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Abstract. The 2023 Oberwolfach meeting “Geometric, Algebraic, and To-
pological Combinatorics” was organized by Gil Kalai (Jerusalem), Isabella
Novik (Seattle), Francisco Santos (Santander), and Volkmar Welker (Mar-
burg). It covered a wide variety of aspects of Discrete Geometry, Algebraic
Combinatorics with geometric flavor, and Topological Combinatorics. Some
of the highlights of the conference were (1) Federico Ardila and Tom Braden
discussed recent exciting developments in the intersection theory of matroids;
(2) Stavros Papadakis and Vasiliki Petrotou presented their proof of the Lef-
schetz property for spheres, and, more generally, for pseudomanifolds and cy-
cles (this second part is joint with Karim Adiprasito); (3) Gaku Liu reported
on his joint work with Spencer Backman that establishes the existence of a
regular unimodular triangulation of an arbitrary matroid base polytope.
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Introduction by the Organizers

The 2023 Oberwolfach meeting “Geometric, Algebraic, and Topological Combina-
torics” was organized by Gil Kalai (Hebrew University, Jerusalem), Isabella Novik
(University of Washington, Seattle), Francisco Santos (University of Cantabria,
Santander), and Volkmar Welker (Philipps-Universität Marburg, Marburg).

The conference featured three 1-hour talks by Federico Ardila on “Intersec-
tion theory of matroids”, Eran Nevo on “Rigidity expander graphs”, and by Tom
Braden on “The intersection cohomology module of a matroid”, two back-to-back
35-minute talks by Vasiliki Petrotou and Stavros Papadakis “Lefschetz properties
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via anisotropy”, a 50-minute talk by Nati Linial on “Some stories about graphs
and geometry”, and 23 additional talks, ranging from 30 to 40 minutes. On Thurs-
day evening we held a problem session. After and before the lectures many small
groups embarked in discussions, some of which initiated new collaborations. All
together it was a very productive, intense and enjoyable week.

The conference covered a broad spectrum of topics from Algebraic Combina-
torics (intersection cohomology modules, Lefschetz theorems, Koszul duality),
Topological Combinatorics (configuration spaces, envy-free partitions, random
complexes), and Geometric Combinatorics (face enumeration, polytope theory,
matroid polytopes, lattice polytopes, rigidity theory).

In the next paragraphs we summarize the richness and depth of the work and
the presentations, concentrating on some of the highlights.

The first lecture on Monday, by Federico Ardila (based on his Clay lecture at
the British Combinatorial Conference 2024, see F. Ardila-Mantilla, Intersection
theory of matroids: Variations on a theme, in: Surveys in Combinatorics 2024,
pp. 1-30, Cambridge University Press, 2024) discussed four different ways to
define the Chow ring of a toric variety due to Billera, Brion, Fulton–Sturmfels,
and Allermann–Rau. Federico also explained how the different representations of
the Chow ring enable different proofs of recent spectacular combinatorial results
such as unimodality of the coefficients of chromatic polynomials.

Gaku Liu’s talk then presented an ingenious inductive proof that every matroid
base polytope has a regular unimodular triangulation.

The rest of Monday was devoted to a variety of topics in algebraic and geometric
combinatorics. For instance, Eran Nevo discussed a proof of the existence of
an infinite family of k-regular d-rigidity-expander graphs for every d ≥ 2 and
k ≥ 2d+ 1.

Tuesday morning focused on topological combinatorics. Florian Frick talked
about topological methods in zero-sum Ramsey theory. Pablo Soberon discussed
high-dimensional envy-free partitions. Kevin Piterman talked about fixed-point-
free actions of finite groups on contractible spaces. More specifically, Kevin pre-
sented a solution to a central problem about the existence of fixed points for every
finite group acting on a compact 2-complex. Finally, Roy Meshulam’s lecture
on random balanced Cayley complexes was a very rich blend of combinatorial,
topological, Fourier-theoretical, and algebraic methods.

On Tuesday afternoon we had several talks related to polytope theory and in
particular to lattice polytopes.

Wednesday morning started with an hour lecture by Tom Braden. This lecture
complemented Ardila’s talk from Monday morning reporting on recent fascinating
developments in the matroid theory; this time via the lens of Algebraic Geometry.

The second part of Wednesday morning consisted of two back-to-back talks by
Stavros Papadakis and Vasiliki Petrotou. They discussed their notion of anisotrop-
icity of simplicial spheres which led to their proof of the Lefschetz property for
spheres, and, more generally, for pseudomanifolds and cycles (this second part is
joint with Adiprasito). The Lefschetz property, in turn, leads to a simpler proof of
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the g-conjecture for spheres. Their talks were followed by Christos Athanasiadis’
talk on face enumeration and real-rootedness.

On Thursday, the focus returned to topological questions, a highlight being
Geva Yashfe’s talk about the number of triangulations of homology 3-spheres.

Friday morning was devoted to a mixture of topics in polyhedral geometry and
hyperplane arrangements. The final lecture of the conference was given by Nati
Linial who discussed recent progress on geodetic and metrizable graphs.

It bears repeating that numerous breakthrough results were announced and
presented during the conference.

We are extremely grateful to the Oberwolfach institute, its directorate and to
all of its staff for providing a perfect setting for an inspiring, intensive week of
“Geometric, Algebraic, and Topological Combinatorics”.

Gil Kalai, Isabella Novik, Francisco Santos, Volkmar Welker
Jerusalem/Seattle/Santander/Marburg, April 2024

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Intersection theory of matroids: techniques and examples

Federico Ardila

Chow rings of toric varieties, which originate in intersection theory, feature a rich
combinatorial structure of independent interest. We survey four different ways of
computing in these rings, due to Billera, Brion, Fulton–Sturmfels, and Allermann–
Rau. We illustrate the beauty and power of these methods by giving four proofs
of Huh and Huh–Katz’s formula µk(M) = degM (αr−kβk) for the coefficients of
the reduced characteristic polynomial of a matroid M as the mixed intersection
numbers of the hyperplane and reciprocal hyperplane classes α and β in the Chow
ring of M . Each of these proofs sheds light on a different aspect of matroid com-
binatorics, and provides a framework for further developments in the intersection
theory of matroids. Our presentation is combinatorial, and does not assume pre-
vious knowledge of toric varieties, Chow rings, or intersection theory.

Face enumeration of order complexes and real-rootedness

Christos A. Athanasiadis

(joint work with Katerina Kalampogia-Evangelinou)

Given a finite poset P , the order complex ∆(P ) is the abstract simplicial complex
which consists of all chains in P . Order complexes of Cohen–Macaulay posets form
a class of flag simplicial complexes with especially nice properties [12, Section III.4].
Somewhat unexpectedly, their face enumeration is far from being well understood.
We aim to show that their f -polynomials (equivalently, their h-polynomials) tend
to be real-rooted surprisingly often by discussing examples and methods that can
be applied.

Let us denote by ck(P ) the number of k-element chains in P . The f -polynomial
and the h-polynomial of ∆(P ) are then defined as

f(∆(P ), x) =

n∑

k=0

ck(P )x
k,

h(∆(P ), x) =

n∑

k=0

ck(P )x
k(1− x)n−k = (1 − x)nf

(
x

1− x

)
,

where n is the largest cardinality of a chain in P . The polynomial f(∆(P ), x)
is also called the chain polynomial of P . We recall that h(∆(P ), x) has nonneg-
ative coefficients for every Cohen–Macaulay poset P (see [12, Chapter II]) and
that f(∆(P ), x) is real-rooted (meaning, all its roots are real) if and only if so is
h(∆(P ), x).

Our motivation comes from the following two conjectures. The first was posed
as a question by Brenti–Welker [9] and claims that barycentric subdivisions of
convex polytopes have real-rooted h-polynomials.
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Conjecture 1. (cf. [9, Question 1]) The polynomial h(∆(P ), x) is real-rooted if
P is the face lattice of a convex polytope.

Conjecture 2. ([3, Conjecture 1.2]) The polynomial h(∆(P ), x) is real-rooted for
every geometric lattice P (equivalently, if P is the lattice of flats of a matroid).

The latter conjecture would imply the unimodality of the h-polynomials of
order complexes of geometric lattices. These two conjectures naturally raise the
following question.

Question 3. ([3, Question 1.1]) For which finite Cohen–Macaulay posets P is
h(∆(P ), x) real-rooted? Equivalently, which finite Cohen–Macaulay posets have a
real-rooted chain polynomial?

Let us briefly discuss some answers to Question 3 which are known in interesting
special cases. For distributive lattices the question is known to be equivalent to
the Neggers conjecture [10] (see also [5] [11, Conjecture 1]), which claims the real-
rootedness of poset Eulerian polynomials. Thus, there exist distributive lattices
which fail to have real-rooted chain polynomials [13]. On the other hand, classes of
Cohen–Macaulay posets with real-rooted chains polynomials include some classes
of distributive lattices [8, 14] and:

• Cohen–Macaulay simplicial posets [9] (in particular, face lattices of sim-
plicial or simple polytopes) and all their rank-selected subposets [4];

• CL-shellable cubical posets [2] (in particular, face lattices of cubical poly-
topes);

• the face lattices of the pyramid and the prism over polytopes which have
a face lattice with real-rooted chain polynomial [3];

• partition lattices of types A and B and subspace lattices [3];
• the lattices of flats of paving matroids [7] and those of near-pencils, uniform
matroids and all matroids on at most nine elements [3];

• all noncrossing partition lattices associated to irreducible finite Coxeter
groups [4].

A popular method of proof is to express h(∆(P ), x) as a nonnegative linear com-
bination of real-rooted polynomials with positive leading coefficients which form
an interlacing sequence (or, more generally, which have a common interleaver); see
[6, Section 7.8] and references therein for the relevant background. We illustrate
this method in two cases in which it has been successful, namely those of simplicial
and cubical posets (see [12, Section II.6] and [1] for background on simplicial and
cubical posets and their h-vectors).

Theorem 4. (cf. [9, Theorems 1 and 2]) For every positive integer n, there exists
an interlacing sequence (pn,k(x))0≤k≤n of real-rooted polynomials with nonnegative
coefficients such that

h(∆(P ), x) =

n∑

k=0

hk(P )pn,k(x)
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for every simplicial poset P of rank n, where (hk(P ))0≤k≤n is the simplicial h-
vector of P . In particular, h(∆(P ), x) is real-rooted for every simplicial poset P
with nonnegative simplicial h-vector.

The polynomial pn,k(x) can be defined by the formula

∑

m≥0

mk(1 +m)n−kxm =
pn,k(x)

(1− x)n+1
,

or as the descent enumerator of permutations w of {1, 2, . . . , n + 1} such that
w(1) = k + 1.

Theorem 5. ([2]) For every nonnegative integer n, there exists an interlacing
sequence (pBn,k(x))0≤k≤n+1 of real-rooted polynomials with nonnegative coefficients
such that

h(∆(Q), x) =
n+1∑

k=0

hk(Q)pBn,k(x)

for every cubical poset Q of rank n + 1, where (hk(Q))0≤k≤n+1 is the cubical h-
vector of Q. In particular, h(∆(Q), x) is real-rooted for every cubical poset Q
which has a nonnegative cubical h-vector.

The polynomials pBn,k(x) can be defined by the formula

pBn,k(x)

(1− x)n+1
=





∑

m≥0

(2m+ 1)nxm, if k = 0,

∑

m≥0

(4m)(2m− 1)k−1(2m+ 1)n−kxm, if 1 ≤ k ≤ n,

∑

m≥1

(2m− 1)nxm, if k = n+ 1.
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Convex partitions in a slice

Pavle V. M. Blagojević

(joint work with Michael C. Crabb)

1. Convex partitions of Euclidean spaces

Problems related to the existence of convex partitions of a Euclidean space of a
desired type have a long and rich history, starting with the 1930’s ham-sandwich
theorem of Steinhaus and Borsuk as the most famous example. The ham-sandwich
theorem claims that for every collection of d proper convex bodies C1, . . . , Cd in
Rd there exists a convex partition of Rd into 2 pieces A1 and A2 such that

vold(C1 ∩ A1) = vold(C1 ∩ A2) , . . . , vold(Cd ∩ A1) = vold(Cd ∩ A2).

Here, the closed convex sets A1 and A2 with non-empty interior form a convex
partition of Rd if A1∪A2 = Rd and int(A1)∩int(A2) = ∅, (hence vold(A1∩A2) = 0).

A natural extension is the question: For given integers d, k, j ≥ 1 and an
arbitrary collection C of j proper convex bodies in Rd is it possible to find k affine
hyperplanes such that every orthant Ω determined by them contains the same piece
of each convex body in C, that is vold(C ∩ Ω) = 1

2k
vold(C) for every C ∈ C. The

work on this generalisation of the ham-sandwich theorem, the so called Grünbaum–
Hadwiger–Ramos problem, was pioneered by Grünbaum [11], Hadwiger [12] and
Avis [2], and a bit later continued by Edgar Ramos [16]. Topological challenges
emerging in the process of solving this problem were recently discussed in [7].

In 2006 Nandakumar & Ramana-Rao asked for a solution of the following in-
triguing problem: Is it true that for every integer n ≥ 2 and every proper convex
body C in the plane there is a convex partition of the plane into n pieces A1, . . . , An

having equal area and equal perimeter, that is

vol2(C ∩ A1) = · · · = vol2(C ∩ An) and per(C ∩ A1) = · · · = per(C ∩ An),

where “per” denotes the plane perimeter function. This naive-looking question
caught a lot of attention and many authors contributed to its better understand-
ing. For more details see the work of Bárány, Blagojević & Szűcs [3], Soberón
[17], Karasev, Hubard & Aronov [14], Blagojević & Ziegler [10], and Blagojević
& Sadovek [8]. Recently a promising work of Akopyan, Avvakumov & Karasev
offered a new insight into a complete solution of the original, plane, Nandakumar
& Ramana-Rao problem [1]. The work on a solution of this problem brought into
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Figure 1. Convex partitions of the plain by orthants into 4
pieces, by generalised Voronoi diagram into 6 pieces, and by iter-
ation of depth 2 into 6 = 2 · 3 pieces.

focus convex partitions generated by generalised Voronoi diagrams of Rd which
in addition equipart a fixed convex body into pieces of equal volume. Surpris-
ingly such convex partitions can be completely parametrised by the configuration
space of pairwise distinct points in Rd. Each point in the space corresponds to a
collection of the so-called “sites” of a generalised Voronoi diagram.

Iterated convex partitions appeared for the first time in context of the Gromov’s
waist of the sphere theorem. Gromov worked with the partitions into 2i pieces,
which can be parametrised by the wreath products of spheres. For a different
waist of the sphere result, Palić with Blagojević and Karasev in [15] considered
iterated convex partitions into pk pieces indexed by the kth wreath product of the
configuration spaces. Iterated partitions appeared also in the work of Blagojević &
Soberón [9], where they were parametrised by the join of the configuration space.
The most general iterated convex partition in the context of the Nandakumar &
Ramana-Rao problems were recently considered by Blagojević & Sadovek in [8].

A general convex equipartition problem can be formulated as follows.

Problem (Convex partitions of a Euclidean space) Let d, j, n ≥ 1 be fixed in-
tegers, C an arbitrary collection of j proper convex bodies in Rd and let P be
a predetermined class of convex partitions of Rd, like partitions by orthants, by
(generalised) Voronoi diagrams, or by iterated convex partition (see Figure 1 for
an illustration). Is there a partition (A1, . . . , An) of R

d from the class P with the
property that vold(C ∩ A1) = · · · = vold(C ∩ An) for every convex body C ∈ C.

2. Convex partitions of Euclidean vector bundles

Motivated by the classical problems of convex partitions of a Euclidean space we
ask whether a similar result can be obtained if instead of one (ambient) Euclidean
space we consider a (parametrised) family of Euclidean spaces and look for a
convex partition of at least one of these spaces satisfying the desired property. A
prototype of the problems we want to address can be phrased in the following way.

Problem (Convex partitions of tautological vector bundles) Let d, j, n, k ≥ 1 be
fixed integers, C a collection of j proper convex bodies in Rd with the origin in
their interiors and let P be a predetermined class of convex partitions of Rk. Is
there an ℓ-dimensional linear subspace L of Rd and a partition (A1, . . . , An) of L
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from the class P with the property that vold(C ∩L∩A1) = · · · = vold(C ∩L∩An)
for every convex body C ∈ C.

In the case of partitions by orthants in a tautological vector bundle Blagojević,
Calles Loperena, Crabb & Dimitrijević Blagojević, using the parametrised Fadell–
Husseini index theory and delicate spectral sequence computations, proved the
following result [4, Thm. 1.5].

