This paper presents the first results in this direction.

We refer to our recent work [4], where convergence and error estimates of a
Monte Carlo FV method for the random compressible barotropic Navier–Stokes
system were analyzed. In contrary to the viscous barotropic case, the analysis
of heat conductive viscous compressible fluid flow is more involved. First, the
existence of global weak solution for the Navier–Stokes–Fourier equations with
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perfect gas law p = ̺ϑ is an open problem. There are only some results on the
global-in-time existence of weak solutions available, however certain structural
restrictions on p, e, s and the coefficients µ, κ are required, see [5, Theorem 3.1].

One of the main tool in the convergence analysis of deterministic discretization
methods, e.g. FV methods, is the so-called weak-strong uniqueness principle [2].
This means that a generalized solution (dissipative weak solution), that is identified
as a limit of a sequence of discrete solutions, coincides with the strong solution
as long as the latter exists. Second problem lies in the fact that the (dissipative)
weak-strong uniqueness results are only conditional for the Navier–Stokes–Fourier
system, see [1]. For example, boundedness of density and temperature has to be
assumed for the weak-strong uniqueness principle.

The structure of the paper is organized as follows. Firstly, we present statis-
tical analysis of Monte Carlo estimators for the expectation and deviation of the
statistical strong solution to the Navier-Stokes-Fourier system. Secondly, we show
the convergence of a finite volume method with random data by applying gen-
uine stochastic compactness arguments under the assumption that the numerical
density and temperature are bounded in probability. Consequently, we derive the
main results of this paper: convergence and error estimates of Monte Carlo FV
method for the random Navier–Stokes–Fourier system. Finally, several numerical
results are presented to illustrate the theoretical results.
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High-order alternative finite difference WENO (A-WENO) schemes
and their applications

Chi-Wang Shu

The essentially non-oscillatory (ENO) and weighted ENO (WENO) finite differ-
ence schemes are popular high order numerical methods for solving hyperbolic
conservation laws, balance laws and related equations. Comparing with finite
volume ENO/WENO schemes, finite difference schemes have a dimension by di-
mension feature and are much cheaper in computational cost for multi-dimensional
problems. Most finite difference ENO/WENO solvers are based on the Shu-Osher
lemma [4], converting the design of numerical flux in a conservative finite difference
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scheme to that of the one-dimensional finite volume reconstruction. This approach
has the advantage of simplicity and easiness in coding, as the same finite volume
reconstruction routine can be used in the finite difference code. For this reason,
the original approach in the Shu-Osher 1988 JCP paper [3], which is based on
ENO interpolation rather than on ENO reconstruction, had largely been forgot-
ten until 2013, when Jiang, Shu and Zhang revived this “alternative formulation”
and used it to obtain more effective WENO schemes with Lax-Wendroff time dis-
cretization and for free-stream preserving [1, 2]. Later referred to as alternative
WENO, or A-WENO, this approach has recently been explored to yield several
interesting results, including effective finite difference A-WENO schemes for com-
pressible two-medium flows [7], local characteristic decomposition free high order
finite difference A-WENO schemes for hyperbolic systems endowed with a coordi-
nate system of Riemann invariants [5], and a high-order well-balanced A-WENO
method with the exact conservation property for certain systems of hyperbolic
balance laws [6]. In this talk we survey the A-WENO schemes and their recent
applications.
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Computing statistical Navier–Stokes solutions

Stephan Simonis

(joint work with Siddhartha Mishra)

We develop stochastic lattice Boltzmann methods (LBMs) for efficiently approxi-
mating statistical solutions to the incompressible Navier–Stokes equations (NSE)
in three spatial dimensions. Entropic space-time adaptive kinetic relaxation fre-
quencies allow for stable and consistent numerical solutions with decreasing viscos-
ity. Single level Monte Carlo (MC) and stochastic Galerkin (SG) methods (Zhong
et al., 2024) are used to approximate responses, e.g. from random perturbations
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of the initial flow field. The novel schemes are implemented in the parallel C++
data structure OpenLB (Krause et al., 2021) and executed on heterogeneous high-
performance computing machinery1. In exploratory computations, we observe
scaling of the energy spectra and structure functions in terms of Kolmogorov’s
K41 theory. For the first time, we compute along the inviscid limit (Fjordholm
et al., 2021) of statistical solutions of the incompressible NSE toward weak-strong
unique statistical solutions of the incompressible EE in three dimensions.

