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Differential equations make predictions on the future
state of a system given the present. In order to
get a sensible prediction, sometimes it is necessary
to include randomness in differential equations, tak-
ing microscopic effects into account. Surprisingly, de-
spite the presence of randomness, our probabilistic
prediction of future states is stable with respect to
changes in the surrounding environment, even if the
original prediction was unstable. This snapshot will
unveil the core mathematical mechanism underlying
this “regularisation by noise” phenomenon.
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1 A fi rst example

Newton’s laws of mot ion. Imagine a perfectly spherical ball, positioned at
the exact top of a symmetric hill, like in Figure 1. Under the action of gravity,
no matter how slightly we move the ball, it will fall down one of the two sides
of the hill, and – depending on the strength of friction – settle in one of the
neighbouring valleys. How well can we predict where the ball will end up?

Figure 1: A ball on a hill.

A first, naïve idea would be to apply Newton’s laws of motion, so to approxi-
mate the final position of the ball, given the exact initial state, which includes
the mass of the ball, the strength of friction, and much more. This would bring
us to the conclusion that the ball will never leave its location.

But this approximation is contrary to our intuition, and it does not account
for effects such as a small whiff of wind: We intuitively understand that the
ball at the top of the hill finds itself in a precarious state and any ever-so-small
impurity or force could be enough to set it rolling down either of the two slopes.

A more reasonable expectation on the final state is that with a 50% chance the
ball will end up at the bottom of the valley on its left and with the remaining
50% chance it will end up at the bottom of the valley on its right, always
assuming that friction is sufficiently strong, so that the ball does not fall into
an even further valley. We have passed from a deterministic prediction on the
location or our ball, to a probabilistic one, which better fits our expectations.

We encode those small, unexpected changes in the surrounding environment
as a random force, called noise or stochastic term. In the next section, we
will gradually build up a mathematical formulation for this, in the language of
stochastic differential equations.

2 Dif ferent ia l equat ions

We start by exploring the movement of the ball in the language of ordinary
differential equations. The study of ordinary differential equations (ODEs) dates
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back several centuries, and such systems find an enormity of applications, from
the description of trajectories of planets to the evolution of a population in a
Petri dish. In the language of ODEs, we describe the velocity of the little ball
as the time derivative of its position x(t) ≡ xt ∈ Rd at time t. Denoting by
V (x) the height of the hill at position x, we can write the basic movement of
the ball, which rolls downwards the slope ∂xV (x) of the hill, as

dxt
dt = −∂xV (xt) . (1)

Let us rewrite this equation of motion in a slightly more abstract way, and let
us speak of general particles xt ∈ Rd moving in a velocity field ϕ : Rd → Rd,
often called drift, so dxt

dt = ϕ(xt). Usually, especially in physics, a different way
of writing this equation, using differentials,

dxt = ϕ(xt) dt (2)

is common, and we adopt it here to align with its usage in the stochastic case
that we will describe in Section 3.

Existence and uniqueness of solut ions

A fundamental mathematical question is whether an ODE admits solutions
and, if so, whether the solution is unique. The answer to this question depends
heavily on the regularity of the drift ϕ, i.e. how rapidly ϕ changes its value
over time, or more generally over its domain. A first simple distinction between
different levels of regularity is to separate functions whose graph is a line without
interruption, the continuous functions, from functions that have jumps. But also
continuous functions can be quite wild, for example when they are oscillating,
in the sense that they change values abruptly.

For our ODE problem, a good class is provided by Lipschitz continuous
functions: a function ϕ : R → R is said to be Lipschitz continuous (or just
Lipschitz for short) if for some constant L > 0

|ϕ(x)− ϕ(y)|
|x− y|

≤ L , ∀x, y ∈ R, x 6= y .

Hence, for any Lipschitz function ϕ, there is a limitation on how fast it can
change. The limitation is given by the Lipschitz constant L which describes the
most dramatic change that the function ϕ may undergo. If ϕ is differentiable,
then we can determine the Lipschitz constant easily as L = maxx∈R |ϕ′(x)|.
The function ϕ(x) =

√
|x| is not Lipschitz, as it becomes steeper and steeper

the closer |x| is to zero, see Figure 2.
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Figure 2: Examples of a non-Lipschitz and a Lipschitz function

Equipped with Lipschitz continuous functions, we can go back to the question
of the existence and uniqueness of the solution of Equation (2), the Picard–
Lindelöf Theorem. This classical result discusses the Cauchy problem, namely
the solvability of a differential equation for a prescribed initial condition, such
as the evolution of a ball starting from a specified point on the top of a hill,
with a specified velocity.