Theorem 1. Let d, j, n, k, ℓ ≥ 1 be fixed integers, C a collection of j proper
convex bodies in Rd with the origin in theirs interiors such that 1 ≤ k ≤ ℓ and
d ≥ 2⌊log2 j⌋(2k−1 − 1) + j. There exists an ℓ-dimensional linear subspace L of Rd

and k affine hyperplanes in L such that volℓ(C ∩L∩Ω) = 1
2k
volℓ(C ∩L) for every

C ∈ C and every orthant Ω ⊆ L determined by the affine hyperplanes.

In the followup work, Blagojević & Crabb [5] gave the complete treatment of
a problem of convex partitions by orthants on Euclidean vector bundles. Using a
new insight they reprove known results and extend them to arbitrary Euclidean
vector bundles putting various types of constraints on the solutions. Furthermore,
the developed methods allowed them to give new proofs and extend results of Guth
& Katz, Schnider and Soberón & Takahashi.

Levinson, in collaboration with Blagojević & Crabb, considered the problem
of convex partitions in Euclidean vector bundle by generalised Voronoi diagrams
[6, 13]. An example of the results they obtained is the following theorem.

Theorem 2. Let d ≥ 2, j ≥ 1, and 1 ≤ ℓ ≤ d be integers and let n an odd prime.
Consider an arbitrary collection C of j proper convex bodies in Rd with the origin
in theirs interiors. If j ≤ d− 2, then there exists an ℓ-dimensional linear subspace
L of Rd and a convex partition A1, . . . , An of L by a generalised Voronoi diagram
such that volℓ(C ∩L∩A1) = · · · = volℓ(C ∩L∩An), for every convex body C ∈ C.
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The intersection cohomology module of a matroid

Tom Braden

(joint work with June Huh, Jacob Matherne, Nicholas Proudfoot, Botong Wang)

Let M be a matroid of rank d on the ground set [n], and let L = L(M) be its lattice
of flats. The number of flats of rank k is Wk = Wk(M), the kth Whitney number
of the second kind of M. In the 1975 paper [8], Dowling and Wilson proved that
if k ≤ d/2 then

W0 +W1 + · · ·+Wk ≤Wd−k +Wd−k+1 + · · ·+Wd.

They also made the stronger conjecture that

Wk ≤Wd−k,

which has become known as the Dowling–Wilson or “top-heavy” conjecture for
matroids. It was proved for d = 3 by de Bruijn and Erdős [6], and for k = 1 by
Basterfield and Kelly [1]. When M is realizable it was proved by Huh and Wang
[9] using the intersection cohomology of an associated algebraic variety, and it is
proved in general in [4], by defining the intersection cohomology combinatorially
for an arbitrary matroid, and showing that it has the required properties.

If M is realized by vectors v1, v2, . . . , vn spanning a vector space V over C, then

ξ 7→ (ξ(v1), . . . , ξ(vn))

gives an injection V ∗ →֒ Cn. Huh and Wang considered the singular variety Y
which is the closure of the image of V ∗ inside (P1)n. It has a decomposition into
affine spaces indexed by elements of L, which implies that its odd cohomology
vanishes, and that dimQH

2k(Y ;Q) =Wk. Its intersection cohomology IH∗(Y ;Q)
is a module over the cohomology ring, and the hard Lefschetz theorem says that
for an ample class ℓ ∈ H2(Y ;Q) and k ≤ 2d, the multiplication

ℓd−2k : IH2k(Y ;Q) → IH2d−2k(Y ;Q)
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is an isomorphism. Huh and Wang then appeal to a theorem of Björner and
Ekedahl [2], which says that the cohomology of Y injects into the intersection
cohomology IH∗(Y ;Q) asH∗(Y ;Q)-modules. This implies that the multiplication

ℓd−2k : H2k(Y ;Q) → H2d−2k(Y ;Q)

is an injection, proving the Dowling–Wilson conjecture in this case.
In [4] we consider combinatorial avatars of the cohomology ring and intersection

cohomology module which make sense for any matroid M. The cohomology ring
is replaced by the graded Möbius algebra H(M), which has a Q-basis the symbols
yF , with multiplication

yF yG =

{
yF∨G if rank(F ∨G) = rankF + rankG

0 otherwise.

It is the associated graded of the usual Möbius algebra under the filtration by rank.
If M is realized by vectors as above, then H(M) is isomorphic to the cohomology
ring of Y , with degrees halved.

The main result of [4] is the construction of a graded H(M)-module IH(M), the
intersection cohomology module of M. It satisfies the following properties:

(1) There is an element 1 ∈ IH0(M) so that y 7→ y · 1 defines an injection of
H(M) into IH(M),

(2) its graded dual IH(M)∗ is isomorphic to IH(M)[d],
(3) it satisfies hard Lefschetz: if ℓ =

∑
rankF=1 cF yF where all cF > 0, then

ℓd−2k · : IHk(M) → IHd−k(M)

is an isomorphism for k ≤ d/2,
(4) the Hodge–Riemann bilinear relations: the restriction of the pairing

(a, b) 7→ (−1)k〈ℓd−2ka, b〉
to the kernel of multiplication by ℓd−2k+1 in IHk(M) is positive definite,
where 〈, 〉 is the pairing on IH(M) induced by an isomorphism as in (2),
normalized so that 〈y[n] · 1, 1〉 = 1.

Properties (1) and (3) are enough to deduce the Dowling–Wilson conjecture, but
the proof of (3) involves a complicated induction in which all four statements are
needed for all matroids on smaller ground sets.

The module IH(M) is constructed as a direct summand of the augmented Chow
ring CH(M), which was defined in [3]. It is the graded algebra generated over Q
in degree 1 by xF , F ∈ L(M) \ {[n]} and yi, i ∈ [n], subject to the relations

• xFxG = 0 if F,G are not comparable,
• yi =

∑
i/∈F xF , and

• yixF = 0 if i /∈ F .

There is an injection H(M) →֒ CH(M) which sends yF to
∏

i∈B yi, where B is
any basis of F . By Krull-Schmidt, the direct summands of CH(M) as a graded
H(M)-module are unique up to isomorphism and permutation. Up to isomorphism,
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IH(M) is the unique direct summand which contains 1. In [4], a particular sum-
mand representing IH(M) is defined by a complicated inductive procedure which
does not depend on any choices.

A more intrinsic characterization of IH(M) is given by the following forthcoming
result. For an upwardly closed subset Σ ⊂ L(M), ΥΣ := span{yF | F ∈ Σ} is an
ideal of H(M).

Theorem ([5]). Up to isomorphism, IH(M) is the unique graded H(M)-module
satisfying:

(1) IH(M) is indecomposable and y[n]IH(M) 6= 0,

(2) IH(M)
∗ ∼= IH(M)[d], and

(3) for any upwardly closed sets Σ1,Σ2 ⊂ L(M),

ΥΣ1
IH(M) ∩ΥΣ2

IH(M) = ΥΣ1∩Σ2
IH(M).
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Local h∗-polynomials for one-row Hermite normal form simplices

Benjamin Braun

(joint work with Esme Bajo, Giulia Codenotti, Johannes Hofscheier,
Andrés R. Vindas-Meléndez)

This talk is based on the preprint [2]. The local h∗-polynomial of a lattice poly-
tope is an important invariant arising in Ehrhart theory. When the polytope S is
a simplex, the local h∗-polynomial is often called the box polynomial and denoted
B(S; z). Our focus in this work is the study of B(S; z) for lattice simplices pre-
sented in Hermite normal form with a single non-trivial row, i.e., simplices S such
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that the vertices of S are the rows of a matrix of the form



0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0
a1 a2 a3 · · · ad−2 ad−1 N




with 0 ≤ ai < N for all i. We prove that when the off-diagonal entries are fixed,
the distribution of coefficients for the local h∗-polynomial of these simplices has a
limit as the normalized volume N goes to infinity. More precisely, we prove the
following:

Theorem 1. Fix a1, . . . , ad−1 ∈ Z≥1 and let

M := lcm
(
a1, . . . , ad−1,−1 +

d−1∑

i=1

ai
)
.

Let SN denote the simplex defined by the matrix above, where the values of ai are
held constant for varying N . Let k be a positive integer and 0 ≤ r ≤M − 1. Then
we have that

lim
k→∞

B(SkM+r ; z)/B(SkM+r; 1) = B(SM+1; z)/B(SM+1; 1) .

It follows that if B(SM+1; z) is strictly unimodal, i.e., if the coefficients are uni-
modal with strict increases and strict decreases, then B(SkM+r ; z) is strictly uni-
modal for all sufficiently large k.

It is known by work of Adiprasito, Papadakis, Petrotou, and Steinmeyer [1]
that if a lattice polytope P has the integer decomposition property, then the local
h∗-polynomial has unimodal coefficients. One notable aspect of Theorem 1 is that
experiments with random simplices in one-row Hermite normal form suggests that
unimodality is frequently present even when S does not have the integer decom-
position property. It would thus be interesting to further investigate unimodality
of local h∗-polynomials for SM+1 for various sequences a1, . . . , ad−1.
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Poincaré-extended ab-index

Galen Dorpalen-Barry

(joint work with Joshua Maglione, Christian Stump)

Grunewald, Segal, and Smith introduced the subgroup zeta function of finitely-
generated groups [8], and Du Sautoy and Grunewald gave a general method to
compute such zeta functions using p-adic integration and resolution of singulari-
ties [6]. This motivated Voll and the second author to examine the setting where
the multivariate polynomials factor linearly. They found that the p-adic inte-
grals are specializations of multivariate rational functions depending only on the
combinatorics of the corresponding hyperplane arrangement [10]. After a natu-
ral specialization, its denominator greatly simplifies, and they conjecture that the
numerator polynomial has nonnegative coefficients.

In this work, we prove their conjecture, which is related to the poles of these
zeta functions. Specifically, we reinterpret these numerator polynomials by intro-
ducing and studying the (Poincaré-)extended ab-index, a polynomial generalizing
both the Poincaré polynomial and ab-index of the intersection poset of the ar-
rangement. These polynomials have been studied extensively in combinatorics,
although from different perspectives. The coefficients of the Poincaré polynomial
have interpretations in terms of the combinatorics and the topology of the ar-
rangement [5, Section 2.5]. The ab-index, on the other hand, carries information
about the order complex of the poset and is particularly well-understood in the
case of face posets of oriented matroids—or, more generally, Eulerian posets. In
those settings, the ab-index encodes topological data via the flag f -vector [1].

We study the extended ab-index in the generality of graded posets admitting
R-labelings. This class of posets includes intersection posets of hyperplane ar-
rangements and, more generally, geometric lattices and geometric semilattices.
We show that the extended ab-index has nonnegative coefficients by interpret-
ing them in terms of a combinatorial statistic. This generalizes statistics given
for the ab-index by Billera, Ehrenborg, and Readdy [3] and for the pullback ab-
index (defined below) by Bergeron, Mykytiuk, Sottile and van Willigenburg [2].
This interpretation proves the aforementioned conjecture [10], as well as a related
conjecture from Kühne and the second author [9].

Motivated by the proofs of these conjectures, we describe a close relationship
between the Poincaré polynomial and the ab-index by showing that the extended
ab-index can be obtained from the ab-index by a suitable substitution. This
recovers, generalizes and unifies several results in the literature. Concretely, special
cases of this substitution were observed by Billera, Ehrenborg and Readdy for
lattices of flats of oriented matroids [3], by Saliola and Thomas for lattices of flats
of oriented interval greedoids [11], and by Ehrenborg for distributive lattices [7].
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Discrete homotopy theory

Daniel Carranza

(joint work with Chris Kapulkin)

Discrete homotopy theory, introduced by H. Barcelo and collaborators, is a homo-
topy theory of (simple) graphs. Homotopy invariants of graphs have found numer-
ous applications, for instance, in the theory of matroids, hyperplane arrangements,
topological data analysis, and combinatorial time series analysis. Discrete homo-
topy theory is also a special instance of a homotopy theory of simplicial complexes,
developed by R. Atkin, to study social and technological networks.

I will report on joint work with C. Kapulkin on developing a new foundation
for discrete homotopy theory, based on the homotopy theory of cubical sets. To
demonstrate the robustness of this foundation, we use it to prove a conjecture of
Babson, Barcelo, de Longueville, and Laubenbacher from 2006 relating homotopy
groups of a graph to the homotopy groups of a certain cubical complex associated
to it.
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Topological methods in zero-sum Ramsey theory

Florian Frick

(joint work with Jacob Lehmann Duke, Meenakshi McNamara, Hannah
Park-Kaufmann, Steven Raanes, Steven Simon, Darrion Thornburgh, and

Zoe Wellner)

A 1961 result of Erdős, Ginzburg, and Ziv [4] guarantees that any sequence
a1, . . . , a2n−1 ∈ Z/n of length 2n − 1 of integers modulo n has a subsequence
of length n that sums to zero. Algebraic techniques, such as the Chevalley–
Warning theorem, have proven fruitful in deriving numerous variants and ex-
tensions of the original Erdős–Ginzburg–Ziv theorem; see Caro [3] for a survey
of these results, which are collectively known as zero-sum Ramsey theory. We
develop an equivariant-topological framework to derive zero-sum results in combi-
natorial number theory; see [5] for full details.

Observe that general zero-sum Ramsey results may be phrased as follows: LetH
be an n-uniform hypergraph on ground set V and let c : V → Z/n; decide whether
there is a σ ∈ H with

∑
v∈σ c(v) = 0. We refer to any function c : V → Z/n as

a Z/n-coloring of H and call σ ∈ H with
∑

v∈σ c(v) = 0 a zero-sum hyperedge.
The original Erdős–Ginzburg–Ziv theorem in this language states that any Z/n-
coloring of the complete n-uniform hypergraph on ground set {1, 2, . . . , 2n − 1}
has a zero-sum hyperedge.

Comparing the setup above to that of classical hypergraph colorings, where
one is interested in the existence of a coloring that avoids monochromatic hyper-
edges (that is, hyperedges where c is constant), observe that avoiding zero-sum
hyperedges is a stronger condition. Equivariant-topological techniques, as first
developed in this context by Alon, Frankl, and Lovász [1] and Kŕıž [6], provide
strong obstructions for the existence of colorings without monochromatic hyper-
edges. It is thus natural to ask, whether these methods may also be applied in
the more restrictive setting of obstructing colorings without zero-sum hyperedges.
Our work shows that this is indeed possible.

To each n-uniform hypergraph H on ground set V associate a topological space
that is symmetric with respect to a natural action by Z/n, and in fact by the
symmetric group, although we will not make use of this generality. This symmetric
space is built as a simplicial complex, the box complex B(H): For pairwise disjoint
A0, . . . , An−1 ⊆ V let A0 × {0} ∪ · · · ∪ An−1 × {n − 1} be in B(H) if for all
a0 ∈ A0, . . . , an−1 ∈ An−1 we have that {a0, . . . , an−1} ∈ H . Thus B(H) is a
simplicial complex on V ×Z/n that is symmetric with respect to the natural Z/n-
action on the second factor. Denote the d-dimensional sphere by Sd. For odd d we
fix a free action by the cyclic group Z/n on Sd. The following gives a topological
criterion for existence of zero-sum hyperedges for any Z/p-coloring of a hypergraph
for p a prime:

Theorem 1. Let p ≥ 2 be a prime, and let H be a p-uniform hypergraph. If
there is no Z/p-equivariant map B(H) → S2p−3, then any Z/p-coloring of H has
a zero-sum hyperedge.
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In particular, if B(H) is homotopically (2p−3)-connected then any Z/p-coloring
of H has a zero-sum hyperedge. If H is the complete p-uniform hypergraph on
{1, . . . , 2p− 1} then the faces of B(H) consists of p-tuples of pairwise disjoint sets
in {1, . . . , 2p − 1}. This simplical complex is (2p − 3)-connected, which recovers
the result of Erdős, Ginzburg, and Ziv for p a prime. In the same way as for the
standard algebraic proofs of this theorem, the general case then follows by a simple
induction on prime divisors.

A Z/p-coloring of H without zero-sum hyperedge induces a simplex-wise linear
Z/p-equivariant map B(H) → R2p−2 \ {0}. Using this same approach now for an
arbitrary finite group G instead of Z/p and convex-geometric results to ascertain
the existence of zeros of G-equivariant simplex-wise linear maps, yields Olson’s
generalization [7] of the Erdős–Ginzburg–Ziv theorem to arbitrary finite groups G.

The topological criterion above has a sufficient condition that may be easily
phrased in purely combinatorial terms. Let F be a set family on ground set X .
The n-colorability defect cdn(F) is min |X \⋃n

i=1 Ai|, where the minimum is taken
over all n-tuples of sets A1, . . . , An that each have no subset in F . The Kneser
hypergraph KGn(F) has F as its ground set and a hyperedge {A1, . . . , An} ∈
KGn(F) if the Ai are pairwise disjoint.

Theorem 2. Let n ≥ 2 be an integer, and let F be a set family with cdn(F) ≥
2n− 1. Then any Z/n-coloring of KGn(F) has a zero-sum hyperedge.