Let Ω ⊆ Rd and I ⊆ R+. The force-free, incompressible NSE for modeling
viscous (ε > 0) Newtonian fluid flows read





div (u) = 0 in Ω× I,

∂tu+ divx (u⊗ u)− ε∆xu+∇xp = 0 in Ω× I,

u|t=0 = u in Ω,

(1)

where u : Ω× I → U := Rd, d ∈ {2, 3} is the flow velocity, p : Ω× I → R denotes
the rescaled pressure (Lagrange multiplier), ε > 0 is the kinematic viscosity, and
u : Ω → Rd is the initial data u ∈ L2

div(Ω;U). An inviscid flow assumption
(ε → 0) reduces the NSE (1) to the incompressible EE. Let u0 = u+s, where s is
a random vector, such that u0 ∼ µε

0. Statistical solutions of the NSE (Foiaş and
Prodi, 1976) are time-parametrized Young measures µε = (µε

t )0≤t≤T on L2
div(Ω;U)

(see Definition 3.6 in Fjordholm et al., 2021, and references therein). It is proven
by Fjordholm et al. (2021) that statistical solutions of the NSE limit to inviscid
statistical solutions of the EE for ε → 0 under a weak scaling assumption on the
structure functions |S2(τ, r)| < Crα, where α > 0 and τ ∈ (0, T ], r > 0 (see e.g.
Lye (2020), Theorem 3.1.1.(iii) for a definition of Sp). For small ε,

ET (µε
t , κ) =

ˆ T

0

ˆ
L2

div

E(κ, t) dµε
t (u) dt . κ−2β ⇒ S2 (T, r) . rβ−1/2,(2)

where 1 < 2β < 3 (here β = 5
6 ) and E(κ, t) is the band-averaged energy spectrum

(Lanthaler et al., 2021a). If the energy spectrum scales according to (2), then
a limit statistical solution of the EE exists. Further, weak-strong uniqueness of
statistical solutions is based on the p-Wasserstein distance

Wp(µ
∆
t , µ

ref
t ) =

(
inf

π∈Π(µ∆
t ,µref

t )

ˆ
X2

|x− y|p dπ(x, y)
) 1

p

,(3)

where π ∈ Π(µ, ρ) ⊂ P(X2) are transport plans between µ, ρ ∈ P(X) with finite
p-moments and ∀F,G ∈ Cb(X) :

´
X2 F (x) + G(y) dπ(x, y) =

´
X F (x) dµ(x) +´

X
G(y) dρ(y) on the separable Banach space X . Let 1 ≤ p < ∞. According

to Lanthaler et al. (2021a, 2021b), weak convergence of {µ∆}∆>0 to a reference
solution µref is obtained by µ∆ ⇀ µref ⇔ Wp

(
µ∆,µref

)
→ 0. We provide

exploratory computations using MC LBMs with entropic multi-relaxation (Karlin

1S. Simonis acknowledges support by the state of Baden-Württemberg through bwHPC.
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et al., 2014) in OpenLB. Given the spatial grid resolution N and initial data
µε
0 ∈ P(L2

div), we generate M independent and identically distributed samples

{
u
(1)
0 ,u

(2)
0 , . . . ,u

(M)
0

}
∼ µε

0,

which are evolved in time t > 0 with LBMs to obtain {u(m)|m = 1, 2, . . . ,M}.
Thus, for ε → 0, a weak-strog unique statistical solution is approximated by

µε
t ≈ µε,N,M

t :=
1

M

M∑

m=1

δ
u(m)(t),

where δ
u(m)(t) is the Dirac measure at u(m)(t). We compute the flow field from

a uniformly randomized Taylor–Green vortex (RTGV) initial condition (samples
and mean fields shown in Fig. 1) and observe that the scaling assumption holds (see
Simonis et al. (2024)). The convergence of the Wasserstein distance toward the fine
resolution reference (see Fig. 2) approves the analytical results of Fjordholm et al.
(2021). Conclusively, we provide first computational evidence of weak convergence
of statistical solutions of the NSE toward weak-strong unique statistical solutions
of the EE in three dimensions. In future research, we will apply SG LBMs (Zhong
et al., 2024) to initial boundary value problems of turbulent fluid flows.

Figure 1. Velocity field iso-volumes of RTGV flow t ≈ 30s. Sin-
gle sample computations (top row) and expected mean (bottom
row) for Re = 1280, 2560, 5120 (row-wise from left to right).
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Figure 2. Approximated 1-Wasserstein distances (3) at t ≈ 30s
(Algorithm A.2.2 in Lye, 2020), with fine (·f) and coarse (·c) sam-
ples and resolutions (Mf ,Mc) = (Nf , Nc).

References

[1] U. S. Fjordholm, S. Mishra, and F. Weber, On the vanishing viscosity limit of statisti-
cal solutions of the incompressible Navier–Stokes equations, ArXiv preprint (2021). doi:
10.48550/ARXIV.2110.04674

[2] C. Foias and G. Prodi, Sur les solutions statistiques des équations de Navier-Stokes, Annali
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ETH Zürich (2020), Doctoral thesis. doi: 10.3929/ethz-b-000432014

[8] S. Simonis, T. Rohner, and S. Mishra, Computing statistical Navier–Stokes solutions with
stochastic lattice Boltzmann methods, In preparation (2024).

[9] M. Zhong, T. Xiao, M.J. Krause, M. Frank, and S. Simonis, A stochastic Galerkin lattice
Boltzmann method for incompressible fluid flows with uncertainties, SSRN preprint (2024).
doi: 10.2139/ssrn.4739337



638 Oberwolfach Report 10/2024

Vanishing viscosity solutions of characteristic initial-boundary value
problems for systems of conservation laws

Laura V. Spinolo

(joint work with Fabio Ancona, Andrea Marson)

In the recent work [2] we consider a nonlinear systems of conservation laws in one
space variable

(1) g(v)t + f(v)x = 0N

where the unknown v attains values in RN and g, f : RN → RN are smooth
functions satisfying suitable assumptions that we touch upon in the following.
The archetype of (1) are the celebrated compressible Euler equations modeling
the dynamics of an ideal, compressible fluid. Other famous examples include the
inviscid Magneto-Hydro-Dynamic (MHD) equations describing the propagation of
plane waves in an electrically charged, compressible and ideal fluid.