Theorem 2.1 (Picard–Lindelöf) If ϕ is Lipschitz continuous, then, for any
initial condition x̄ ∈ Rd, the Cauchy problem

dxt = ϕ(xt) dt, x0 = x̄

admits a unique solution, defined over all t ≥ 0. The solution depends continu-
ously on the initial datum x̄.

The Picard–Lindelöf theorem tells us that the initial value problem is well-posed,
namely, for every initial datum there exists a unique solution to the differential
equation and this solution is stable, i.e. it depends continuously on the initial
datum. Let us investigate now if we can allow also less regular functions ϕ,
namely those which are only continuous. This is the setting of Peano’s theorem:

Theorem 2.2 (Peano) If ϕ is continuous and bounded, then the Cauchy
problem

dxt = ϕ(xt) dt, x0 = x̄

admits a solution.

The assumption of a continuous drift ϕ in Peano’s theorem ensures the existence
of a solution, but not its uniqueness, as was the case with Lipschitz continuity
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in the Picard–Lindelöf theorem. We can see this at the example of the ODE

dxt = sign(xt) |xt|α dt, x0 = 0

where α is a parameter in (0, 1) and sign(x) denotes the sign of x, which is
the function that is 1 when x is positive, −1 when x is negative, and taken
to be equal to 0 if x = 0. Clearly, xt = 0 is a solution to the equation.
But one can check that xt := ((1− α)t)

1
1−α is a solution as well, and so is

xt := − ((1− α)t)
1

1−α .
In addition, for all t0 ≥ 0, t ≥ 0 defined by

xt := ((1− α)(t− t0)+)
1

1−α =
{

0 if t < t0

((1− α)(t− t0))
1

1−α if t ≥ t0

is also a solution. We see therefore that there are infinitely many different
solutions to the same Cauchy problem, see Figure 3: we call this a Peano
phenomenon.

Figure 3: Several solutions to the same Cauchy problem dxt = sign(xt)
√
|xt|dt

with x0 = 0: a Peano phenomenon.

Before we continue with the stochastic case, let us discuss the assumptions
of Peano’s theorem more closely: The boundedness assumption may be further
weakened, at the expense of having solutions which may only exist for a finite
time. But the continuity of ϕ is a necessary assumption, we cannot ask for
less. To see this, we integrate both sides of Equation (2) to avoid the usage of
derivatives. This gives us the integral formulation of the ODE

xt = x0 +
∫ t

0
ϕ(xs) ds . (3)

5



If ϕ is not continuous, it is not clear how to define the integral
∫ t

0 ϕ(xs) ds
in Equation (3), and existence may actually not hold.

3 Stochast ic di f ferent ia l equat ions

Let us now study what happens if we perturb our original ODE by adding a
forcing term, also called a stochastic process or noise, denoted by (wt)t≥0.

A common choice of noise is Brownian motion. Brownian motion was first
discovered in 1827 by the botanist Robert Brown, who was observing particles
within a grain of pollen suspended in water. We omit the formal definition of
Brownian motion, referring the interested reader to the book [5], but it can
be thought of as the zoomed-out trajectory of a particle moving right-up or
right-down with probability 1/2 at each step: as we zoom out more and more,
this saw-tooth-like trajectory takes the form of a wiggly function, which, albeit
continuous, is not Lipschitz continuous, see Figure 4.

Figure 4: Brownian motion is the limit of a random walk as we “zoom out”,
see Section 5.

We now have all ingredients to formulate our initial example of the ball on
the top of the hill in the language of stochastic differential equations. Using the
infinitesimal notation from Equation (2), we can write a more accurate version
of Equation (1) of the movement of the little ball as

dxt︸︷︷︸
velocity

= − ∂xV (xt)︸ ︷︷ ︸
landscape

dt+ ε dBt︸︷︷︸
noise

. (4)

In this new equation, the velocity of the ball, or, more precisely, the instantaneous
variation of the position xt of the ball, follows the slope ∂xV (xt) downwards
and is perturbed in that instant by a random force dBt, where B stands
for Brownian motion. The effect of the noise is multiplied with a parameter
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0 < ε� 1, which indicates that the effect is very small. Such a very small and
maybe undetectable perturbation is often called microscopic in the literature.