For example, if F is the family of all k-element subsets of {1, 2, . . . , (k+1)n−1}
then cdn(F) = 2n−1. Thus the theorem above recovers that for any f : F → Z/n
there are n pairwise disjoint A1, . . . , An ∈ F with

∑
f(Ai) = 0; see Bialostocki

and Dierker [2]. The colorability defect bound gives a more general criterion for
the existence of zero-sum matchings.

The version of box complex introduced above differs from that of Kŕıž and
provides stronger obstructions. We refer to [5] for proofs and further consequences
of the topological approach to zero-sum Ramsey results.
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Random order types

Xavier Goaoc

(joint work with Emo Welzl)

Labeled order types are geometric models of realizable uniform acyclic oriented
matroids of rank 3 of particular relevance in discrete and computational geometry.
The typical number of extreme points in a simple labeled order type can be deter-
mined exactly, and this number reveals bias in the labeled order types of several
standard models of random point sets. This analysis can be extended to unlabeled
simple order types, that is, to relabeling classes of simple realizable uniform acyclic
oriented matroids of rank 3, via a combinatorial analogue of Klein’s classification
of the finite subgroups of SO(3). We refer to the full paper [1] for details.

1. Labeled order types

The orientation χ(p, q, r) of an ordered triple (p, q, r) of points in R2 is defined as 1
(resp. −1, 0) if r is to the left of (resp. to the right of, on) the line through p and
q, oriented from p to q. Two point sequences (p1, p2, . . . , pn) and (q1, q2, . . . , qn)
have the same labeled order type if

(1) ∀1 ≤ i, j, k ≤ n, χ(pi, pj , pk) = χ(qi, qj , qk).

This is an equivalence relation, and a labeled order type is an equivalence class for
that relation. A labeled order type is simple if no three points are aligned in a
member of that class. We denote by LOTn the set of simple labeled order types of
size n.

2. A combinatorial version of Sylvester’s problem

A famous question of Sylvester asked for the average number of extreme points in a
“random” planar point set. Since the notion of extreme point can be defined at the
level of labeled order type, Sylvester’s question makes sense in the combinatorial
setting. We prove:

Theorem 1. For n ≥ 3, the number of extreme points in a random simple labeled
order type chosen equiprobably in LOTn has average 4− 8

n2−n+2 and variance less
than 3.

Our approach is to divide up the simple planar labeled order types into projectively
equivalent classes, and average the number of extreme points within each class.

3. Labeled order types of random point sets

Before we elaborate on the proof of Theorem 1, let us mention that it reveals that
the labeled order types of several models of random point sets are rather biased.
Formally, a family {µn}n∈N, where µn is a probability measure on LOTn, exhibits
concentration if there exist subsets An ⊆ LOTn, n ∈ N, such that µn(An) → 1 and
|An|/|LOTn| → 0.
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Theorem 2. Let µ be a probability distribution on R2 that is Gaussian or uniform
on a compact convex set K, with K smooth or polygonal. The family of probabilities
on LOTn induced by the labeled order type of n random points chosen independently
from µ exhibits concentration.

We prove Theorem 2 by comparing the typical number of extreme points given by
Theorem 1 to the typical number of extreme points in random point sets estab-
lished in stochastic geometry.

4. Projective classes of labeled order types

To divide up labeled order types into classes under projective equivalence, it is
convenient to identify R2 with an open hemisphere of S2, the unit sphere of R3.
Let S be a point sequence, labeled from 1 to n, in an open hemisphere of S2, and
let ω denote its labeled order type. We let P = S ∪ −S, where antipodal points
have the same labels, and we define an affine hemiset of P as an intersection of
size n between P and a closed hemisphere of S2. Like S, every affine hemiset of P
contains exactly one point from each antipodal pair. For a labeled order type τ ,
the following statements are equivalent:

(i) there exist projectively equivalent point sequences that realize τ and ω,
(ii) there exists a point sequence projectively equivalent to S that realizes τ ,
(iii) there exists an affine hemiset of P that realizes τ .

It turns out that for n ≥ 4, any two affine hemisets of P have distinct labeled
order types. The affine hemisets of P are therefore in bijection with the labeled
order types projectively equivalent to ω.

5. Averaging via duality

For any point p ∈ S2 let p∗ = {u ∈ S2 : p ·u = 0} denote the great circle orthogonal
to p. Note that a hemisphere of S2 centered in x intersects P in an affine hemiset if
and only if x lies in a 2-dimensional cells of the arrangement of P ∗ = {p∗ : p ∈ P}.
This in fact defines a bijection between the affine hemisets of P and the 2-cells of
the arrangement of P ∗. A key observation is that in this bijection, the number
of extreme points of the affine hemiset equals the number of edges of the 2-cell.
Among the labeled order type projectively equivalent to ω, the average number
of extreme points is therefore the average number of edges in a 2-cell of P ∗. For
every ω, this average is equal to

8
(
n
2

)

2
(
n
2

)
+ 2

= 4− 8

n2 − n+ 2
,

so the average is the same over LOTn. The upper bound on the variance follows
from the zone theorem.

6. Unlabeling

A coarser classification of n-point sets identifies P and Q when there exists a bi-
jection f : P → Q that preserves orientations. An equivalence class for this coarser
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relation is called an order type. Again, any point set S in an open hemisphere of
S2 gives rise to a set P = S ∪ −S that is projective in the sense that P = −P .
Again, the order types of the affine hemisets of P are exactly the order types τ
that are projectively equivalent to the order type ω of S (in the sense that τ and
ω admit projectively equivalent realizations). In the unlabeled setting, however,
several affine hemisets of P may have the same order type...

7. Symmetries

... and how many is a matter of symmetries. Formally, a symmetry of a point
set S ⊆ S2 is a bijection S → S that preserves orientations. Any symmetry of a
projective point set P maps every affine hemiset of P to an affine hemiset of P .
In the action of the symmetry group of P on its affine hemisets, the orbit of an
affine hemiset A is exactly the set of affine hemisets of P with the same order type
as A, and the stabilizer of A is isomorphic to the symmetry group of A. By the
orbit-stabilizer theorem, the number of affine hemisets of P with order type ω is
therefore

#symmetries of P

#symmetries of ω
To control these ratios, and establish an analogue of Theorem 1 for unlabeled
order type, we actually characterize the possible symmetry groups of affine and
projective subsets of S2.

8. Classifying symmetry groups

The symmetry group of an affine point set acts on its convex hull (and, actually, on
any layer of its “convex peeling”) by a circular permutation. This readily implies
that every affine point set has a cyclic symmetry group. The key insight to analyze
the symmetries of projective point sets is the following analogue of the fact that
any rotation ρ ∈ SO(3) leaves exactly two hemispheres of S2 globally invariant.

Proposition 3. For n ≥ 3, every non-trivial symmetry of a 2n-point projective
point set P leaves exactly two affine hemisets of P globally invariant.

With Proposition 3, Klein’s approach to classifying the finite groups of rotations
can be implemented and it yields that the symmetry group of any projective set
of 2n points in general position is a finite subgroup of SO(3).

Theorem 4. The symmetry group of any projective set of 2n points in general
position is Z1 (trivial group), Zm (cyclic group) or Dm (dihedral) with m dividing
n or n− 1, S4 (octahedral = cubical), A4 (tetrahedral), or A5 (icosahedral).

Each of these groups occurs as the symmetry group of some projective order type.
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Generalized recursive atom ordering and equivalence to CL-shellability

Patricia Hersh

(joint work with Grace Stadnyk)

1. Introduction

This abstract describes joint work with Grace Stadnyk. We introduce a new tech-
nique for studying the topological structure of order complexes of finite partially
ordered sets (posets), namely we introduce generalized recursive atom orderings.
This is a relaxation of the fundamental and widely used technique known as recur-
sive atom ordering that was introduced several decades ago by Björner and Wachs
in [BW83].

We establish a number of fundamental properties of these generalized recur-
sive atom orderings (GRAOs), including the property that any generalized recur-
sive atom ordering may be transformed into a traditional recursive atom ordering
(RAO) by a process we call the atom reordering process. Since GRAOs are easier
to construct than RAOs, this may give a useful new pathway to proving a poset
is CL-shellable. These generalized recursive atom orderings further allow us to
prove that several different forms of lexicographic shellability (in the not necessar-
ily graded case) are all equivalent to each other, by which we mean that a finite
bounded poset admits any one of these types of lexicographic shelling if and only
if it admits each of the others. One might expect this to imply the stronger state-
ment that any instance of any one of these types of lexicographic shelling is also an
instance of any other of these types of lexicographic shelling, but this is not always
true. For instance, one may deduce that not every “self consistent CC-shelling” is
a CL-shelling from the fact that not every generalized recursive atom ordering is
a recursive atom ordering.

We prove that a finite bounded poset admits a recursive atom ordering (RAO)
if and only if it admits a generalized recursive atom ordering (GRAO).

A chain-atom ordering Ω of a finite bounded poset P is a choice of ordering
on the atoms of each rooted interval [u, 1̂]r of P . Now we are ready to state our
main new definition.

Definition 1. A finite bounded poset P admits a generalized recursive atom
ordering (GRAO) if the length of P in in P ) is 1 or if the length of P is greater
than 1 and there is an ordering a1, a2, . . . at on the atoms of P satisfying:

(i) (1) For 1 ≤ j ≤ t, [aj , 1̂] admits a GRAO. sive atom ordering
(ii) For any atom aj and any x,w ∈ P satisfying aj⋖x⋖w, the following

property holds when the chain-atom ordering given by the GRAO from
(i)(a) is restricted to [aj , w]: either the first atom of [aj , w] is above
an atom ai with i < j, or no atom of [aj , w] is above any atom ai
with i < j.

(iii) For any y ∈ P and any atoms ai, aj satisfying ai < y and aj < y with
i < j, there exists an element z ∈ P with z ≤ y and an atom ak with k < j
such that aj ⋖ z and ak < z.
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The statement about cover relations in condition (i)(b) in the definition of
GRAO can be strengthened to a corresponding statement about all order relations:

Lemma 2. Let P be a finite bounded poset, and let Λ be a GRAO for P with
atom ordering a1, a2, . . . at. For each 0̂⋖ aj < v, restricting Λ|[aj ,1̂]

[aj , v] yields a

GRAO, denoted Λ|[aj,v], for [aj , v] with the following property: either (a) the first
atom of [aj , v] is greater than some atom ai satisfying i < j or (b) no atom of
[aj , v] is greater than any atom ai satisfying i < j.

Our atom reordering process will take any chain-atom ordering and output
a chain-atom ordering that will satisfy condition (i)(b) from the defini tion of
recursive atom ordering; moreover, it is set up to do so in such a way that when
applied to a GRAO, it preserves the property of being a GRAO. Broadly, the
algorithm starts at the bottom of the poset P and works its way to the top,
reordering the atoms of each rooted interval in a way that takes into account the
reordering that has already occurred lower in the poset.

Proposition 3. Let P be a finite bounded poset with a chain-atom ordering Λ. Let
Λ|[0̂,v] (resp. Λre|[0̂,v]) be the chain-atom ordering for [0̂, v] obtained by restricting

Λ (resp. Λre) to [0̂, v]. Then Λre|[0̂,v] equals the chain-atom ordering for [0̂, v]

obtained by applying the atom reordering process to Λ|[0̂,v].

Lemma 4. Let P be a finite, bounded poset with Λ a GRAO for P . Then for any
u < v in P and any root r for [u, v], the first atom of [u, v]r in Λ is the first atom
of [u, v]r in Λre, namely in the atom reordering of Λ.

These results allow us to prove:

Theorem 5. A finite bounded poset admits a generalized recursive atom ordering
(GRAO) if and only if it admits a recursive atom ordering (RAO).

Definition 6. Consider a chain-edge labeling λ such that each rooted interval has
a unique lexicographically earliest saturated chain. We define such λ to be self-
consistent if for any rooted interval [u, v]r we have the following condition: if a
is the atom in the lexicographically first saturated chain of [u, v]r and b 6= a is also
an atom of [u, v]r, then for any [u, v′]r containing a and b all saturated chains of
[u, v′]r containing b come lexicographically later than all saturated chains of [u, v′]r
containing a.

The following condition implies self-consistency and is more readily checkable :

Definition 7. A chain-edge labeling λ of a finite bounded poset P has the unique
earliest (UE) property if for each rooted interval [u, v]r in P , the smallest label
occurring on any cover relation upward from u only occurs on one such cover
relation.

Equipped with these definitions, we are ready to state one of our main results:
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Theorem 8. Let P be a finite, bounded poset. Then the following are equivalent:

(1) P admits a recursive atom ordering
(2) P admits a generalized recursive atom ordering
(3) P admits a CL-labeling
(4) P admits a CL-labeling with the UE property
(5) P admits a self-consistent CC-labeling.
(6) P admits a CC-labeling with the UE property
(7) P admits a self-consistent topological CL-labeling
(8) P admits a topological CL-labeling with the UE property

Moreover, all of these implications are proven constructively. That is, for each
implication either it is shown how to construct the latter type of object from the
former or else the former type of object is proven also to be the latter type of object.

We apply our results to deduce that a class of posets previously shown to be
CC-shellable in [HK] is in fact CL-shellable. That is, we prove that the dual posets
to the uncrossing orders (conjectured to be lexicographically shellable by Lam in
[La14a]) are CL-shellable. These uncrossing orders arise naturally as face posets
of stratified spaces of planar electrical networks (see e.g. [La14a], and references
therein). The fact that they are shellable posets combines with Lam’s result from
[La14a] that they are Eulerian posets to imply that they are CW posets, i.e. face
posets of regular CW complexes with finitely many cells. Thus, the shellability
of uncrossing orders provides an important step in understanding the topological
structure of these spaces of planar electrical networks.
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Flies and regular subdivisions

Michael Joswig

(joint work with Holger Eble, Lisa Lamberti, Will Ludington)

Genetic epistasis is a biological concept for an interaction between two genetic
loci as the degree of non-additivity in their phenotypes. This idea goes back as
far as 1909, when Bateson analyzed the landmark results by Mendel [1]. If there
are more than two loci, things get considerably more complicated. Beerenwinkel,
Pachter and Sturmfels proposed to read a suitable regular subdivisions of some
convex polytope, called the genotope, as a fitness landscape [2]; see Figure 1 for
an example. In their framework genetic populations which are fittest correspond
to points in that polytope, and fitness is expressed in terms of linear programs.
The monograph [3] is recommended for background on the relevant concepts from
polyhedral geometry.

00

10

01

11

(0, 0, 53.25)

(1, 0, 46.65)

(0, 1, 43.16)

(1, 1, 43.48)

•

•

•

•

•
•

•

•

Figure 1. Biallelic genetic system with two loci. The genotope is
the unit square [0, 1]. The phenotype maps each vertex in {0, 1}2
to a real number; this induces a regular subdivision of the square.

Our contribution is a general method for processing such fitness landscapes,
taking statistical aspects into account. For conciseness, we sketch the procedure
for an n-biallelic system, where the genotype is the unit cube [0, 1]n. Our input are
samples of measurements for each genotype, i.e., vertex in {0, 1}n, and we assume
that this input is generic.

(1) Their average values are read as the phenotypes which give rise to a regular
subdivision S, which is computed via the convex hull. Due to genericity,
S is a triangulation of [0, 1]n.

(2) Let Γ be the dual graph of S. For each edge we compute an epistatic
weight. Sorting these real numbers gives rise to a filtration of Γ into a
sequence of subgraphs, the epistatic filtration.

(3) To take the empirical distribution of measurements for each genotype into
account, we devised a one-sided significance test for each edge of Γ.

(4) The epistatic filtration with the epistatic weights and their significance
form the output.
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The theoretical underpinnings have been worked out in [4]. That reference also
features a synthetic experiment to explain why our method works. In our new
article we report on processing actual data sets from biology [5]. This includes
the analysis of classical data, where we can confirm previous findings by other
researchers. This also includes the analysis of one new data set, which was obtained
in the lab of Will Ludington at Carnegie Science. Those data are concerned with
the microbiome of Drosophila. We consider n = 5 different species of bacteria
which may or may not exist in the gut of any fly. So the genotype is the unit
cube [0, 1]5. It turns out that the fitness landscape for the lifespan of these flies
changes dramatically when certain bacteria are there or not. In biological terms,
our results suggest that the co-evolution in this experiment is considerably more
complicated than in a simple antagonistic scenario.
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Some Stories of Geometry and Graphs

Nati Linial

(joint work with Daniel Cizma and Maria Chudnovsky)

A consistent path system in a graph G is an intersection-closed collection of paths,
with exactly one path between any two vertices in G. We call G metrizable if every
consistent path system in it is the system of geodesic paths defined by assigning
some positive lengths to its edges. Our work shows that metrizable graphs are, in
essence, subdivisions of a small family of basic graphs with additional compliant
edges. In particular, every metrizable graph with 11 vertices or more is outerplanar
plus one vertex.