Formally, the inviscid system (1) can be recovered as the ε → 0+ limit of the
viscous approximation

(2) g(vε)t + f(vε)x = ε
(
D(vε)vε

x

)
x
, v ∈ R

N ,

where D is a positive semi-definite N×N matrix depending on the physical model
under consideration. For instance, the compressible Navier-Stokes (or Navier-
Stokes-Fourier) equations and the viscous MHD equations are the most obvious
choices for approximating the Euler and inviscid MHD equations, respectively.
Coupling (1) with the underlying viscous mechanism (2) is of particular impor-
tance in the case of initial-boundary value problems since, even in the most ele-
mentary linear case, the limit in general depends on D and changes as D changes,
see [7]. Note however that establishing convergence of the physical viscosity ap-
proximation (2) is presently a challenging open question, for both Cauchy and
initial-boundary value problems.

In the physical cases of the fluid-dynamics and MHD equations, the matrix D
in (2) is singular (non-invertible), which poses severe additional technical chal-
lenges for the analysis of the inviscid limit. As an instance of this fact, the initial-
boundary value problem for (2) is in general overdetermined if one imposes a full
boundary condition like vε(t, 0) = vb(t). To restore well-posedness, we couple (2)
with the initial and boundary conditions

(3) vε(0, ·) = v0, β̃(vε(·, 0),vb) = 0N ,

where β̃ is a suitable function defined in [2, §2.2]. At the heuristic level, the basic

idea underpinning the construction of β̃ is imposing a full boundary condition on
the parabolic component of vε, and a boundary condition along the characteristic
fields of the hyperbolic component entering the domain.

In [2] we regard the initial-boundary value problem for (1) as the vanishing
viscosity limit of system (1) coupled with the initial and boundary conditions (3).
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This is expressed through the boundary condition, that we assign on (1) as in the
below equation:

(4) v(0, ·) = v0, v(·, 0) ∼D vb.

If we assume that every vector field for (1) is either genuinely nonlinear or linearly
degenerate, the relation ∼D is defined as follows.

Definition 3. Given system (2) and v̄, vb ∈ RN , we say that “v̄ ∼D vb” if there
is v ∈ R

N such that the following conditions are both satisfied:

i) f(v̄) = f(v) and the 0-speed discontinuity between v̄ (on the right) and v
(on the left) satisfies the Lax admissibility condition;

ii) there is a so-called “boundary layer” w : R+ → RN such that

(5)

{
D(w)w′ = f(w)− f(v)

β̃(w(0),vb) = 0, limy→+∞ w(y) = v.

Note that, in the above definition, the need for considering the state v stems
from the fact that we deal with the boundary characteristic case, namely we take
into account the possibility that an eigenvalue of the jacobian matrix Df vanishes.
This happens in the case of the Euler and inviscid MHD equations if for instance
the fluid velocity vanishes. Note furthermore that if the boundary characteristic
field is linearly degenerate condition i) in Definition 3 boils down to the requirement
that f(v̄) = f(v). The main result of [2] reads as follows.

Theorem 8. Assume Hypotheses 1, · · · , 5 in [2, §2] and fix v∗ ∈ RN ; then there
is a constant δ∗ > 0 only depending on the functions g, f , D in system (2) such
that the following holds. If v0,vb ∈ BV (R+) satisfy

(6) TotVar v0 +TotVar vb + |v0(0
+)− vb(0

+)| ≤ δ∗, |v0(0
+)− v∗| ≤ δ∗

there is a global-in-time, Lax admissible distributional solution v ∈ BVloc(R+×R+)
of (1) satisfying the initial and boundary conditions (4) in the sense of traces.
Also, if system (1) admits a convex entropy then the solution we construct is
entropy admissible.

In the statement of the above result, TotVar v and BV denote the total varia-
tion of the function v and the space of bounded total variation functions. To the
best of our knowledge, Theorem 8 yields the first global existence result for the
initial-boundary value problem (1),(4) in the boundary characteristic case. Note
indeed that the boundary condition considered in the related work [1] is different
from (4) and in general is not consistent with the underlying viscous approxima-
tion (2). Note furthermore that Hypotheses 1, · · · , 5 in [2, §2] are satisfied by the
Navier-Stokes-Fourier and viscous MHD equations (with both null and positive
electrical resistivity) written in both Eulerian and Lagrangian coordinates. The
small total variation assumption (6) is obviously highly restrictive, but also nec-
essary to establish global-in-time existence of admissible solutions: in this regard
we refer to the counterexamples in [8] and also the the more recent analysis in [6],
which provides a strong indication of total variation blow up (starting from data
of finite, but large, total variation) for the p-system of isentropic gas dynamics.
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The proof of Theorem 8 relies on the introduction of a wave front-tracking
algorithm inspired by [5]. This is a boon to the analysis, since it is known that
limits of wave front-tracking approximations enjoy better regularity properties
than general BV functions, see for instance [5, Chapter 10]. Also, the introduction
of a wave front-tracking algorithm is pivotal to the proof of uniqueness results via
the Standard Riemann Semigroup approach. We are confident one could use these
techniques to establish uniqueness of the admissible solution of (1) satisfying (4),
but this was left open in [2] due to the considerable length and technicality of the
proof of Theorem 8.