The effect of noise

As suggested by the intuition we described at the beginning of this exposition, if
a ball is positioned at the top of a hill and is perturbed by some random velocity,
then we expect to find the ball in either one of the two bottom valleys next
to the peak from which it started, with roughly 50% chance. This mechanism
appears also in the study of differential equations. Indeed, the infinitely many
solutions depicted in Figure 3 and the preceding discussion describe the position
of a particle xt which sits at level x = 0 for an arbitrary amount of time t0,
before escaping either to the upper or to the lower region. If we add noise to the
differential equation describing xt, the particle will not be able to sit indefinitely
at zero. Instead, it will be instantaneously kicked out, either towards the top
or towards the bottom: we have ruled out all non-physical solutions. Bafico
and Baldi [1] were among the first to observe this remarkable effect, and they
were able to prove that if the noise is small, then the probability with which
the particle immediately moves up or down is exactly 50%, as described by our
original intuition. This is one of the first, simplest, and most striking instances
of regularisation by noise.

4 Restor ing wel l -posedness via addi t ive noise

In this section, we will unveil how adding a stochastic term as irregular as Brow-
nian motion can actually make a solution to a differential equation well-defined,
in the sense that solutions exist and are unique, even when the deterministic
counterpart is not: this is what we call a regularisation by noise phenomenon.

Let us consider a stochastic differential equation with a continuous drift
function ϕ and very fluctuating noise term wt, for example Brownian motion.

dxt = ϕ(xt) dt+ dwt, x0 = x, (5)

At first, adding noise does not seem to make our problem any simpler: if ϕ is
not a Lipschitz function, so not regular enough to ensure well-posedness of the
problem, adding another term just as bad will not make the situation better.
However, we will see that a careful choice of noise may induce an averaging
effect that may restore well-posedness of the equation.

How does noise regular ise?

To explain the kind of averaging that will smoothen (or regularise) the drift ϕ,
let us assume that ϕ is the discontinuous function defined by ϕ(x) = 1 if x ≥ 0
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and ϕ(x) = 0 if x < 0. We can rewrite Equation (5) in integral form as

xt = x0 +
∫ t

0
ϕ(xs) ds+ wt .

Setting yt := xt − wt, we may in turn rewrite this as

yt = x0 +
∫ t

0
ϕ(ys + ws) ds .

Let us now study the function

x 7→
∫ t

0
ϕ(x+ ws) ds . (6)

A priori, because of the discontinuity of ϕ, we would guess that this function
would be discontinuous. However, for sufficiently “fluctuating” noise w, such as
Brownian motion, it turns out that x 7→

∫ t
0 ϕ(x+ ws) ds will be quite regular,

actually even Lipschitz continuous, see Figure 5. This is because, almost

Figure 5: From left to right, a deterministic function ϕ(x), its randomly regu-
larised version

∫ 1
0 ϕ(x+Bs) ds and averaged version E

∫ 1
0 ϕ(x+Bs) ds.

instantaneously, w will explore the entire area surrounding its starting point,
thereby “averaging out” the discontinuity of ϕ. It is like a staircase whose
steps are being levelled off under a snow storm: when the storm is over, the
discontinuities are covered with snow, and you will be able to slide down the
slope without any problem.

Getting back to Equation (5), we can use this enhanced continuity induced
by the noise to prove well-posedness of the problem at hand. The rule of thumb
is: provided that the noise w “fluctuates” enough, so that the regularity of
x 7→

∫ t
0 ϕ(x + ws) ds is sufficiently enhanced, well-posedness of Equation (5)

can be restored.
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But let’s not deceive ourselves by the word “regularising effect”: while we
gain well-posedness of an ODE for which we may previously have had multiple
solutions (no uniqueness) or no solution at all, it does by no means indicate
that sample paths of solutions are smoother as functions of time: in fact, the
exact opposite is true.

How do we measure the regular is ing effect of noise?