Let G = (V,E) be a connected graph, and let w : E → R>0 be a positive weight
function on its edges. This induces a metric on V , where the distance between any
two vertices is the least w-length of a path between them. What can be said about
such a system of geodesics? E.g., what does the collection of w-geodesics tell us
about w? Is it possibly true that every collection of paths in a graph constitute
the system of geodesics corresponding to some graph metric? To simplify matters,
suppose that w is such that the shortest path between any two vertices is unique.
Clearly, any subpath of a geodesic in G is itself a geodesic. This leads us to define
the notion of a consistent path system P in G - a collection of paths that is closed
under taking subpaths, with a unique uv path in P for each pair u, v ∈ V . So,
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we ask if every consistent path system coincides with the set of geodesics that
corresponds to some positive weight function on the edges. Our first paper on
this subject [1] showed that this is far from the truth, and that metrizable graphs
are in fact quite rare. E.g., all large metrizable graphs are planar and not 3-
connected. On the other hand, that paper also showed that all outerplanar graphs
are metrizable. Still, [1] did not provide a satisfactory description of metrizable
graphs, and in [3] we made further progress on this question.

Call a path in G flat if every internal vertex in it has degree 2 in G, and call
an edge xy compliant if x and y are also connected by a flat path. We show in
particular that every large 2-connected metrizable graph can be obtained starting
from one of some basic graphs, and iteratively subdividing edges and adding a
compliant edge between its end vertices. This, in particular, implies that every
large metrizable graph can be made outerplanar by removing at most one vertex.

Here are some of the main ingredients of these studies.

Proposition 1 ([1]).

• The family of metrizable graphs is closed under topological minors.
• If e is a compliant edge in G, then G is metrizable if and only if G \ e is
metrizable.

Consider a consistent path system P in a graph G = (V,E). Associated with P
is a system of linear inequalities, and P is metric iff this system is feasible. So if
the chosen P is non-metric, we can use LP-duality to create a hand-checkable cer-
tificates of this. Thus, using a computer, we created a “zoo” of 16 non-metrizable
graphs along with such path systems and the corresponding certificates. The basic
methodology developed in [1] is to prove that a graph at hand is non-metrizable
by showing that it contains a subdivision of some graph from the zoo.

Theorem 2 ([3]). If a 2-connected metrizable graph G with at least 11 vertices
has no compliant edges, then it is either K2,n for some n ≥ 4 or a subdivision of
one of the following: K2,3, K4, W4 or K5 \ e.

Consequently

Theorem 3 ([3]). If a graph G with at least 11 vertices is (i) 2-connected, (ii) has
no compliant edges, (iii) has at least two disjoint cycles, then G is non-metrizable.

Corollary 4. Every 2-connected metrizable graph with at least 11 vertices can be
made outerplanar by removing at most one vertex.

Many open questions are mentioned in [1, 3], e.g., the notion of irreducible path
systems introduced in [2].
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A regular unimodular triangulation of the matroid base polytope

Gaku Liu

(joint work with Spencer Backman, Gaku Liu)

A lattice triangulation of a lattice polytope is unimodular if all of its simplices
have minimal volume. A triangulation is regular if there is a convex, piecewise
linear function whose regions of linearity are exactly given by the triangulation.
We give the first construction of regular unimodular triangulations for matroid
base polytopes. This construction extends to integral generalized permutahdera.
Previously, it was not known whether matroid polytopes admitted covers by uni-
modular simplices.

The construction is motivated by a set of conjectures collectively known as
White’s conjecture in matroid theory. Given a matroid M with ground set E
and set of bases B, define the toric ideal of M to be the kernel of the R-algebra
homomorphism

R[xB : B ∈ B] → R[xe : e ∈ E]

sending xB to
∏

e∈B xe. The weakest version of White’s conjecture states that the
toric ideal of a matroid is generated by quadratic binomials. A stronger version
of this conjecture is that the toric ideal of a matroid has a quadratic Gröbner
basis. The latter conjecture is equivalent to the statement that the matroid base
polytope has a flag, regular unimodular triangulation. (A triangulation is flag is
its minimal non-faces have size 2.) We hope our construction may shed light on
this conjecture and lead to future work in this direction.
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Polyhedral Geometry of ReLU Neural Networks

Georg Loho

(joint work with C. Haase, C. Hertrich; M. Brandenburg, G. Montúfar,
H. Tseran)

We show new insights in the structure of ReLU Neural Networks based on poly-
hedral geometry. On one hand, we describe natural subdivisions of the space of
piecewise-linear classifiers represented by a ReLU neural network. On the other
hand, we show lower bounds on the number of layers for representing integral
piecewise-linear functions. The advances involve (generalizations of) oriented ma-
troids, Newton polytopes of tropical polynomials and the use of geometric invari-
ants, in particular normalized volume of lattice polytopes.
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First, we give an introduction of two basic concepts, linear classification and
tropical rational functions. The geometric point of view on linear classification is
captured by the oriented matroid of the hyperplane dual to the vector arrangement
associated with data points. This idea is generalized to classifiers arising from
continuous piecewise-linear functions. These are exactly the functions represented
by ReLU Neural Networks, or equivalently, the functions represented by tropical
rational functions (with real ‘tropical’ exponents). Grouping linear classifiers by
the dichotomy imposed on the data points leads to a subdivision of their parameter
spaces. This subdivision equals the normal fan of the zonotope given by the
Minkowski sum of the line segments associated to the data points. We generalize
this to the setting of tropical rational functions with a fixed number of terms in the
numerator and denominator [3]. Here, subdividing by the classification pattern
yields the normal fan of a sum of simplices, one for each data point.

Second, we look at the expressivity of ReLU neural networks depending on
their depth. We recall the known duality between neural networks and Newton
polytopes via tropical geometry [1]. Imposing an integrality assumption on the
weights in the network implies that these Newton polytopes are lattice polytopes.
Using a parity argument on the normalized volume of faces of such polytopes, we
show that ⌈log2(n)⌉ hidden layers are indeed necessary to compute the maximum of
n numbers, matching known upper bounds. This implies that the set of functions
representable by ReLU neural networks with integer weights strictly increases with
the network depth while allowing arbitrary width [4].
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Random Balanced Cayley Complexes

Roy Meshulam

The Laplacian L(C) of a graph C = (V,E) is the V ×V positive semidefinite matrix
whose (u, v) entry is given by

L(C)uv =





degC(u) u = v,
−1 {u, v} ∈ E,
0 otherwise.

Let 0 = λ1(C) ≤ λ2(C) ≤ · · · ≤ λ|V |(C) be the eigenvalues of L(C). The second
smallest eigenvalue λ2(C), called the spectral gap of C, is a parameter of central
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importance in a variety of problems. In particular it controls the expansion prop-
erties of C and the convergence rate of a random walk on C (see e.g., Chapters
XIII and IX in [3]).

Let G be a finite group of order n and let T ⊂ G be symmetric subset, i.e.
T = T−1. The Cayley graph C(G, T ) of G with respect to T is the graph on the
vertex set G with edge set {{g, gt} : g ∈ G, t ∈ T }. The seminal Alon-Roichman
theorem [1] is concerned with the expansion of Cayley graphs with respect to
random sets of generators.

Theorem 1 (Alon-Roichman). For any ǫ > 0 there exists a constant c(ǫ) > 0
such that for any group G, if S is a random subset of G of size ⌈c(ǫ) log |G|⌉ and
m = |S ∪S−1|, then λ2(C

(
G,S ∪ S−1)

)
is asymptotically almost surely (a.a.s.) at

least (1− ǫ)m.

This talk is based on [4] and concerns higher dimensional counterparts of Theo-
rem 1. We briefly recall some terminology. For a simplicial complex X and k ≥ −1
let X(k) denote the k-dimensional skeleton of X . For k ≥ −1 let Ck(X) denote
the space of real valued simplicial k-cochains of X and let dk : Ck(X) → Ck+1(X)
denote the coboundary operator. For k ≥ 0 define the reduced k-th Laplacian of
X by Lk(X) = dk−1d

∗
k−1 + d∗kdk. The minimal eigenvalue of Lk(X), denoted by

µk(X), is the k-th spectral gap of X .
Let k ≥ 1. For 1 ≤ i ≤ k + 1 let Vi = {i} ×G. Let YG,k denote the simplicial

join V1 ∗ · · · ∗ Vk+1, where each Vi is viewed as 0-dimensional complex. Thus

YG,k is homotopy equivalent to an N -fold wedge
∨N

Sk of k-dimensional spheres,
where N = (n − 1)k+1. The balanced k-dimensional Cayley Complex associated
with a subset ∅ 6= A ⊂ G is the subcomplex YA,k ⊂ YG,k whose k-simplices
are all {(1, y1), . . . , (k + 1, yk+1)} ∈ YG,k such that y1 · · · yk+1 ∈ A. Note that

YA,k ⊃ Y
(k−1)
G,k .

Let 1A denote the indicator function of A ⊂ G. Let Ĝ = {ρ} be the set of
irreducible unitary representations of G, where ρ : G → U(dρ). Let D(G) =∑

ρ∈Ĝ dρ. Let 1 ∈ Ĝ denote the trivial representation of G and let Ĝ+ = Ĝ \ {1}.
For ρ ∈ Ĝ let 1̂A(ρ) =

∑
x∈A ρ(x) ∈ Md(C) be the Fourier transform of 1A at ρ.

For a matrix T ∈Md(C) let ‖T ‖ = max‖v‖=1 ‖Tv‖ denote the spectral norm of T .

Let ν(A) = maxρ∈Ĝ+
‖1̂A(ρ)‖. Our first result is a lower bound on µk−1(YA,k) in

terms of ν(A).

Theorem 2.

µk−1(YA,k) ≥ |A| − k · ν(A).
Our main result is the following k-dimensional analogue of the Alon-Roichman

Theorem.

Theorem 3. Let k and ǫ > 0 be fixed. Let G be a finite group of order n and fix

an integer m such that 9k2 logD(G)
ǫ2 ≤ m ≤ √

n. Let A be a random subset of G of
size m. Then

Pr
[
µk−1(YA,k) < (1 − ǫ)m

]
<

6

n
.
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Remark 4. It is straightforward to check that µk−1(YA,k) ≤ |A|+k for any A ⊂ G
(see Eq. (2) in [2]). Theorem 3 thus implies that if A is a random subset of G
and log |G| = o(|A|), then YA,k is a.a.s. a near optimal spectral expander.

Our final result concerns the homotopy type of YA,k when A is a subgroup of
G. For 1 ≤ m let

γ0(m, k) = (n−m)nk +
( n
m

)k
(m− 1)k+1 − (n− 1)k+1,

γ1(m, k) =
( n
m

)k
(m− 1)k+1.

Theorem 5. Let A be a subgroup of G of order |A| = m. Then
(i)

(1) YA,1 ≃
n/m∐ (m−1)2∨

S1.

(ii) For k ≥ 2

(2) YA,k ≃
γ0(m,k)∨

Sk−1 ∨
γ1(m,k)∨

Sk.

Remark 6. As γ0(m, k) > 0 for all m < n, it follows from Theorem 5 that if
A ⊂ G generates a subgroup 〈A〉 of order m < n then

β̃k−1(YA,k) ≥ β̃k−1(Y〈A〉,k) = γ0(m, k) > 0

and therefore µk−1(YA,k) = 0. As there are families of groups G (e.g. elementary
abelian groups of fixed exponent) that cannot be generated by o(log |G|) elements,
this implies that the logD(G) = Θ(logn) factor in Theorem 3 cannot in general
be improved.
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Rigidity expander graphs

Eran Nevo

(joint work with Alan Lew, Yoval Peled, Orit Raz)

Jordán and Tanigawa recently introduced the d-dimensional algebraic connecti
vity ad(G) of a graph G. This is a quantitative measure of the d-dimensio nal
rigidity of G which generalizes the well-studied notion of spectral expans ion of
graphs. We present a new lower bound for ad(G) defined in terms of the spectral
expansion of certain subgraphs of G associated with a partition of i ts vertices into
d parts. In particular, we obtain a new sufficient condition for the rigidity of a
graph G. As a first application, we prove the existence of an infinite family of k-
regu lar d-rigidity-expander graphs for every d ≥ 2 and k ≥ 2d+1. Conjectural ly,
no such family of 2d-regular graphs exists. Second, we show that ad(Kn) ≥ 1

2

⌊
n
d

⌋
,

which we conjecture to be essentially tight. In addition, we study the extremal
values ad(G) attains i f G is a minimally d-rigid graph.

Context. Graph expansion is one of the most influential concepts in mod ern
graph theory, with numerous applications in discrete mathematics and compute
r science (see [4, 7]). Intuitively speaking, an expander is a “highly-connected”
graph, and a standard way to quantitatively measure the connectivity, or expan-
sion, of a graph uses t he spectral gap in its Laplacian matrix. A main theme in
the study of expander g raphs deals with the construction of sparse expanders. In
particular, bounded-de gree regular expander graphs have been studied extensively
in various areas of m athematics. This paper studies a generalization of spectral
graph expansion that was recentl y introduced by Jordán and Tanigawa via the
theory of graph rigidity [5].

A d-dimensional framework is a pair (G, p) consisting of a graph G = (V,E) an
d a map p : V → Rd. The framework is called d-rigid if every contin uous motion
of the vertices starting from p that preserves the distance betwee n every two
adjacent vertices in G, also preserves the distance between every pair of vertices;
see e.g. [2, 3] for background on framework rigidity. Asimow and Roth showed in
[1] that if the map p is generic (e.g. if the d|V | coordinates of p are algebraically
independent over the rationales), t hen the d-rigidity of (G, p) does not depend on
the map p. Moreover, they s howed that for a generic p, rigidity coincides with
the following stronger lin ear-algebraic notion of infinitesimal rigidity.

Definitions. For every u, v ∈ V we define duv ∈ Rd by

duv =

{
p(u)−p(v)

‖p(u)−p(v)‖ if p(u) 6= p(v),

0 otherwise,

and
u v

bT
u,v =

[
0 . . . 0 dTuv 0 . . . 0 dTvu 0 . . . 0

] .

The (normalized) rigidity matrix R(G, p) ∈ Rd|V |×|E| is the matrix whose
columns are the vectors bu,v for all {u, v} ∈ E. Rd. For p generic and |V | ≥ d+1,
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rank(R(G, p)) ≤ d|V |−
(
d+1
2

)
; see [1]. The framework (G, p) is called infinitesimally

rigid if this bound is attained, that is, if rank(R(G, p)) = d|V | −
(
d+1
2

)
.

A graph G is called d-rigid, if it is infinitesimally rigid with resp ect to some
map p (or, equivalently, if it is infinitesimally rigid for all ge neric maps [1]).

For d = 1 and an injective map p : V → R, the rigidity matrix R(G, p) is equal
to the incidence matrix of G, hence both notions of rigidity coincid e with graph
connectivity. One can extend this analogy and define a higher dimen sional version
of the graph’s Laplacian matrix, that is called the stiffne ss matrix of (G, p), and
is defined by

L(G, p) = R(G, p)R(G, p)T ∈ Rd|V |×d|V |.

We denote by λi(A) the i-th smallest eigenvalue of a symmetric matrix A. Since

rank(L(G, p)) = rank(R(G, p)) ≤ d|V | −
(
d+1
2

)
, the kernel of L(G, p) is of di-

mension at least
(
d+1
2

)
. Therefore, λ(d+1

2 )+1(L(G, p)) 6= 0 if and only if (G, p) is

infinitesimally rigid.
In [5], Jordán and Tanigawa defined the d-dimens ional algebraic connectivity

of G, ad(G), as

ad(G) = sup
{
λ(d+1

2 )+1(L(G, p))
∣∣∣ p : V → Rd

}
.

For d = 1, L(G, p) coincides with the graph Laplacian matrix L(G), and a1(G) =
a(G) is the usual algebraic connectivity, or Laplacian spectral gap, of G. For every
d ≥ 1, ad(G) ≥ 0 since L(G, p) is positive semi-definite, and ad(G) > 0 if and only
if G is d-rigid.

The following notion of rigidity expander graphs extends the classical no tion of
(spectral) expander graphs, corresponding to the d = 1 case: Let d ≥ 1. A family
of graphs {Gi}i∈N of increasing size is called a family of d-rigidity expander graphs
if there exists ǫ > 0 such that ad(Gi) ≥ ǫ for all i ∈ N.

Results. It is well known that, for every k ≥ 3, there exist families of k-regular
(d = 1-rigid) expander graphs (see e.g. [4]). Our main result is an extension of
this fact to general d:

Theorem 1. Let d ≥ 1 and k ≥ 2d + 1. Then, there exists an infinite family of
k-regular d-rigidity expander graphs.