Compared to the wave front-tracking analysis in [5], the main difficulty posed by
the presence of the boundary is dealing with interactions between the wave fronts
and the boundary. This is particularly challenging in the boundary characteristic
case, where there is no clear discrimination between wave fronts entering and
leaving the domain and in principle very complicated interaction patterns can arise,
with wave fronts bouncing back and forth from the boundary. In [2], we tackle
this challenge by carefully controlling the strength of the wave fronts entering the
domain after an interaction at the boundary. These estimates and the consequent
introduction of a new Glimm-type functional are in our opinion one of the most
innovative points of the whole paper from the technical standpoint, and their
proof relies on the very detailed analysis of the structure of the so-called boundary
Riemann problem performed in [3, 4]. Another innovative point in [2] is the proof
of the fact that the limit of the wave front-tracking approximation satisfies the
boundary condition (4), proof which requires a very precise analysis of the behavior
of the wave fronts at the boundary and in turn we feel is of independent interest.
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Runge-Kutta methods are stable

Eitan Tadmor

We consider the class of Runge-Kutta (RK) methods for the approximate integra-
tion of arbitrarily large systems of ODEs, ẏ = F(t,y). The linearized stability of
such methods is concerned with the behavior of the RK iterations

(1) un+1 = Ps(∆tLN )un, n = 0, 1, . . . .

Here LN is theN×N Jacobian matrix of F ‘freezed’ at arbitrary state,
∂F

(

t∗,y(t∗)
)

∂y
,

and Ps(z) = 1+z+
∑s

k=2 akz
k is an s-stage RK method of interest; it is rth-order

accurate, r ≤ s, if |Ps(z)− ez| ≤ O(|z|r+1). The stability of (1) is dictated by its
region of absolute stability,

As := {z : |Ps(z)| ≤ 1}.
Specifically — let Λ(LN ) denote the spectrum of LN ; then the RK iterations,

(stability) |un| ≤ K|u0|, n = 1, 2, . . . ,

are stable in the sense of uniformly bounded growth, provided (1) is implemented
with a small enough time step, ∆t, so that,

(2) ∆tΛ(LN ) ⊂ As.

This notion of uniform bounded stability involves a constant K which is inde-
pendent of n. However, this classical stability paradigm for RK methods, “(2)  
(stability)” does not hold uniformly in the increasingly large dimension N . Indeed,
(2) fails to secure different notion of stability — power-boundedness, resolvent sta-
bility, strong stability, uniformly in N . Instead, in [5] we proved that uniform-in-N
stability holds if we replace the spectrum Λ(LN ) with the larger set of numerical
range, W (LN ) := {〈LNw,w〉 : |w| = 1}. Specifically assume that RK method is
implemented with a small enough time step, ∆t, so that,

(3) ∆t ·W (LN ) ⊂ As,

then we have the alternative paradigm, “(3)  (stability)”, with K uniformly

bound both in n and in N ; indeed, K = 1 +
√
2. The result is based on the

remarkable work of M. Crouzeix on the numerical range W (A) serving as K-
spectral set of arbitrary matrix A, [1, 2].

To verify (3) requires the geometry of the numerical range, which is less accessi-
ble than the spectrum of a matrix. To this end assume that an imaginary interval
condition holds, so that As includes a non-trivial interval along the imaginary
axis, [−iRs, iRs] ⊂ As. Clearly, such a condition is necessary for stability of all
semi-bounded L’s, which are encountered in hyperbolic systems. The imaginary
interval condition was introduced in H. O. Kreiss et. al., [3, 4]; they proved that
it implies As contains a non-trivial semi-disc, BCs(z) = {ℜz ≤ 0; |z| ≤ Cs} with
0 < Cs ≤ Rs, which in turn implies resolvent stability (but again, the passage to
(stability) lacks uniformity in N).
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For example, for classical 3rd-rd order RK method, RK3 one has C3R3 =
√
3;

however for erg classical RK4, C4 = 2.61 which is more restrictive than the usual
R4 = 2

√
2 encountered when using the standard (2). In[5] we prove uniform in N

stability follows for small enough time step ∆t such that

(4) ∆t · r(LN ) ≤ Cs, r(A) := max
|w|=1

|〈Aw,w〉|.