What do we mean when we say that the noise (wt)t≥0 has to “fluctuate suffi-
ciently”? One way to quantify fluctuations, or irregularity, is to consider the
time spent by the process (wt)t≥0 at a given location. We can prove that for a
wide class of random noises w such as Brownian motion, it is possible to define,
for all a ∈ R, a number Lwt (a) quantifying the amount of time spent by w at a,
before time t, called a local time. It satisfies, for all functions ϕ, the relation∫ T

0
ϕ(ws + x) ds =

∫
R
ϕ(a+ x)LwT (a) da . (7)

Intuitively, this means that we can assign to each location a ∈ R a clock that
ticks every time the process (wt)t≥0 visits a. If the process (wt)t≥0 fluctuates
much, so that it explores the space evenly, the times Lt(a) and Lt(b) displayed at
two nearby points a and b will be close. This heuristics can be made quantitative
as follows. Let Cr denote the space of r times differentiable functions. The
noise w is said to be r-regularising if, for all t > 0, a 7→ Lwt (a) is of class Cr. If
w satisfies this property with r = ∞, we say that it is infinitely regularising.
Let us explain how the regularising noise can be of any help to our problem.
We first recall the notion of convolution, which has the property of smoothing
out irregular functions.

Let ϕ : R→ R be a function and w be an r-regularising noise, for some r ≥ 0.
Then the convolution of LwT and ϕ is the function LwT ∗ ϕ defined by

(LwT ∗ ϕ)(x) :=
∫
R
LwT (a)ϕ(x+ a) da , (8)

whenever the integral is defined. 3 In the right-hand side above, we recognise
the quantity of Equation (7). From the properties of the convolution, as soon as
a 7→ Lwt (a) is of class Cr, we deduce that the function x 7→

∫ T
0 ϕ(ws+x) ds is of

class Cr as well, even if ϕ is a very wild function. In particular, if w is infinitely
regularising, the function x 7→

∫ T
0 ϕ(ws + x) ds is smooth. We stress that this

3 For simplicity, the definition of convolution used here differs slightly from the usual one
which, if adopted, would require to replace the left-hand side of Equation (8) by Lw

T ∗ ϕ̆, where
ϕ̆(x) = ϕ(−x).
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will be independent of the continuity of ϕ and indeed this approach allows to
choose highly irregular, so called generalised functions, for example the Dirac
function which may be loosely defined as a function vanishing away from 0 and
integrating to 1. The fact that x 7→

∫ T
0 ϕ(ws + x) ds is more regular than the

original function ϕ is a key observation to prove that adding regularising noise
to our original ODE restores well-posedness.

5 Examples and out look

Where do we f ind regular is ing paths?

Constructing a path with the mentioned regularising properties with bare hands
is quite challenging. Recent works have shown that regularising paths must
be rough, to an amount that can be quantified precisely, see [3, Corollary 74].
Conversely, identifying paths having the required regularising property has been
a long-standing open problem. One way to circumvent this difficulty consists,
instead of trying to construct a fixed regularising path, in using probability
theory to obtain such a path by picking it at random.

A typical example is obtained by sampling the path w as a Brownian motion,
see Figure 4. Then one can prove that w possesses the nice property of being
regularising with r = 1/2 − ε for any ε > 0, where the meaning of fractional
regularity is that a function is “half-way” between merely continuous and
differentiable, such as for example ϕ(x) =

√
|x|.

Universal i ty of Brownian motion

Besides having the desired regularising effect, Brownian motion turns out to be
commonly observed in real-life problems, because of its so-called universality. In
a nutshell, coming back to our description in terms of the zoomed-out trajectory
of a microscopic particle performing a random walk, it does not matter how
precisely our particle moves: as long as on average it jumps as much up as it
does down, and as long as the choice of the first jump is chosen independent
of the jump at a distant, later time, we will always see a Brownian motion
when we zoom out. Of course, we have to zoom out at an appropriate speed.
If Xt is the position of the particle at time t > 0 (say started at X0 = 0), then
after a time n� 1 the particle will have reached a distance of order

√
n: it is

the same scaling as for the central limit theorem 4 , which is closely linked to
this derivation of Brownian motion. We obtain that, as n→∞, 1√

n
Xnt → Bt,

where Bt is a Brownian motion.

4 See [2, Chapter 3] for a detailed exposition.
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Inf in i te ly regular is ing paths

Can one construct a noise that regularises better than Brownian motion? For
example, if we take any r ≥ 0, potentially very large, can we construct a noise
that is r-regularising? The answer is positive, and one can even construct a
noise that is infinitely regularising. We do not describe how such a noise is
constructed, but just mention that it can be obtained as some “rougher version”
of a Brownian motion, and refer the interested reader to [4] for more details.

Figure 6: An infinitely regularising noise.
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