It was conjectured by Jordán and Tanigawa that families of 2d-regular d-ri gidity
expanders do not exist (see [5, Conj. 2] for the statement in the d = 2 case, and
see [6, Conj. 6.2] for the general case), and clearly families of k-regular d-rigidity
expanders do not exist for k < 2d since, for n large e nough, such graphs have less
than dn −

(
d+1
2

)
edges, and are therefore n ot even d-rigid. Therefore, assuming

this conjecture, our result is sharp.
Our main tool for the proof of Theorem 1 is a new low er bound on ad(G), given

in terms of the (1-dimensional) algebraic connecti vity of certain subgraphs of G
associated with a partition of its vertex set i nto d parts. For convenience, we let
a(G) = ∞ if G consists of a single vertex.
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Let G = (V,E) be a graph, and let A,B ⊂ V be two disjoint sets. We denote
by G[A] the subgraph of G induced on A, and by G(A,B) the subgraph of G with
vertex set A ∪ B and edge set E(A,B) = {e ∈ E : |e ∩ A| = |e ∩ B| = 1}. Recall
that a partition of V is a set {A1, . . . , Ad} of n on-empty subsets of V such that
V = A1 ∪ · · · ∪ Ad is a disjoint union .

Theorem 2. Let d ≥ 2. For every graph G = (V,E) and a partition {A1, . . . , Ad}
o f V there holds

ad(G) ≥ min

({
a(G[Ai])

}

1≤i≤d

⋃{
1

2
a(G(Ai, Aj))

}

1≤i<j≤d

)
.

In particular, if G[Ai] is connected for all i ∈ [d] and G(Ai, Aj) is co nnected for
all 1 ≤ i < j ≤ d, then G is d-rigid.

Remark 3. In the d = 2 dimensional case, the statement in Theorem 2 can be
slightly improved (by removing the constant 1/2) to

a2(G) ≥ min{a(G[A1]), a(G[A2]), a(G(A1, A2))},
for every partition A1, A2 of V .

For another application of Theorem 2, we derive a slight improvement of the
previously known lower bound for ad(Kn) from [6, Theorem 1.5].

Corollary 4. Let d ≥ 3 and n ≥ d+ 1. Then

ad(Kn) ≥
1

2

⌊n
d

⌋
.

Conjecturally, under these conditions, ad(Kn) ≤ n
d . The upper boun d given

in [Thm.1.6][6] is ad(Kn) ≤ 2n
3(d−1) +

1
3 .

Problems and comments. Many parallels to classical graph expansion are
sill missing: find optimal d-rigidity expander graphs. For d = 1 these were co
nstructed, known as Ramanujan graphs. The Alon-Boppana bound is valid also
for ad(G), as we prove that:

Theorem 5. Let d ≥ 2, and let G be a graph. Then,

ad(G) ≤ a(G).

Jordán and Tanigawa [5, Theorem 4.2] proved Theorem 5 for d = 2, and in [8] it
was proved indep endently for all d. Our proof is different, using the probabilistic
method, an d we believe it to be of independent interest.

Regarding the Cheeger inequality, it remains a challenge to find a lower bound
o n ad(G) in terms of combinatorial invariants of G.
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Framed polytopes and higher cellular strings

Arnau Padrol

(joint work with Guillaume Laplante-Anfossi and Anibal M. Medina-Mardones)

Higher categories offer a framework for systematizing complex hierarchies in math-
ematics, physics, and computer science. To illustrate this, we mention Grothen-
dieck’s homotopy hypothesis in topology, Baez–Dolan’s cobordism hypothesis in
quantum field theory, and the extensive applications of higher category theory in
computer science, particularly in language semantics, concurrency calculus, and
type theory.

Polytopes in higher category theory were first introduced to organize coherence
relations. Kapranov and Voevodsky significantly expanded the connection between
convex geometry and higher category theory announcing several intriguing results
in [1], including the following insightful idea. Consider a convex d-polytope P ⊆ Rd

and a generic ordered basis B of Rd, which we refer to as a frame. Using the frame
we define, for each face F , two distinct subsets of its k-faces: its k-source sk(F )
and k-target tk(F ). Kapranov and Voevodsky conjectured [1, Thm. 2.3] that the
data consisting of all sources and targets, referred to as the globular structure of
(P,B), defines a d-dimensional pasting diagram, a special and important type of
d-dimensional categories. Using ideas of Steiner [3], we show that this claim holds
if and only if the framed polytope has no cellular loops, a notion we now define. A
cellular k-string in a framed polytope is a sequence F1, . . . , Fℓ of faces such that
two consecutive faces Fi and Fi+1 share a k-face G with tk(Fi) ∩ sk(Fi+1) = G.
We say it is a cellular loop if and Fi = Fj for some i 6= j.

The first contribution we discuss are counterexamples to [1, Thm. 2.3]. More
precisely, we provide examples showing the following.

Theorem 1. Starting in dimension 4 there exist framed polytopes with cellular
loops.

We also considered whether the following weaker version of their claim could
be true: For any polytope there is a frame making it into a pasting diagram.
However, this weaker version also fails since we provide a construction establishing
the following.
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Theorem 2. Starting in dimension 4 there exist polytopes for which all frames
lead to cellular loops.

An important infinite family of framed polytopes, which was studied by Ka-
pranov and Voevodsky, is given by the canonically framed cyclic simplices (C(d),
{ek}), where {ek} is the canonical frame of Rd and C(d) is the convex closure
of d + 1 distinct points in the moment curve t 7→ (t, t2, . . . , td). In an insightful
observation [1, Thm. 2.5], they announced that (C(d), {ek}) has no cellular loops
and recover Street’s free d-category on the d-simplex, a fundamental object in
higher category theory [4]. We were able to verify this claim after replacing the
canonical frame by {e1,−e2, e3,−e4, . . . }.

These framed simplices are rare and special in the following probabilistic sense.
A Gaussian d-simplex is the convex hull of d+1 independent random points in Rd,
each chosen according to a d-dimensional standard normal distribution. We prove
the following.

Theorem 3. The probability that a canonically framed Gaussian d-simplex has a
cellular loop tends to 1 as d tends to ∞.

We next turn our attention to the moduli of frames of a simplex ∆d under the
equivalence relation induced by globular structures. Our aim is to quantify the
complexity of the realization space of a globular structure on ∆d, that is, the set
of all frames of ∆d inducing it. Using a celebrated result of N. E. Mnëv [2], we
show the following.

Theorem 4. For every open primary basic semi-algebraic set S defined over Z

there is a globular structure on some simplex ∆d whose realization space is stably
equivalent to S.

A key step in the proof of this result is the following theorem, which we consider
noteworthy in its own right.

Theorem 5. Globular structures of framed simplices are in bijection with uniform
acyclic realizable full flag chirotopes.

References

[1] M. M. Kapranov and V. A. Voevodsky, Combinatorial-geometric aspects of polycategory
theory: pasting schemes and higher Bruhat orders (list of results), Vol. 32. 1. International
Category Theory Meeting (Bangor, 1989 and Cambridge, 1990) (1991), 11–27.
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Lefschetz properties via anisotropy for simplicial spheres and cycles

Stavros Papadakis and Vasiliki Petrotou

(joint work with Karim Adiprasito)

1. Introduction

An important recent breakthrough in Discrete Geometry was the 2018 proof of
McMullen’s g-conjecture for simplicial spheres by Karim Adiprasito [1]. Two years
later, the paper [3] appeared, which gave a substantially different second proof of
the conjecture based on the notion of generic anisotropy and certain characteristic 2
differential identities. Finally, the 2021 paper [2] proved Lefschetz type properties
in the setting of pseudomanifolds and simplicial cycles and gave an application to
2-Cohen-Macaulay simplicial complexes.

2. Generic Artinian Reduction

Assume m ≥ 1 and k is a field. We consider the polynomial ring k[x1, . . . , xm],
where the degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m. Assume
I ⊂ k[x1, . . . , xm] is a homogeneous ideal. We denote by d the Krull dimension of
the quotient ring k[x1, . . . , xm]/I. We assume d ≥ 1, and denote by E the field of
fractions of the polynomial ring

k[ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

For 1 ≤ i ≤ d, we set

fi =

m∑

j=1

ai,jxj .

Definition 1. We define the generic Artinian reduction of k[x1, . . . , xm]/I to be
the Artinian E-algebra

E[x1, . . . , xm]/((I) + (f1, . . . , fd)),

where (I) denotes the ideal of E[x1, . . . , xm] generated by I.

3. Generic Anisotropy of simplicial spheres

Assume k is a field and D is a simplicial sphere of dimension d− 1 with vertex set
{1, . . . ,m}. We denote by k[D] = k[x1, . . . , xm]/ID the Stanley-Reisner ring of D
over k and by A the generic Artinian reduction of k[D] defined above. We remark
that A is an Artinian Gorenstein standard graded E-algebra with socle degree d,
where E as above.

Definition 2. We call D generically anisotropic over k, if for all integers j with
1 ≤ 2j ≤ d and all nonzero elements u ∈ Aj we have u2 6= 0.

Three of the main results of [3] are the following:

Theorem 3 ([3]). Assume that k is any field and D is a simplicial sphere of
dimension 1. Then D is generically anisotropic over k.
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Theorem 4 ([3]). Assume that k is any field of characteristic 2 and D is any
simplicial sphere. Then D is generically anisotropic over k.

Remark 5. It is easy to see that by clearing denominators the previous theorem
implies that any simplicial sphere D is generically anisotropic over the field of
rationals Q.

Theorem 6 ([3]). Assume k is any field and D is a simplicial sphere.

(1) If the suspension S(D) of D is generically anisotropic over k, then E[D]
has the Weak Lefschetz property.

(2) If both D and the suspension S(D) of D are generically anisotropic over
k, then E[D] has the Strong Lefschetz property.

Question 7. Is any simplicial sphere generically anisotropic over any field?

Question 8. Identify classes of Gorenstein standard graded algebras which have
the generic anisotropy property.

4. Lefschetz properties for cycles

As mentioned above, the paper [2] contains Lefschetz type theorems for pseudo-
manifolds and simplicial cycles. An interesting application of them is the following:

A simplicial complex D of dimension d− 1 is called 2-Cohen-Macaulay over the
field k if k[D] is Cohen-Macaulay, and for any vertex v of D the following hold for
the simplicial complex

C = D \ {v}.
It has dimension d− 1 and the Stanley-Reisner ring k[C] is Cohen-Macaulay.

Theorem 9 ([2]). Assume D is a 2-Cohen-Macaulay simplicial complex of dimen-
sion d − 1 over an infinite field k and denote by A a sufficiently general Artinian
reduction of k[D]. Then, there exists ω ∈ A1 such that the multiplication by ωd−2i

from Ai to Ad−i is injective for all 0 ≤ i ≤ d/2.
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Acyclonestohedra

Vincent Pilaud

(joint work with Chiara Mantovani and Arnau Padrol)

We use classical terminology on building sets and their nested complexes [FK04,
FS05, Pos09] and on oriented matroids [BLS+99].

Motivated by recent work of P. Galashin on poset associahedra [Gal21], we
consider the acyclic part of a given nested complex with respect to a given oriented
matroid in the following sense.

Definition 1. An oriented building set on a ground set S is a pair (B,M)
where B is a building set on S and M is an oriented matroid on S such that B
contains the support of any circuit of M.

Definition 2. A nested set N on B is acyclic if M/
⋃

N ′ is acyclic for any N ′ ⊆
N . The acyclic nested complex A(B,M) is the simplicial complex of acyclic
nested sets on B.

Our main results concern realizations (as boundary complexes of oriented ma-
troids or polytopes) of these acyclic nested complexes.

Theorem 3. The acyclic nested complex A(B,M) of any oriented building set (B,
M) is the boundary complex of the positive tope of an oriented matroid obtained
by stellar subdivisions of M.

Theorem 4. The acyclic nested complex A(B,M(A)) of any realizable oriented
building set (B,M(A)) is the boundary complex of the acyclonestohedron, a
polytope obtained as the section of a nestohedron of B with the evaluation space of
the vector configuration A.

Our original motivation was the following graphical situation.

Definition 5. The graphical oriented building set of a directed graph D with
edge set S is given by

• the graphical building set of the line graph of D, and
• the graphical oriented matroid of D.

Proposition 6. The acyclic nested complex of the graphical oriented building set
of D is isomorphic to the piping complex of the transitive closure of D, defined
by P. Galashin in its his work on poset associahedra [Gal21].

Corollary 7. The piping complex of a poset P is isomorphic to the boundary
complex of the graphical acyclonestohedron, obtained as a section of a graph
associahedron of the line graph of the Hasse diagram of P .

This corollary is illustrated in Figure 1 and answers a question open by P. Gala-
shin in [Gal21], and independently settled by A. Sack in [Sac23] with a more specific
method.
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Figure 1. The poset associahedra of two posets, obtained as
sections of the graph associahedra of their line graphs with their
cycle spaces.

Finally, we show that acyclic nested complexes of oriented building sets essentially
correspond to F(M)-nested complexes of F(M)-building sets in the sense of E.-
M. Feichtner and D. Kozlov [FK04], where F(M) is the Las Vergnas face lattice
of the oriented matroid M.

We use this observation for two further applications:

• type B nestohedra, starting from the oriented matroid whose positive tope
is a cross-polytope,

• iterated nestohedra, recovering in particular the permuto-permutahedra.
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Fixed points on contractible spaces

Kevin I. Piterman

For a group G and a G-contractible G-complex X , both X and its fixed point set
XG are contractible. In particular, there is a fixed point by the action of G. We
ask then for suitable topological conditions that also imply the existence of a fixed
point in a wide family of spaces and groups.

For example, by Smith theory, a finite p-group acting on a mod p acyclic
finite-dimensional regular simplicial complex has a fixed point. We also know
by Brouwer’s fixed point theorem that a cyclic group acting on a disc has a fixed
point. Hence, p-groups and cyclic groups always act with fixed points on discs.
In the seventies, B. Oliver classified the finite groups that can act without fixed
points on discs. In fact, he showed that a finite group G acts without fixed points
on a disc if and only if G does not contain subgroups P ≤ H ≤ G such P is a
p-group normal in H , H/P is cyclic, and H is a normal subgroup of G such that
G/H is a q-group, where p, q are some primes.

On the other hand, a famous theorem by J.P. Serre in the eighties states that
a finite group acting on a tree has a fixed point. However, it is known that finite
groups can act without fixed points on contractible complexes of dimension at
least 3. The first example of this nature was constructed by E. Floyd and R.W.
Richardson [5]. That is, there is an action of the alternating group A5 on the 2-
skeleton XP of the Poincaré homology 3-sphere, and XP is acyclic and fixed point
free. Then the join X = A5 ∗ XP is a 3-dimensional compact and contractible
complex with XA5 = ∅. In dimension 2, it was conjectured by C. Casacuberta and
W. Dicks that a finite group acting on a contractible 2-complex has a fixed point,
and they proved this for solvable groups by using Smith theory [4]. Independently
and at the same time, M. Aschbacher and Y. Segev raised this question but only
for compact complexes [2]. Moreover, they proved that if a finite group G acts
without fixed points on a compact acyclic 2-complex then G has a composition
factor isomorphic to the Janko group J1 or to one of the simple group of Lie type
and Lie rank 1. In 2002, B. Oliver and Y. Segev achieved substantial progress
on this problem by classifying finite groups acting without fixed points on finite
acyclic 2-complexes [6]. One of their main theorems states that a finite group G
has an essential action without fixed points on a finite acyclic 2-complex if and
only if G is one of the simple groups PSL2(q) or Sz(2

2k+1), with some restrictions

on q and k. We refer to the beautiful exposition by A. Ádem [1] for more details
on these theorems.

In this talk, we review some of these results on fixed points. We also take
a look at the case of finite T0 topological spaces, where a result by R.E. Stong
shows that a contractible finite T0-space always has a fixed point. This relates to
a conjecture raised by D. Quillen [10]: for a fixed prime p and a finite group G,
the poset of nontrivial p-subgroups is contractible if and only if it is contractible
as a finite space. This conjecture remains open, and we briefly comment on recent
developments [3, 7, 9, 10]. We also present a sketch of the proof of the Casacuberta-
Dicks conjecture for compact complexes, a joint work with Sadofschi Costa [8, 11].
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This work is based on a previous article [12] which establishes the case G =
A5 of this conjecture. In this work, Sadofschi Costa reduced the study of the
conjecture to the simple groups G in the theorem of Oliver-Segev (namely, the 2-
dimensional finite linear groups and Suzuki groups), and also to a very particular
family of 2-complexes related to the examples constructed in [6]. Once we have
these reductions for the group G and a fixed point free finite acyclic 2-dimensional
G-complex X , we construct a manifold M encoding representations of the group
extension π1(X) : G, obtained by lifting the maps g ∈ G to the universal cover of
X . For the rest of the proof, we show that there is a differential map f : M → N
between orientable connected and compact manifolds of the same dimension and
conclude by a degree argument that at least one of the points in a preimage
f−1(x0), for a particular point x0 ∈ N , must correspond to a representation of
π1(X) : G that does not factor through G. This implies that π1(X) is nontrivial,
that is, X is not contractible.