The implication “(4)  (stability)” involves the numerical radius r(LN ) which
can be estimated in many cases; in particular, since ‖A‖ ≤ 2r(A) one can simply
use the norm, ∆t‖LN‖ ≤ Cs/2, which secures the (stability) uniform in N .
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Stabilization of a Multi–Dimensional System of hyperbolic
Balance Laws

Ferdinand Thein

(joint work with Michael Herty)

We are interested in the boundary feedback stabilization of multi–dimensional
hyperbolic PDEs. Two cases are discussed in this talk. For each case a proper
Lyapunov function is defined. With this we show stabilization in L2 for the arising
system using a suitable feedback control.

Consider the following initial boundary value problem (IBVP) for a given hy-
perbolic system





∂

∂t
w+

d∑

k=1

A(k)(x)
∂

∂xk
w(t,x) +B(x)w(t,x) = 0, (t,x) ∈ [0, T )× Ω

w(0,x) = w0(x), x ∈ Ω,

w(t,x) = wBC(t,x), (t,x) ∈ [0, T )× ∂Ω

(1)

Here w ≡ (w1(t,x), . . . , wn(t,x))
T is the vector of unknowns and Ω ⊂ Rd a

bounded domain with sufficiently smooth boundary ∂Ω. Moreover, A(k) and B
are sufficiently smooth and bounded n× n real matrices. We define the matrix

A∗(x, ν) :=

d∑

k=1

νkA
(k)(x)
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with ν = (ν1, . . . , νd)
T ∈ Sd−1 being a unit vector in Rd. System (1) is said to be

hyperbolic if the matrix A∗(x, ν) has n real eigenvalues λi = λi(x, ν), i = 1, . . . , n,
and n corresponding linearly independent right eigenvectors ri = ri(x, ν), i =
1, . . . , n for all ν ∈ Sd−1. Note that by choosing

ν = ek = (0, . . . , 0, 1︸︷︷︸
k

, 0, . . . , 0)T

we have A∗(x, ek) = A(k)(x) and thus the individual Jacobians A(k)(x) are also
diagonalizable with real eigenvalues. The boundary ∂Ω will be separated in the
controllable and uncontrollable part, i.e. for i = 1, . . . , n

Γ+
i := {x ∈ ∂Ω | λi(x,n(x)) ≥ 0} ,

Γ−
i := {x ∈ ∂Ω | λi(x,n(x)) < 0} .

Case 1: Diagonal Jacobians. Here we consider system (1) where the matrices

A(k)(x) = (a
(k)
ii (x))i=1,...,n are assumed to be diagonal matrices and hence have

a full set of eigenvectors. It is shown in [4] that such systems for example arise
in the study of Hamilton–Jacobi equations. For the eigenvalues we have that

λi(x,n(x)) = ai(x) · n(x) with ai := (a
(1)
ii , . . . , a

(d)
ii ). We introduce the following

abbreviations

E(µ(x)) := diag(exp(µ1(x)), . . . , exp(µn(x))),

M(k)(x) := diag

(
∂

∂xk
µ1(x), . . . ,

∂

∂xk
µn(x)

)
, k = 1, . . . , d.

The Lyapunov function is then defined as follows

L(t) =

ˆ
Ω

w(t,x)T E(µ(x))w(t,x) dx(2)

where the functions µ1(x), . . . , µn(x) are defined by

d∑

k=1

(
M(k)A(k) +

∂

∂xk
A(k)

)
+D = −diag

(
C

(i)
L

)

or written row-wise ai · ∇µi(x) +∇ · ai +Dii = −C
(i)
L , C

(i)
L ≥ CL > 0

(3)

for some value CL ∈ R>0. Further, we assume that there exists a diagonal matrix
D such that we have

−vT
(
BTE + EB

)
v ≤ vTDEv, ∀v ∈ R

n.(4)

This kind of dissipativity condition for the linear source term ensures that we
find suited weights µi using (3). There are different possible choices for D de-
pending on the problem under consideration. The imposed boundary controls
ui, i ∈ {1, . . . , n} satisfy

−
n∑

i=1

ˆ
Γ−
i

ui(t,x)
2 (ai · n) exp(µi(x)) dx ≤

n∑

i=1

ˆ
Γ+
i

w2
i (ai · n) exp(µi(x)) dx.(5)
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The main results states the exponential decay of the Lyapunov function under
suited conditions, see [4, Main Thm.].

Case 2: Symmetric Hyperbolic Systems. Second, we study (1) being sym-
metric hyperbolic, i.e. the A(k)(x) are in particular assumed to be symmetric.
The assumption of symmetry is no major restriction since it includes all systems
equipped with an additional conservation law, cf. [2]. This includes most systems
relevant for applications, see [1].

For these systems there exists a well-conditioned orthogonal matrix T(x, ν)
such that

Λ∗(x, ν) = TT (x, ν)A∗(x, ν)T(x, ν)(6)

It is further assumed that there exists a feasible Lyapunov potential µ(x) such that

m := ∇µ(x) and A(m) := −Id+

d∑

k=1

mkA
(k) ≥ 0.(7)

Then the linear matrix inequality (LMI)

A(m) := CId+

d∑

k=1

mkA
(k) ≤ 0, C ∈ R>0(8)

holds for system (1) with µ(x) = −Cµ(x) and m = ∇µ(x). It is remarked
in [5] that the LMI (8) can be modified if certain reminder terms, such as the
coupling matrix B, should be taken into account. Therefore we introduce with
Bsym = 1

2

(
B+BT

)

R(x) :=
d∑

k=1

∂

∂xk
A(k)(x)− 2Bsym(x)

and demand

A(m) := CId+R(x) +

d∑

k=1

mk(x)A
(k)(x) ≤ 0, C ∈ R>0.(9)

The LMI (9) then replaces (8). For example in the case of R(x) < 0 we could ben-
efit from this additional term in order to find suited coefficients m. The Lyapunov
function is then defined as follows

L(t) =

ˆ
Ω

w(t,x)Tw(t,x) exp(µ(x)) dx.

The imposed feedback controls u = (u1, . . . , un)
T satisfy u = Tũ

−
n∑

i=1

ˆ
Γ−
i

λi(x,n(x))ũi(t,x)
2 exp(µ(x)) dx

≤
n∑

i=1

ˆ
Γ+
i

λi(x,n(x))vi(t,x)
2 exp(µ(x)) dx,
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with v = TTw and (6). It is then shown that the Lyapunov function decays
exponentially, see [5, Thm. 2.4].

It will be an interesting question for future research to identify structural prop-
erties of symmetric hyperbolic systems such that (8) holds, see also [3].
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All-speed IMEX schemes for two-fluid flows

Andrea Thomann

(joint work with Aaron Brunck, Mária Lukáčová-Medvid’ová, Ilya Peshkov)

We are interested in the numerical simulation of mixtures composed of a gas and/or
a liquid phase, where the sound speeds of the gas and liquid phase respectively
are much faster than the material wave which is of the order of the transport
velocity. Thus, three different scales can arise in the model. In regimes which are
characterized by small, potentially different phase Mach numbers, using an explicit
scheme requires a time step that scales with the smallest appearing Mach number.
This is especially problematic when phenomena in a low Mach number regime are
monitored over a long time period. Moreover, the main interest often lies on a
sharp resolution of the interface which is transported with the local fluid speed and
thus would allow for a much larger time step. Therefore, we use implicit-explicit
(IMEX) time integrators where fast waves are treated implicitly leading to a CFL
condition which is restricted by the material velocity only.

For the mixture description, we use a symmetric hyperbolic thermodynamically
compatible (SHTC) diffusive interface model given in [1, 2] which is composed of
the dynamics for volume fractions α1, α2 obeying a saturation constraint α1+α2 =
1, partial densities α1ρ1 and α2ρ2 yielding the mixture density ρ = α1ρ1 + α2ρ2,
the mixture momentum ρv, relative velocity w = v1 −v2 driven by the difference
in chemical potentials µ1, µ2 of each phase, where vj denote the phase velocities for
j = 1, 2, and finally the total energy ρE. Note that in the SHTC theory, the model
naturally comes with an equation for the entropy and the energy conservation
as a consequence. However, since we apply a single temperature simplification
T1 = T2 = T , for smooth flows, the energy and entropy equation are equivalent
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and we chose to solve for the energy conservation law instead. This allows to apply
classical semi-implicit approaches for the approximation of fluid dynamics systems
[7, 8]. The model in compact notation can be written as follows

(1) ∂tq+∇ · f(q) +B(q)∇q =
1

τ
r(q),

where q denotes the state vector, f the flux tensor, B(q)∇q a non-conservative
product due to transport of α1 and contributions of the relative velocity w. In
r the relaxation source terms are contained, i.e. an equilibrium processes for the
pressures and velocities, acting on the volume fraction and relative velocity equa-
tion respectively. Therein, in short, τ = τ (α), τ (w) denotes the possibly different
relaxation rates. The system is closed by considering an equation of state (EOS)
per phase. Here, the ideal gas law or stiffened gas equation is applied. Thus for
each phase k = 1, 2, a Mach number Mk = ‖v‖/ak is defined, where a1, a2 are the
phase sound speeds given as usual by ak =

√
∂ρk

pk. Rescaling system (1) based
on a separation of each dimensional variable in q into a reference value qrj and a
non-dimensional quantity q̃j , yields the following non-dimensional system

(2) ∂tq̃+∇· fv(q̃)+∇· fM (q̃,Mk
−1)+B(q̃)∇q̃ =

1

τ (w)
rv(q̃)+

1

τ (α)
rM (q̃,M−1

k ),

where the flux tensor f is split into a velocity based flux fv and a pressure based flux
fM containing the dependence on the Mach numbers. Analogously the relaxation
source term is split into rv and rM . The non-conservative product does not depend
on the Mach number.

For model (2) can be formally shown, following the seminal works of [5, 6],
that in the low Mach number limit, the mixture is described by the incompressible
Euler equations with variable volume fraction. Since we consider the case of a
single temperature the phase Mach numbers are coupled, thus, if M1 tends to
zero, so does M2. For details on the formal derivation of well-prepared initial
data and the low Mach number limit, we refer to [4]. In the case of barotropic
flows, the phase Mach numbers are independent of each other. We refer to [3]
for formal limits with two distinct Mach numbers. Thus we require the numerical
scheme to be consistent with the incompressible low Mach number limit and to
be stable under a Courant-Friedrichs-Levy (CFL) condition independently of the
Mach number flow regime dictated by the characteristics of the velocity based flux
fv, thus asymptotic preserving (AP).