Finally, we mention that the non-compact case of the Casacuberta-Dicks con-
jecture remains open.
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Stirling numbers and Koszul algebras with symmetry

Victor Reiner

(joint work with Ayah Almousa, Sheila Sundaram)

Stirling numbers c(n, k), S(n, k) of the first and second kind give the answers to
two basic counting problems:

• How many permutations of {1, 2, ..., n} have k cycles?
• How many set partitions of {1, 2, ..., n} have k blocks?

Although they have no simple product formulas, they do have triangular recursions

c(n, k) = c(n− 1, k − 1) + (n− 1) · c(n− 1, k),(1)

S(n, k) = S(n− 1, k − 1) + k · c(n− 1, k),(2)

and closely related generating functions

n−1∑

k=0

c(n, n− i)ti = (1 + t)(1 + 2t) · · · (1 + (n− 1)t),(3)

∞∑

k=0

S((n− 1) + i, n− 1)ti =
1

(1− t)(1− 2t) · · · (1− (n− 1)t)
.(4)

We re-interpret c(n, k)S(n, k) as Hilbert functions for certain well-studied Koszul
algebras A and their less-studied Koszul duals A!, in the sense of Priddy [4].

The algebras A are the cohomology rings H∗X for the configuration space

X = Confn(R
d) = {(x1, . . . , xn) ∈ Rd)n : xi 6= xj for 1 ≤ i < j ≤ n}

of n labeled points in Rd, where d = 2, 3, 4, 5, . . .. For d = 2, 4, 6, . . . even, this
cohomology algebra A is isomorphic to the usual Orlik-Solomon algebra of the type
An−1 reflection hyperplane arrangement, also known as the braid arrangement. For
d = 3, 5, 7, . . . odd, A is isomorphic to the associated graded Varchenko-Gelfand
ring of the same hyperplane arrangement. Both rings have simple presentations,
either as quotients of an exterior algebra or a commutative polynomial algebra on
generators {xij}1≤i<j≤n, with simple quadratic relations found by V.I Arnold (for
d = 2) and F. Cohen (for general d ≥ 2).

These quadratic presentations actually form quadratic Groebner bases for the
defining ideals, showing that these algebra A are Koszul, and that the Hilbert
series Hilb(A, t) is given by the generating function in (3). This implies also that
their Koszul dual algebrasA! have Hilbert series Hilb(A!, t) given by the generating
function in (4), related by

(5) Hilb(A!, t) =
1

Hilb(A,−t) .

It is also known that A! is the homology ring H∗(ΩX) of the loop space ΩX .
All of these algebra A,A! carry actions of the symmetric group Sn via graded

automorphisms. We are interested in the describing and decomposing the actions
on each graded component Ai, A

!
i, or equivarlant versions of the above Hilbert

series. For the original algebras A, good descriptions of the Sn-characters on Ai
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in terms of generating functions are known via work of Sundaram and Welker [5].
The characters of the Koszul duals {A!

i} can be computed recursively in terms of
the {Ai}, but we currently lack simple generating function descriptions for {A!

i}.
Nevertheless, they enjoy nice properties, considered as families {A(n)}, {A(n)!}

depending on n. For example, there are branching rules that restrict A(n) or
A(n)! from Sn to Sn−1, giving representaiton-theoretic lifts of the recursions (1),
(2). As another example, when one fixes some i = 0, 1, 2, , . . ., the sequences of
Sn-representations {A(n)i}, {A!(n)i} both turn out to be representation stable in
the sense of Church and Farb [2].

Many of their properties and the results come from general facts about Koszul
algebras, and generalize from the type A reflection arrangement to all supersolvable
hyperplane arrangements.
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Tropical Ideals

Felipe Rincón

Tropical ideals are combinatorial objects introduced in [3] with the aim of giv-
ing tropical geometry a solid algebraic foundation. They can be thought of as
combinatorial generalizations of the possible collections of subsets arising as the
supports of all polynomials in an ideal. In general, their structure is dictated by
an infinite sequence of ‘compatible’ matroids. In this talk I will introduce and
motivate the notion of tropical ideals, and I will discuss work over the last decade
studying some of their main algebraic properties, the structure of their associated
varieties, and the tropical Nullstellensatz.
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From pivot rules to colliding particles

Raman Sanyal

(joint work with A. Benjes, A. Black, J. De Loera, N. Lütjeharms, and
G. Poullot)

Geometrically, a linear program can be viewed as a convex polytope P ⊂ Rd to-
gether with a unique-sink orientation of its graph that induced by a linear function
x 7→ 〈c, x〉 for some fixed c ∈ Rd. For a given starting vertex v ∈ V (P ), the sim-
plex algorithm follows a directed path from v to the unique sink vopt. Which path
is taken is dictated by the pivot rule adopted by the simplex algorithm. A pivot
rule is memory-less, if it chooses the next vertex on the path utilizing only v and
its c-improving neighbors N+(v) ⊂ V (P ). The behaviour of a memory-less pivot
rule is completely determined by an arborescence (or rooted tree), that is, a map
A : V (P ) → V (P ) with A(vopt) = vopt and A(v) ∈ N+(v) for v 6= vopt.

In [2] we introduced the max-slope pivot rule that for a given generic ω ∈ Rd

corresponds to the arborescence

(1) Aω(v) = argmax

{ 〈ω, u− v〉
〈c, u− v〉 : u ∈ N+(v)

}

for v 6= vopt. The max-slope pivot rule generalizes the well-known shadow ver-
tex simplex algorithm: if r is the vertex of P that maximizes ω, then r, Aω(r),
(Aω)2(r), . . . , vopt is precisely the shadow path associated to ω. It is straight-
forward to see that the collection of ω that give rise to the same max-slope ar-
borescence form an open polyhedral cone and the closures of these cones yield a
complete fan in Rd.

In [2] we associate to every arborescence A of the linear program (P, c) a point
ψ(A) ∈ Rd and define the max-slope pivot rule polytope Π(P, c) as the convex hull
of these points for all A.

Theorem 1 ([2]). Π(P, c) is a polytope of dimension dimP − 1 with the following
property: for any generic ω ∈ Rd, ψ(Aω) is the unique maximizer of ω over
Π(P, c).

Our pivot rule polytopes are related to certain fiber polytopes [1]: the monotone
path polytope Σ(P, c) that parametrizes coherent monotone paths on (P, c) is a
weak Minkowski summand of Π(P, c). Note that the construction of pivot rule
polytopes works for the more general class of normalized weight pivot rules as
explained in [2].

While our constructions where motivated by studying ‘spaces of pivot rules’,
it turns out that max-slope pivot rule polytopes have fascinating and surprising
applications to geometric combinatorics.

Let ∆n ⊂ Rn+1 be the standard n-simplex with vertices e1, . . . , en+1 equipped
with a generic objective function c = (c1 < c2 < · · · < cn+1). An arborescence
can be viewed as a map A : [n + 1] → [n + 1] with A(n + 1) = n + 1 and
A(i) > i for i < n + 1. Of the n! many arborescences, it turns out that exactly
Cn are max-slope arborescences, where Cn is the n-th Catalan number. The
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max-slope arborescences can be characterized as the non-crossing arborescences,
where a crossing is a pair i, j ∈ [n + 1] with i < j < A(i) < A(j). It is not too
difficult to see that non-crossing arborescences satisfy the same recurrence as the
Catalan numbers. Stasheff’s associahedron Asson−1, which is the poset of partial
parenthesizations of a product of n + 1 letters and which is the face poset of a
(n− 1)-dimensional polytope, famously embodies the Catalan numbers.

Theorem 2 (Black, Lütjeharms, Sanyal’23+). If P is an n-simplex and c a
generic objective function, then Π(P, c) is combinatorially isomorphic to Asson−1.

This result is quite fascinating in that simplices are trivial from an optimization
point of view. However, the simplex method is a sophisticated algorithm that can
exhibit complex behaviour even on trivial instances.

If ρ is a linear projection for which (P, c) and (P ′ := ρ(P ), c′ := ρ(c)) have the
same directed graph, then Π(P ′, c′) = ρ(Π(P, c)). Thus, if P is a simplex and P ′

has a complete graph, then Π(P ′, c′) is a projection of an associahedron. A partic-
ularly nice case is when P = Cycn(t1, . . . , tn+1) is a cyclic polytope, c = e1, and ρ
is the projection onto the first d coordinates. The projection P ′ is again a cyclic
polytope and Π(P ′, e1) is a (generic) projection of an associahedron parametrized
by t1, . . . , tn+1. In joint work with Aenne Benjes and Germain Poullot, we are
currently investigating these polytopes that we call cyclic associahedra.

If P = prism(∆n) = ∆n ×∆1 is the prism over the simplex and c is a generic
objective function, then Π(P, c) turns out to be combinatorially isomorphic to
the multiplihedron Muln. The multiplihedron was also described by Stasheff. It
encodes the evaluations of f(a1a2 · · · an+1), where f is a morphism between two
non-associative structures. For example for n = 1, Muln is a segment with end-
points labelled by f(a1a2) and f(a1)f(a2). For n = 2, Muln is a hexagon whose
vertices are labelled by the evaluations of f(a1a2a3). A generalization to more
morphisms was introduced by Chapoton and Pilaud [4] under the name (n, k)-
multiplihedron.

Theorem 3 (Black, Lütjeharms, Sanyal’23+). If P = ∆n×∆k
1 is the k-fold prism

over ∆n and c is a generic objective function, then Π(P, c) is combinatorially
isomorphic to the (n, k)-multiplihedron.

Finally we consider products of simplices P = ∆m ×∆n.

Theorem 4 (Black, Lütjeharms, Sanyal’23+). For m,n ≥ 1, Π(∆m × ∆n, c) is
combinatorially isomorphic to the (m,n)-constrainahedron.

The (m,n)-constrainahedron was introduced by Bottman and Poliakova [3] to
capture the collisions of mn particles that sit at the intersections of m horizontal
and n vertical lines in the plane. The (1, n)-constrainahedra are associahedra, the
(2, n)-constrainahedra are multiplihedra.

In order to show the stated combinatorial isomorphism to the associahedron, we
make a connection between max-slope arborescences and particles with locations
and velocities. We consider n particles at locations −ω1 ≤ −ω2 ≤ · · · ≤ −ωn

at time t = 0. For t > 0, the particles travel at constant velocities −c, where
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0 < c1 < · · · < cn. In this model one can interpret Aω(i) as the earliest particle
that will collide (and then absorb) with particle i.
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Hardness of linearly ordered 4-coloring of 3-colorable

3-uniform hypergraphs

Uli Wagner

(joint work with Marek Filakovský, Tamio-Vesa Nakajima, Jakub Opršal, and
Gianluca Tasinato)

Deciding whether a given finite graph is 3-colorable (or, more generally, k-colorable,
for a fixed k ≥ 3) was one of the first problems shown to be NP-complete [7]. Since
then, the complexity of approximating the chromatic number of a graph has been
studied extensively, and it is known that, in general, the chromatic number cannot
be approximated in polynomial time within a factor of n1−ε, for any fixed ε > 0,
unless P = NP [14]. However, this hardness result only applies to graphs whose
chromatic number grows with the number of vertices, and the case of graphs with
bounded chromatic number is much less well understood. The approximate graph
coloring problem concerns the computational complexity of the following problem:
Given an input graph that is either k-colorable or not ℓ-colorable, for some integers
ℓ ≥ k ≥ 3, how hard is it to distinguish between the two cases? Khanna, Linial,
and Safra [8] showed that this problem is NP-hard for (k, ℓ) = (3, 4), and it is a
long-standing conjecture that the problem is NP-hard1 for all constants ℓ ≥ k ≥ 3;
to date, this is known for ℓ ≤ 2k− 1 for all k ≥ 3 [3], and for k ≥ 6, the bound on

ℓ has been improved to ℓ ≤
(

k
⌊k/2⌋

)
[13].

For hypergraphs, it is known [5] that given a c-uniform hypergraph that is ei-
ther k-colorable or not ℓ-colordable, it is NP-hard to distinguish between the two
cases, for all constants c ≥ 3 and ℓ ≥ k ≥ 2. Here, we consider the following
variant of hypergraph coloring, focusing on 3-uniform hypergraphs. A linearly
ordered k-coloring (LOk-coloring, for short) of a (3-uniform) hypergraph H is an
assignment of elements (“colors”) in [k] = {1, . . . , k} to the vertices of H such
that, for every hyperedge, the maximal color assigned to elements of that hyper-
edge occurs exactly once in the hyperedge. Linearly ordered hypergraph coloring

1There are conditional hardness results (assuming different variants of Khot’s Unique Games
Conjecture) for approximate graph coloring for all ℓ ≥ k ≥ 3, see [4].
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generalizes both classical graph coloring and certain versions of the boolean satis-
fiability problem and has recently received a lot of attention [1, 11, 12]. Our main
result (see [6] for more details) is the following:

Theorem 1. The following problem is NP-hard: Given a 3-uniform hypergraph
H, distinguish between the case that H is LO3-colorable and the case that H is
not LO4-colorable.

More generally, it is conjectured [1, Conjecture 27] that distinguishing between
LOk-colorable hypergraphs and not LOℓ-colorable hypergraphs is NP-hard for all
constants ℓ ≥ k ≥ 2. (We remark that, for k ≥ 4, an easy reduction shows that
this conjecture is true whenever the approximate graph coloring problem with
parameters (k − 1, ℓ − 1) is NP-hard, but our hardness result cannot be obtained
this way.)

The proof of Theorem 1 builds on and extends a topological approach for study-
ing approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and
Živný [9] and has two main parts. LOk-colorability of a hypergraph H is equiva-
lent to the existence of a homomorphism from H to a certain relational structure
LOk. For a natural number n, let (LO3)

n be the n-fold power of the relational
structure LO3. In the first part of the proof, we use topological methods to show
that with every homomorphism f : (LO3)

n → LO4, we can associate an affine
map χ(f) : Zn

3 → Z3 (i.e., a map of the form (x1, . . . , xn) 7→
∑n

i=1 αixi, for some
αi ∈ Z3 and

∑n
i=1 αi ≡ 1 (mod 3)); moreover, the assignment f 7→ χ(f) preserves

natural so-called minor relations that arise from maps π : [n] → [m], i.e., χ is a
so-called minion homomorphism.

In the second part of the proof, we show by combinatorial arguments that the
maps χ(f) : Zn

3 → Z3 form a very restricted subclass of affine maps: They are
projections, i.e., maps of the form Zn

3 → Z3, (x1, . . . , xn) 7→ xi. Theorem 1 then
follows from a hardness criterion obtained as part of a general algebraic theory
so-called promis constraint satisfaction problems [2].

In a nutshell, topology enters in the first part of the proof as follows. First, with
every homomorphism f : (LO3)

n → LO4 we associate a continuous map f∗ : T
n →

P 2, where T n is the n-dimensional torus (the n-fold power of the circle S1) and
P 2 is a suitable target space; moreover, the cyclic group Z3 naturally acts on both
T n and P 2, and the map f∗ preserves these symmetries (it is equivariant). This
first step uses homomorphism complexes (a well-known construction in topological
combinatorics that goes back to the work of Lovász [10]). Second, using equivariant
obstruction theory, we show that equivariant continuous maps T n → P 2, when
considered up to a natural equivalence relation of symmetry-preserving continuous
deformation (equivariant homotopy), are in bijection with affine maps Zn

3 → Z3.
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Counting triangulations of homology 3-spheres

Geva Yashfe

(joint work with Karim Adiprasito, Marc Lackenby, Juan Souto, and (separately)
with Yuval Peled)

M. Gromov popularized the following problem.

Problem 1. Let tN be the number of (combinatorial isomorphism types of) tri-
angulations of S3 with N facets. Is tN exponential or superexponential in N?

This problem remains unsolved.

Known results and related work.

• For triangulations of S2 Tutte [9] proved that there are exponentially many
triangulations with N triangles.
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• It is known that exp (cN) ≤ tN ≤ exp (c′N logN) for some1 constants
c, c′ > 0.

These bounds are relatively straightforward to prove. The upper bound
exp (c′N logN) actually holds for triangulations of d-manifolds for any
fixed d (with an appropriate constant c′ depending on d).

It seems there is no hope for a very precise answer, so rough asymptotic
results are all we aim for.

• Benedetti–Ziegler [3] showed that shellable spheres are at most exponen-
tially many in N (in any fixed dimension). They also did this for a larger
class spheres called “locally-constructible” (or LC). Benedetti–Pavelka [2]
later extended this to a significantly larger class called 2-LC, but only in
dimension 3.

• If we parametrize sphere triangulations by the number of vertices (call it
M) instead, the problem has a different character. Some main results are:

– Alon and Goodman–Pollack [1, 4] showed that there are relatively
few (approximately exp (cM logM)) polytopes in M .

– Kalai [6] showed that most triangulations (in terms of M) are not
polytopal, and Lee [7] showed that Kalai’s triangulations are shellable.

– Nevo–Santos–Wilson [8] found still more triangulations than Kalai,
and Yang [10] showed the families they produced are constructible.

Here we mainly consider the following relaxation of Problem 1.

Problem. Let tN be the number of triangulations of 3-dimensional homology
spheres with N facets. Is tN exponential or superexponential in N?

For this we consider homology with coefficients in a fixed field F. This problem
also remains unsolved, with the best bounds remaining of the form exp (cN) ≤
tN ≤ exp (c′N logN) for some c, c′ > 0. This talk is about very modest progress
and currently still-unsuccessful attempts.

1. Dual graphs and short graphs

Gromov and Nabutovski suggested reducing the problem to a problem about
graphs. Gromov explains roughly what the result should be without describing
the reduction in [5]. This section is based on joint work with K. Adiprasito, M.
Lackenby, and J. Souto, and contains a sketch of our implementation of (part of)
this idea and of two applications.

Dual graphs and enumeration. Suppose X is a triangulated 3-manifold with
N facets, but we only have access to its dual graph G consisting of one vertex per
facet, with an edge for every two facets that intersect in a triangle. Then there
are at most exp (cN) possibilities for X given G: we have to put one tetrahedron
in place of every vertex of G, and the only information missing is the manner in
which adjacent tetrahedra are glued to each other. This leaves us with constantly
many possibilities per facet of X , of which there are N .

1We don’t care very much about the constants, and different occurences of “c” in this abstract
do not refer to the same number.



Geometric, Algebraic and Topological Combinatorics 3301

Given the bounds we have on tN , we may consider just the dual graphs of tri-
angulated homology 3-spheres rather than the entire triangulations: asymptotics
remain essentially unchanged (exponential factors only change our constants).

Remark. This discussion explains the upper bound exp (c′N logN) for the num-
ber of triangulated d-manifolds: the dual graphs of triangulated d-manifold have
constant degree d+ 1, and there are only exp (c′N logN) constant-degree graphs
on N vertices (with c′ depending on the degree).

Properties of dual graphs. The family of dual graphs G of triangulated ho-
mology d-spheres over F has the following pleasant properties:

(1) It has bounded degree.
(2) For each G in the family there exists an F-homology basis (given by taking

a maximal independent subset of the dual cells of (d− 2)-faces of the
triangulated homology sphere) such that:
(a) The average cycle length (in terms of the number of edges) in the

basis is bounded by a constant. Equivalently, if G has N vertices
then the total length of cycles in the basis is bounded by cN for some
c.

(b) Each edge of G participates in boundedly many of the cycles in the
basis.

Definition. A class of graphs satisfying properties 1, 2(a), and 2(b) with some
fixed constants is called a class of short graphs. These classes are parametrized
by the field F, the degree bound, and the constants in conditions 2(a) and 2(b)
above.

Basically, one can think of classes of short graphs as a “soft / approximate” versions
of dual graphs of triangulated homology spheres.

Theorem (Adiprasito, Lackenby, Souto, Yashfe). For each class C of short graphs
there is a “machine”

C →֒ (triangulated homology 3-spheres over F)

taking each N -vertex graph in C to a triangulated homology 3-sphere with at most
c ·N tetrahedra (for c depending on C).
Corollary. If there exists d > 3 such that there are superexponentially many N -
facet triangulated homology d-spheres over F, then the same holds for d = 3.

Proof. Take the dual graphs of these superexponentially many homology d-spheres
to obtain a family of graphs contained in a class C of short graphs, and apply the
machine to this class. �

The machines of the theorem preserve some of the geometry of the input graphs.
This can also be applied to prove the following.

Theorem (Originally proved in unpublished work of M. Lackenby and J. Souto
by slightly different methods.). There is a family of triangulations of S3 for which
the dual graphs form an expander family.
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(Getting triangulations of S3 and not just some homology spheres requires an
additional idea and a special family of short graphs.)

A sketch of the machine. Given a graph G together with a “short” homology
basis over F, construct a 2-complex by pasting cells along basis elements. Then
thicken this complex to a triangulated 4-manifold in a geometrically controlled way
(so as not to increase degrees or face numbers by too large a factor; this process is
not canonical). Finally, pass to the boundary, which is a homology 3-sphere over
F. Injectivity of this process is not automatic and requires that we locally encode
some combinatorial data in the resulting triangulation.

In the talk some additional ideas were sketched, mainly on the relation between
problems here and problems about subgroup growth.
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Stress spaces, reconstruction problems and lower bound problems

Hailun Zheng

(joint work with Satoshi Murai and Isabella Novik)

What partial information about a simplicial d-polytope P allows one to determine
P up to certain equivalences? Specifically, consider the following two equivalences:
Given two polytopes P and P ′, we say that P and P ′ are combinatorially equivalent
if they have isomorphic face lattices, and they are affinely equivalent if there is
an affine map that sends P to P ′. Perles (unpublished) and Dancis [3] proved
that to determine the combinatorial type of a simplicial d-polytope P , it suffices
to know the ⌊d/2⌋-skeleton of P . This result is optimal in the sense that distinct
simplicial d-polytopes may have isomorphic (⌊d/2⌋−1)-skeleta. (For example, it is
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known that there are 2Θ(n logn) combinatorial types of neighborly d-polytopes with
n vertices [12].) On the other hand, the space of affine dependencies among the
vertices of P determines the affine type of P (and hence also the combinatorial type
of P ). This observation is at the heart of the theory of Gale diagrams developed
by Perles [15, Chapter 6].

A common ground of the above two results lies in the theory of stress spaces
developed by Lee [6]. To see it, note that for a simplicial d-polytope P , the space
of affine dependencies of vertices of P is equivalent to the space of affine 1-stresses
on P , while the space of affine k-stresses is trivial for any k ≥ ⌊d/2⌋ + 1. Hence
these two results are precisely the k = ⌊d/2⌋+ 1 and k = 1 cases of the following
conjecture of Kalai [4].

Conjecture 1. Let P be a simplicial d-polytope and let 1 ≤ k ≤ ⌊d/2⌋+ 1. Then
the (k−1)-skeleton of P and the space of affine k-stresses of P uniquely determine
the combinatorial type of P .

Another conjecture concerning the affine types of polytopes is the following

Conjecture 2. Let d ≥ 2k ≥ 4 and let P be a simplicial d-polytope with the
natural embedding and with no missing faces of dimension ≥ d− k + 1. Then the
space of affine k-stresses uniquely determines P up to affine equivalence.

We present two partial results of the above two conjectures. The first result
verifies the case of k = 2 of Conjecture 1, namely

Theorem 3 ([10]). Let d ≥ 3. The graph of a simplicial d-polytope P together
with the space of affine 2-stresses on P uniquely determine the combinatorial type
of P .

The proof is geometric-combinatorial. The idea is to use the rigidity theory
of frameworks to show that the missing faces of P can be identified by the sign
patterns of the coefficients of the squarefree terms in certain affine 2-stresses on
P .

The second result deals with Conjecture 2 and more generally the structures of
affine stress spaces of polytopes with no large missing faces.

Theorem 4 ([8]). Let 1 ≤ j < k ≤ d−1
2 and let P be a simplicial d-polytope with

no missing faces of dimension ≥ d− k+ 1. Then the space of affine k-stresses on
P determines the space of affine j-stresses on P .

In particular, Theorem 4 verifies the k ≤ d−1
2 case of Conjecture 2 (by letting

j = 1). At the moment, the d = 2k ≥ 4 case remains open.
The proof of Theorem 4 is algebraic. In particular, it relies on identifying the

space of affine stresses on P with the Matlis dual N of the Stanley-Reisner ring
of P modulo the linear system of parameters and the Lefschetz element. (Hence,
the condition on the missing faces translates into a condition on the degrees of
generators of N .)

Three comments are in order. First, prior to Theorem 4, Conjecture 2 was
proved by Cruickshank, Jackson and Tanigawa [2] in the case that P is a simplicial
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polytope whose vertices have generic coordinates, and by Novik and Zheng [11]
for all simplicial d-polytopes that have no missing faces of dimension ≥ d− 2k+2.
Second, with the proof of the g-theorem for simplicial spheres [1, 13, 5], Theorem
4 not only applies to simplicial d-polytopes with natural embeddings but also
simplicial (d − 1)-spheres with generic embeddings. Finally, Theorem 4 leads to
two corollaries on the g-numbers of simplicial (d− 1)-spheres that are interesting
in their own right. For a simplicial complex ∆, denote by mi(∆) the number of
missing i-faces of ∆. Recall that the g-theorem [14, 1, 13, 5] states that the g-
numbers of a simplicial (d− 1)-sphere form an M -sequence, i.e., 0 ≤ gk+1 ≤ g<k>

k

holds for all 1 ≤ k ≤ ⌊d
2⌋. The following corollary is a strengthening of the

g-theorem; part of the inequality appeared first in [9].

Corollary 5. Let d ≥ 4 and let ∆ be a simplicial (d − 1)-sphere. Then for all
1 ≤ k ≤ ⌈d/2⌉ − 1, gk(∆) ≥ md−k(∆). Furthermore, 0 ≤ gk+1(∆) ≤

(
gk(∆) −

md−k(∆)
)<k>

.

Recall also that the Generalized Lower Bound Theorem [7] asserts that for 2 ≤
k ≤ ⌊d/2⌋, a simplicial (d−1)-sphere has gk+1 = 0 if and only if it is k-stacked. The
following corollary gives a second characterization of spheres attaining a minimal
g-number.

Corollary 6. Let ∆ be a simplicial (d− 1)-sphere. Then for 1 ≤ k ≤ ⌊d/2⌋ − 1,
∆ is k-stacked if and only if gk(∆) = md−k(∆). Moreover, if d is odd and ∆ is
d−1
2 -stacked, then g d−1

2

(∆) = m d+1

2

(∆).
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Open Problems in Geometric, Algebraic and Topological

Combinatorics

Collected by Edward Swartz

PROBLEM 1 (Nati Linial, joint with Jordan Smith). Computing certain

invariants of topological spaces of dimension three

Say that a graph is geodesic if between every two vertices there is a unique shortest
path. Ore (1960) defined this class of graphs and asked for a characterization, but
this quest seems way out of hand. It suffices, of course to consider only 2-connected
graphs. There is a known infinite family of (i) geodesic, (ii) 2-connected graphs
(iii) in which all vertex degrees are at least 3 and have diameter 5, but nothing
beyond. Question: Can such graphs have arbitrarily large diameter?

PROBLEM 2 (Benjamin Braun, joint with Kaitlin Bruegge). Bounding facet

numbers for symmetric edge polytopes

Let G be a finite simple graph and let PG = conv{ei−ej, ej−ei : ij ∈ E(G)} be the
symmetric edge polytope of G. Determining properties of the facets of symmetric
edge polytopes is of interest both in combinatorics and in applications. To this
end, the authors made the following conjecture regarding bounds on the number
of facets for symmetric edge polytopes of connected graphs on a fixed number of
vertices.

Conjecture. (1) (Braun and Bruegge [1]). Let n ≥ 3.

(1) For n = 2k + 1, the maximum number of facets for PG for a connected
graph G on n vertices is 6k, which is attained by a wedge of k cycles of
length three.

(2) For n = 2k, the maximum number of facets for PG for a connected graph
G on n vertices is 14 · 6k−2, which is attained by a wedge of K4 with k− 2
cycles of length three.

(3) For n = 2k + 1, the minimum number of facets for PG for a connected
graph G on n vertices is 3 · 2k − 2, which is attained by Kk,k+1.

(4) For n = 2k, the minimum number of facets for PG for a connected graph
G on n vertices is 2k+1 − 2, which is attained by Kk,k.

Partial progress on this conjecture was announced in a preprint by Mori, Mori,
and Ohsugi [2].
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PROBLEM 3 (Benjamin Braun, joint with Matias von Bell, Derek Hanely,
Khrystyna Serhiyenko, Julianne Vega, Andrés Vindas-Meléndez and Martha Yip).
Enumerating regular triangulations of order polytopes for snake

posets

For n ∈ Z≥0, a generalized snake word is a word of the form w = w0w1 · · ·wn

where w0 = ε is the empty letter and wi is in the alphabet {L,R} for i = 1, . . . , n.
The length of the word is n, which is the number of letters in {L,R}. Given a
generalized snake word w = w0w1 · · ·wn, we define the generalized snake poset
P (w) recursively in the following way:

• P (w0) = P (ε) is the poset on elements {0, 1, 2, 3} with cover relations
1 ≺ 0, 2 ≺ 0, 3 ≺ 1 and 3 ≺ 2.

• P (w0w1 · · ·wn) is the poset P (w0w1 · · ·wn−1) ∪ {2n+ 2, 2n+ 3} with the
added cover relations 2n+ 3 ≺ 2n+ 1, 2n+ 3 ≺ 2n+ 2, and{

2n+ 2 ≺ 2n− 1, if n = 1 and wn = L, or n ≥ 2 and wn−1wn ∈ {RL,LR},
2n+ 2 ≺ 2n, if n = 1 and wn = R, or n ≥ 2 and wn−1wn ∈ {LL,RR}.

In this definition, the minimal element of the poset P (w) is 0̂ = 2n + 3, and the

maximal element of the poset is 1̂ = 0.
As part of a more extensive investigation of triangulations of order polytopes

related to generalized snake posets, the authors made the following conjecture re-
garding the order polytope of the following poset: for the length n word εLRLR · · · ,
Sn := P (εLRLR · · · ) is the snake poset.

Conjecture. (2) (von Bell, Braun, Hanely, Serhiyenko, Vega, Vindas-Meléndez,
Yip [1]). The number of regular triangulations of the order polytope of Sn is
2n+1Cat(2n+ 1), where Cat(2n+ 1) denotes the 2n+ 1-st Catalan number.

[1] M. von Bell, B. Braun, D. Hanely, K. Serhiyenko, J. Vega, A. Vindas-Meléndez, M. Yip,
Triangulations, Order Polytopes, and Generalized Snake Posets Combinatorial Theory 2(3)
(2022)

PROBLEM 4 (Raman Sanyal, joint with Sebastian Manecke). Strongly in-

scribable arrangements and reflection arrangements

Consider an arrangement A = {H1, . . . , Hn} of n hyperplanes in Rd, all passing
through the origin. Choosing a normal vector zi for each hyperplane Hi gives rise
to an associated zonotope

Z(A) = [−z1, z1] + · · ·+ [−zn, zn] = {µ1z1 + · · ·+ µnzn : −1 ≤ µ1, . . . , µn ≤ 1}.
Z(A) is a convex polytope whose combinatorics faithfully represents that of A.
We call A strongly inscribable if there is a choice of normal vectors such that Z(A)
is inscribed, that is, has all vertices on the unit sphere. For example, reflection
arrangements obtained from finite reflection groups are strongly inscribable.
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In [4], we showed that the restriction of a strongly inscribable arrangement
to any of its hyperplanes is again strongly inscribable. Thus, further examples
are provided by restrictions of reflection arrangements, which generally are not
reflection arrangements themselves.

Conjecture. (3) ([4, Conj. 1.7]). An arrangement of hyperplanes in Rd with d ≥ 3
is strongly inscribable if and only if it is linearly isomorphic to the restriction of a
reflection arrangement.

An important structural property that we observe in [4] is that every strongly
inscribable arrangement is simplicial, that is, every connected component of Rd \⋃A is linearly isomorphic to Rd

>0. Simplicial arrangements are fascinating but
rare. There is a conjecturally complete catalog of simplicial arrangements in R3

due to Grünbaum and Cuntz [1, 2, 3]. We verify that the only strongly inscribable
arrangements in this catalog are restrictions of reflection arrangements. Assuming
the completeness of the Grünbaum–Cuntz catalog, this proves the conjecture in
dimension 3.
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and reflection groups, arXiv preprint arXiv:2203.11062, (2022).

PROBLEM 5 (Georg Loho). Realizable M-convex functions

A generalized permutahedron is a polytope whose edge directions are of the form
ei− ej for standard unit vectors ei, ej. An integral generalized permutahedron is a
generalized permutahedron that is also a lattice polytope. An M-convex set is the
set of lattice points in an integral generalized permutahedron. Let f : S → R be a
function for some finite subset S ⊆ Zn. It is M-convex if argminx∈S (f(x)− 〈c, x〉)
is an M-convex set for each c ∈ Rn.