To achieve this, we apply an operator splitting on (2) and integrate explicitly
the contributions fv and B∇q, whereas fM and rv, rM are treated implicitly due
possibly very fast relaxation processes, thus stiff relaxation source terms. To avoid
the solution of non-linear implicit systems and at the same time obtain an AP
scheme, we linearize pressure based terms in fM with respect to a reference total
energy (ρE)RS = ρRSeRS + ρRS(‖v‖2) + c1c2‖w‖2)/2 composed of the leading
order terms of the well-prepared initial density and internal energy. Since the
pressure is already linear in ρE, we only need to linearize the chemical potential
difference µ = µ1 − µ2 in a non-linear part µ̄ ∈ O(M2

k ) and a linear part µ̂ =
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µRS +
(

∂µ
∂(ρE)

)RS

(ρE − (ρE)RS). Since µ̄ vanishes as Mk → 0, it can be treated

explicitly without reducing the CFL condition, see [4].
The numerical scheme in a finite volume framework consists of first solving the

velocity based contributions given by fv and B∇q explicitly with Rusanov numeri-
cal fluxes and integration of the non-conservative product. To avoid solving a large
coupled linear implicit system, we substitute the implicitly treated momentum and
relative velocity in the total energy update by their respective evolution equations
combined with a linearization in time as done e.g. in [8]. Moreover, the linear
relaxation source term acting on the relative velocity is included. This yields one
scalar implicit equation containing Laplace operators which are discretized using
second order central differences. It can be solved efficiently using direct or iter-
ative solvers, e.g. GMRES. Once the total energy is obtained, wn+1 and ρvn+1

are updated adding the implicit respective flux contributions from fM (qn+1). As
a last step, the pressure relaxation in the evolution equation for α1 is considered.
Since it is an algebraic and non-linear source term, a Newton method is applied.
Using semi-implicit stiffly accurate IMEX Runge Kutta methods [7], and second
order interface reconstruction using a minmod limiter, the scheme is extended to
second order accuracy [4]. The scheme is provably AP up to O(∆t), however for
homogeneous mixtures and single phase flows it is AP up to O(M2

k ), see [4]. The
proofs contain elements from the AP proof in [9] in the context of a numerical
scheme for the Euler equations with gravity.

A suitable test case to visualize the AP property is a simulation of the Kelvin-
Helmholtz instability. The initial data is well-prepared [4] and allows a direct
comparison with the incompressible limit equations. The solution at time t = 3
is depicted in Fig. 1. On the left, the result for α1 computed with the 2nd order
AP solver for the two-phase flow model is depicted in a Mach number flow regime
of O(M) = 10−2. On the right, the respective solution of the incompressible
limit model using a finite element solver. We can observe, that both results are
qualitatively in good agreement which underlines the AP property of the numerical
scheme.

Figure 1. Kelvin-Helmholtz instability; numerical solution of
α1. Left: compressible two-fluid single temperature model. Right:
incompressible Euler limit equations.
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Minimal Acceleration for the Multi-Dimensional Isentropic
Euler Equation

Michael Westdickenberg

We consider the multi-dimensional isentropic Euler equations

(1)

∂t̺+∇ · (̺u) = 0

∂t(̺u) +∇ · (̺u⊗ u) +∇P (̺) = 0

}
in [0,∞)×Rd,

(̺,u)(0, ·) =: (¯̺, ū) initial data.

This system expresses local conservation of mass and momentum. We only consider
polytropic gases, for which U(̺) = κ̺γ with constants κ > 0 and γ > 1 and

P (r) = U ′(r)r − U(r) for r ≥ 0.

Smooth solutions (̺,u) of (1) satisfy the additional conservation law

(2) ∂t

(
1
2̺|u|2 + U(̺)

)
+∇ ·

((
1
2̺|u|2 + U ′(̺)̺

)
u

)
= 0,

which expresses local conservation of total energy

E(̺,u) := 1
2̺|u|2 + U(̺),

which is the sum of kinetic and internal energy. Since solutions of (1) may become
discontinuous in finite time, solutions must be considered in the weak sense and
energy conservation (2) must be relaxed to an ≤ inequality.

Global existence of weak solutions to (1) is still an open problem in several space
dimension. A useful relaxation with guaranteed global existence is the notion of
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dissipative solutions, introduced in [1]. Dissipative solutions are defined as tuples
of (̺,m) and defect measures R, φ that satisfy the continuity equation and

∂tm+∇ ·
(
m⊗m

̺
+ P (̺)1

)
+ ∇ · (R+ φ1) = 0,

d

dt

ˆ
Rd

(
1
2̺|u|2 + U(̺) +

1

2
tr(R) +

1

γ − 1
φ

)
(t, dx) ≤ 0.

Here R, φ are measures taking values in the symmetric, positive semidefinite ma-
trices and the non-negative numbers, which form closed convex cones. Dissipative
solutions become weak solutions of (1) iff the defect measures vanish a.e.