Matroids are special M-convex sets, namely those contained in the unit cube
{0, 1}n. Furthermore, valuated matroids are special M-convex functions, namely
those with a matroid as domain. Matroids are realizable if they arise from the
independence structure of a matrix. Valuated matroids are realizable if they arise
as tropicalization of a Pluecker vector of a linear space. M-convex sets are real-
izable if their defining integral generalized permutahedron can be described by a
submodular function arising from a subspace arrangement.

However, it is not clear when an M-convex function should be called realizable.
There are some potential candidates. One could argue that M-convex functions
arising from realizable valuated matroids by induction through a directed graph
should be called realizable. Furthermore, M-convex functions arise by tropical-
ization from Lorentzian polynomials. For the latter, one could argue that those
arising as volume polynomials should be realizable, giving rise to another notion
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of realizability for M-convex functions. Still, the notion does not seem clear com-
pared to the nice picture for (valuated) matroids and M-convex sets, leaving the
following questions open.

What is a ‘realizable’ M-convex function?
What is a ‘Pluecker vector’ of a subspace arrangement?

[1] L. Lovász, Flats in matroids and geometric graphs, Comb. Surv., Proc. 6th Br. comb. Conf.
(1977), 45–86.

[2] K. Murota, Discrete convex analysis, SIAM Monographs on Discrete Mathematics and Ap-
plications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.

PROBLEM 6 (Germain Poullot). Is log-concavity arising through ma-

trix recursion?

The problem presented here arises when studying the monotone path polytope of
the hypersimplex ∆(n, 2). After numerous pages of tedious proofs, one can count
the number of coherent monotone paths of ∆(n, 2) thanks to the following matrix
recursion. Similar problems give rises to similar question, but we present here a
very concrete occurrence, hoping from someone to develop tools to address the
general setting.

Let’s define the sequences of polynomials Tn, Qn and Cn satisfying the following
recursive formula:

∀n ≥ 4,



Tn+1

Qn+1

Cn+1


 = M



Tn
Qn

Cn




with M =




z 1 + z 1 + z
0 1 + z z

z + z2 0 1 + z


 ,



T4
Q4

C4


 =



z4 + 2z3

z4

2z4 + 2z3




and the polynomial Vn = Tn +Qn + Cn =
∑

k vn,kz
k.

Conjecture: For all n ≥ 4, the sequence (vn,k)n is (ultra-)log-concave.

The value vn,k counts the number of coherent monotone paths of ∆(n, 2), and
a good combinatorial model allows to exhibit this recursion, but I haven’t able to
extract log-concavity from this combinatorial interpretation (yet).

This conjecture have been checked for all n ≤ 300 (and one can easily go further,
but where to stop?), please prove it!

Obviously, the question can be posed more generally: given a starting vector
X0 ∈ N[z]m and a matrix M ∈ Matm×m

(
N[z]

)
, what kind of tools can we develop

to address (ultra-)log-concavity and unimodality questions for (the polynomials of
the vector) Xn = MnX0 and the polynomial

∑m
r=1Xn,r?

Note that, for n ≤ 300:

• Tn, Qn, Cn and Vn are ultra-log-concave (so homogenizing each of them
gives lorentzian polynomials).

• (in general) Tn, Qn, Cn and Vn are not symmetric.
• (in general) Tn, Qn, Cn and Vn are not real-rooted.
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• Properties of M (left- or right-kernel and eigenvectors) seems not helpful:
one computes Mn, but then extracting log-concavity it out of my reach...

• Starting with different polynomials for T4, Q4 and C4, its seems that Vn
becomes ultra-log-concave after a certain rank.

One can mathematically prove that:

• deg Vn = d =
⌊
3
2 (n− 1)

⌋
(with vn,d = 1 if n odd ; vn,d = d if n even).

• the ”constant coefficient” of Vn is 4 (i.e. vn,4 = 4).
• Vn(1) =

∑
k vn,k = 1

3 (25× 4n−4 − 1)
• for a fixed k, the value of vn,k is a polynomial in n (of degree k − 3),
mimicking slightly the behavior of binomial coefficients.

PROBLEM 7 (Bruno Benedetti, joint with Matteo Varbaro). The dual graph

of Cohen–Macaulay algebras

In the following, S = K[x1, . . . , xn] is the polynomial ring with n variables over
some field K. Let I be any ideal of S. Let ℘1, . . . , ℘s be the minimal primes of I
that have height equal to the height of I. We define the dual graph G(I) on the
vertex set [s] = {1, . . . , s} as follows: there is an edge [i, j] if and only if

height(Pi + Pj) = 1 + height I.

There are two motivations for this definition:

(1) When I is radical and height-unmixed, I = ℘1 ∩ . . . ∩ ℘s. Passing to the
Zariski sets, this means that Z(I) = Z(℘1)∪ . . .∪Z(℘s). Thus G(I) coin-
cides with the dual graph of Z(I), where an edge connects two irreducible
components iff their intersection has codimension one.

(2) When I = I∆ is the Stanley-Reisner ideal of some simplicial complex ∆
on n vertices, then G(I) coincides with the dual graph of ∆. In this case
height I = n− dim∆− 1.

Recall that in a connected graph G, the distance between two vertices is the
number of edges in a shortest path connecting them, and diamG is the maximum
distance between any two of its vertices.

Conjecture. [Benedetti–Varbaro [2], 2014]: Let I ⊆ S be an ideal generated in
degree two. If S/I is Cohen–Macaulay, then diamG(I) ≤ height(I).

In the meantime, the conjecture has been proven true for many interesting cases,
cf. e.g. [3], [4], [5], [6], [7]. It holds for squarefree monomial ideals: This follows from
the result by Adiprasito–Benedetti that “flag normal complexes satisfy the Hirsch
conjecture” [1]. In fact, when I = I∆, the upper bound height I = n− dim∆− 1
reflects exactly the Hirsch bound.

A final comment: The condition “generated in degree two” is not really restric-
tive. Via Veronese embeddings, if the Conjecture above is true, one automatically
gets a polynomial bound of the type

diamG(I) ≤ height(I)⌈k/2⌉

for all ideals I generated in degree ≤ k and such that S/I is Cohen–Macaulay [2].
Thus in particular the Conjecture above would imply the following:
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Conjecture. If ∆ is a normal simplicial complex of dimension d, with n vertices,
and no missing face of dimension ≤ k, then the dual graph of ∆ has diameter at
most P (n), where P is a polynomial in n of degree ⌈k/2⌉.

[1] K. Adiprasito, B. Benedetti, The Hirsch conjecture holds for flag normal complexes, Math.
Oper. Research 39, Issue 4 (2014), 1340–1348.

[2] B. Benedetti, M. Varbaro, On the dual graphs of Cohen–Macaulay algebras, Int. Math. Res.
Notices 2015 (2015), 8085–8115.

[3] D. Bolognini, A. Macchia, M. Strazzanti, Binomial edge ideals of bipartite graphs, Eur. J.
Combin. 70 (2018), 1–25.

[4] M. Di Marca, M. Varbaro, On the diameter of an ideal, J. Algebra 511 (2018), 471–485.
[5] A. Conca, M. Varbaro, Square-free Gröbner degenerations, Invent. Math. 221, No. 3 (2020),

713–730.
[6] A. D’Aĺı, L. Venturello, Koszul Gorenstein Algebras from Cohen–Macaulay simplicial com-

plexes, Int. Math. Res. Notices 2023 (2023), 4998–5045.
[7] B. Holmes, On the diameter of dual graphs of Stanley-Reisner rings and Hirsch type bounds

on abstractions of polytopes, Elec. J. Comb. 25 (2018), P1.60.

PROBLEM 8 (Felipe Rincón). Tensor products of matroids

If M is a matroid on the ground set E and N is a matroid on the ground set F , a
quasi-product ofM andN is a matroid T on the ground set E×F satisfying: for any
f ∈ F , the natural bijection between E and E×{f} induces a matroid isomorphism
between M and the restriction T |E×{f}, and similarly, for any e ∈ E, the natural
bijection between F and {e} × F induces a matroid isomorphism between N and
the restriction T |{e}×F .

It is a simple exercise to show that the rank of any quasi-product T of M and
N has rank at most rank(M) · rank(N). The quasi-product T is called a tensor
product if in fact we have the equality rank(T ) = rank(M) · rank(N).

To my knowledge, there are only very few things that we know about tensor
products:

• If M and N are realizable over the same field K then M and N admit
a tensor product. This is due to the fact that, for subspaces LM ⊂ KE

and LN ⊂ KF that represent M and N , respectively, we can construct
the tensor product LM ⊗LN ⊂ KE ⊗KF , which then represents a tensor
product T of M and N . The resulting tensor product T might depend on
the realizations chosen, though.

• The matroids V8 and U2,3 do not admit a tensor product! This is one of
the main results of [2].

• If M and N admit a tensor product, M ′ is a minor of M , and N ′ is a
minor of N , then M ′ and N ′ admit a tensor product. This is not too
difficult – for details, you can see, for instance, [1].

The research problem I am proposing is to study further the class of matroids
M,N that admit a tensor product. For instance, can you construct more matroids
that admit a tensor product? Can you describe tensor products combinatorially
for particular classes of matroids? Can you say something about forbidden minors
for the existence of tensor products (see [1])?
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[1] N. Anderson, Matroid products in tropical geometry, preprint, arXiv:2306.14771.
[2] M. Las Vergnas, On products of matroids, Discrete Mathematics 36 (1) (1981).

PROBLEM 9 (Pablo Soberón). A problem in the plane

Given a family F of lines in the plane such that no two are parallel, we can
determine the size of a set A ⊂ R2 as follows:

µ(A) = max{k ∈ N : there exists a set of k lines of F whose pairwise

intersections are all in A.}
If A does not contain any intersection of lines of F , we define µ(A) := 1.
Let (A,B,C) be a convex partition of the plane into three parts. In other words,

each of A,B,C is a closed convex set in R2, their interiors are pairwise disjoint,
and their union is R2.

Show that

µ(A)µ(B)µ(C) ≥ |F|.
The case when one of A,B,C is a half-plane is easy to prove. The best known

bound is [1]:

µ(A)µ(B)µ(C) ≥
(
2

3

)
|F|.

[1] A. Xue, P. Soberón, Balanced convex partitions of lines in the plane, Discrete & Computa-
tional Geometry 66 (2021), 1150–1167.

The homogenized Linial arrangement and Genocchi numbers

Michelle Wachs

(joint work with Alexader Lazar)

The braid arrangement (or type A Coxeter arrangement) is the hyperplane ar-
rangement in Rn defined by

An−1 := {xi − xj = 0 : 1 ≤ i < j ≤ n}.
Note that the hyperplanes of An−1 divide Rn into open cones of the form

Rσ := {x ∈ Rn : xσ(1) < xσ(2) < · · · < xσ(n)},
where σ is a permutation in the symmetric groupSn. Hence the braid arrangement
An−1 has |Sn| = n! regions.

A classical formula of Zaslavsky [11] gives the number of regions of any real
hyperplane arrangement A in terms of the Möbius function of its intersection
(semi)lattice L(A). Indeed, given any finite, ranked poset P of length ℓ, with a

minimum element 0̂, the characteristic polynomial of P is defined to be

(1) χP (t) :=
∑

x∈P

µP (0̂, x)t
ℓ−rk(x),
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where µP is the Möbius function of P and rk(x) is the rank of x. Zaslavsky’s
formula for the number of regions r(A) of A is

(2) r(A) = (−1)ℓχL(A)(−1).

It is well known and easy to see that the lattice of intersections of the braid
arrangement An−1 is isomorphic to the lattice Πn of partitions of the set [n] :=
{1, 2, . . . , n}. It is also well known that the characteristic polynomial of Πn is given
by

(3) χΠn
(t) =

n∑

k=1

s(n, k)tk−1,

where s(n, k) is the Stirling number of the first kind, which is equal to (−1)n−k

times the number of permutations in Sn with exactly k cycles; see [10, Example
3.10.4]. Hence χΠn

(−1) = (−1)n−1|Sn|. Therefore, from (2), we recover the result
observed above that the number of regions of An−1 is n!.

In this talk, we consider a hyperplane arrangement introduced by Hetyei [5].
The homogenized Linial arrangement is the hyperplane arrangement in R2n de-
fined, for n ≥ 2, by

H2n−3 := {xi − xj = yi : 1 ≤ i < j ≤ n}.
Note that by intersectingH2n−3 with the subspace y1 = y2 = · · · = yn = 0 one gets
the braid arrangement An−1. Similarly by intersecting H2n−3 with the subspace
y1 = y2 = · · · = yn = 1, one gets the Linial arrangement in Rn,

{xi − xj = 1 : 1 ≤ i < j ≤ n}.
Postnikov and Stanley [8] show that the number of regions of the Linial arrange-
ment is equal to the number of alternating trees on node set [n+ 1].

Hetyei [5] shows that the number of regions of the homogenized Linial arrange-
ment is equal to a number known as the median Genocchi number. He uses the
finite field method of Athanasiadis [1] to obtain a recurrence for χL(H2n−1)(−1) and
shows that the recurrence reduces to a known formula for the median Genocchi
number hn. The result then follows from Zaslavsky’s formula (2). The Genocchi
numbers gn and the median Genocchi numbers hn can be characterized by the
Barsky and Dumont [2] generating function formulas:

∑

n≥1

gnx
n =

∑

n≥1

(n− 1)!n!xn∏n
k=1(1 + k2z)

(4)

∑

n≥0

hnz
n =

∑

n≥0

n! (n+ 1)! zn∏n
k=1(1 + k(k + 1)z)

.(5)

In [6] we further study the intersection lattice L(H2n−1) and its characteristic
polynomial χL(H2n−1)(t) using an approach quite different from Hetyei’s. We prove

(6)
∑

n≥1

χL(H2n−1)(t)x
n =

∑

n≥1

(t− 1)n−1(t− 1)n x
n

∏n
k=1(1 − k(t− k)x)

,
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where (a)n denotes the falling factorial a(a− 1) · · · (a−n+1). By setting t = −1,
we recover Hetyei’s result. Moreover, by setting t = 0, we relate the (non-
median) Genocchi numbers to the homogenized Lineal arrangement. Indeed, since
χL(H2n−1)(0) is the Möbius invariant of L(H2n−1), we have

(7) µL(H2n−1)(0̂, 1̂) = −gn.
Our proof of (6) has the following steps.

1. Show that tχL(H2n−1)(t) equals the chromatic polynomial chΓn
(t) of a cer-

tain graph Γn.
2. Using the Rota-Whitney NBC theorem, show that the coefficients of chΓn

(t)
can be described in terms of a certain class of alternating forests.

3. Construct a bijection from this class of alternating forests to a new class of
permutations similar to those introduced by Dumont [3] to study Genocchi
numbers. This yields a result analogous to (3) involving cycles of Dumont-
like permutations.

4. Construct a bijection from the Dumont-like permutations to a certain
class of objects called surjective staircases. Results of Randrianarivony [9]
and Zeng [12] on generating functions for surjective staircases are used to
complete the proof.

We also introduce a Dowling analog of the homogenized Linial arrangement.
Let ω = e2πi/m be a primitive mth root of unity. The homogenized Linial-Dowling
arrangement is the complex hyperplane arrangement in C2n, defined by

Hm
2n−1 = {xi − ωℓxj = yi : 1 ≤ i < j ≤ n, 0 ≤ ℓ < m} ∪ {xi = yi : 1 ≤ i ≤ n}.

Note that when m = 2, the arrangement Hm
2n−1 is a complexified version of the

type B homogenized Linial arrangement. When m = 1, the arrangement Hm
2n−1 is

the complexified version of the arrangement obtained by intersecting H2n−1 with
the coordinate hyperplane xn+1 = 0. The resulting arrangement on the coordinate
hyperplane has the same intersection lattice as H2n−1.

Using similar techniques as for the homogenized Linial arrangement, we prove
in [7] the following generalization of (6):

(8)
∑

n≥1

χL(Hm
2n−1

)(t)x
n =

∑

n≥1

(t− 1)n,m(t−m)n−1,m xn∏n
k=1(1−mk(t−mk)x)

.

where (a)n,m = a(a−m)(a− 2m) · · · (a− (n− 1)m).
There is a well-studied polynomial analog of the Genocchi numbers known as the

Gandhi polynomials Gn(x); see [4, Section 3]. We obtain the following m-analog
of (7):

χL(Hm
2n−1

)(0) = µL(Hm
2n−1

)(0̂, 1̂) = −m2n−1Gn(m
−1).

The polynomials χL(Hm
2n−1

)(0) and χL(Hm
2n−1

)(−1) can be viewed as m-analogs of

the Genocchi and median Genocchi numbers, respectively. It would be interest-
ing to generalize known relationships between the Genocchi numbers and median
Genocchi numbers to these m-analogs.
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