The construction of infinitely many weak solutions to (1), pioneered by De
Lellis–Székelyhidi [3], starts from so-called subsolutions, which can be interpreted
as dissipative solutions with defect measures nonvanishing in open sets. Superim-
posing over (̺,m) highly oscillatory waves, one can then remove the discrepancy
between dissipative and weak solutions. In contrast, our goal here is to construct
dissipative solutions to the isentropic Euler equations (1) that minimizes the de-
fect measures from the start. To this end, we reinterpret dissipative solutions
in terms of Young measures, which has the advantage that Young measures come
with a natural notion of weak* convergence and therefore compactness, by Banach-
Alaoglu theorem. Dissipative solutions have the useful property that density and
momentum are Lipschitz continuous in time, with densities measured with respect
to the Wasserstein distance and momenta measured with respect to the bounded
Lipschitz norm, which is defined in terms of testing against bounded and Lipschitz
continuous test functions. These are the natural topologies we suggest should be
used. In fact, since for given initial data all dissipative solutions to this data must
have the same total momentum, because of the momentum equation, it is sufficient
to consider a distance that uses test functions with bounded Lipschitz seminorm
only, without the need to restrict to bounded functions. More precisely, let

(3) d
(
ms,mt

)
:= sup

{ˆ
Rd

ζ(x) ·
(
ms(dx)−mt(dx)

)
: ‖ζ‖Lip(Rd) ≤ 1

}

for 0 ≤ s ≤ t. With momentum flux

(4) U :=

(
m⊗m

̺
+ P (̺)1

)
+ R+ φ1 .

the metric derivative of t 7→mt induced by the distance (3) is given by

(5) |m′|(t) =
ˆ
Ṙd

tr
(
U(t, dx)

)
for a.e. t ∈ [0,∞).

We refer the reader to [5] for more information. The metric derivative is a measure
for the rate of change in time of the momentum. As such it can also be understood
as a measure of the acceleration of the fluid. We will be interested in dissipative
solutions that minimize the metric derivative |m′|, i.e., the acceleration.
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Since the metric derivative is a function of time, its minimization yields a multi-
objective optimization problem. Several strategies have been devised to deal with
such problems. We consider two: scalarization and seeking minimal elements.

Shortest Solutions. Scalarization means to build one objective function out of
the many. In our case, one natural approach is to consider the integral

(6)

ˆ T

0

|m′|(t) dt =: L(m).

Since the metric derivative measures the rate of change of the momentum, we can
think of L(m) as the length of the momentum curve. Given initial data, we then
consider the set X of all dissipative solutions to this initial data. The set X is not
empty as dissipative solutions are known to exist globally; see [5] for example. It
may contain only one element when the data is such that a unique strong solution
to (1) exists. Indeed, since dissipative solutions have the weak-strong uniqueness
property, they coincide with strong solutions of (1) as long as the latter do exist.
One can check that the set of dissipative solutions to given initial data is compact
with respect to the topology of weak* convergence of Young measures. Moreover,
combining (6) with (5)/(4), one can check that the length (6) is continuous with
respect to this topology, so existence of dissipative solutions minimizing (6) follows
easily. We call such dissipative solutions shortest solutions.

Minimal Elements. Inspired by Dafermos’ [2] entropy rate admissibility con-
dition, one might also be interested in dissipative solutions that minimize (5) for
every t. It is not clear to us whether this amounts to a well-posed problem. We can
look instead for Pareto-optimal solutions, i.e., for minimal elements with respect
to a suitable quasi-order defined on the set of dissipative solutions in terms of com-
paring the metric derivative (5) of different dissipative solutions at all times. A
quasi-order is a binary relation that is reflexive and transitive, but not necessarily
antisymmetric. If this quasi-order is compatible with a topology, then one can use
the following existence result due to Wallace [4].

Theorem 9 (Wallace). Suppose that X is a nonempty compact set with a quasi-
order R such that the set of predecessors P (x) of x is closed for every x ∈ X.
Then X has a minimal element, i.e., an element m ∈ X with the property that,

if y ∈ X and m can be compared at all, then (m, y) ∈ R.

This result can be applied with X the set of dissipative solutions of (1) to given
initial data, and with the quasi-order defined in terms of the metric derivative (5).
A suitable topology is again the weak* convergence of Young measures. Wallace’s
result constructs minimal elements starting from totally ordered subsets of X ,
which exist because of the Hausdorff maximal principle (i.e., the axiom of choice).
The construction does, however, not minimize over the whole set X .

The motivation for our approach is that it may well be the case that for certain
“wild” initial data, weak solutions of (1) cannot be expected to exist for all times.
For configurations such as Kelvin-Helmholtz instabilities, defect measures may not
vanish because oscillatory features persist at arbitrarily small length scales in the
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absence of viscosity. One can try to construct solutions that are as close to being
a weak solution as possible. In regions with nonvanishing defect measures, a more
robust version of the De Lellis–Székelyhidi method may then be tried to repair the
dissipative solution to become a (or infinitely many) weak solution(s).
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Winterthurerstrasse 190
8057 Zürich
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