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Abstract. The mathematical theory of optimal transportation is constantly
expanding its range of application, while applications give impulses for new
research directions in the field. This workshop was specifically devoted to
applications of optimal transportation in the natural sciences, and to the re-
cent developments of the theory that have been motivated by these. The
bouquet of current applications includes mathematical models for large-scale
air motion, dynamics of plasmas, material design, pattern formation in fluids,
collective behaviour in biology, and many more. Related theoretical develop-
ments are in the analysis of the Hellinger-Kantorovich metric for modeling
reaction–diffusion processes, and in efficient numerical methods for multi-
marginal optimal transport, to name two of many examples encountered in
this workshop.
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Introduction by the Organizers

This workshop brought together 48 mathematicians — mainly from France, Italy,
and Germany, but also e.g. from USA, Canada, and Singapore — that are working
either on current applications of optimal transport in the natural sciences, or on
theoretical developments that have been triggered by such applications. This
has been the third Oberwolfach workshop with such a focus, following up on the
initial event in 2016, and an online edition in 2020. The series is intended to
fill the gap in between the strongly theory-oriented conferences like the bi-annual
meetings in Pisa and the countless events with narrow focus on data science,
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financial mathematics etc. Over time, we could observe a gradual shift in the
range of applications. To name just one example: while density function theory
and the corresponding developments in multi-marginal optimal transport have
been significant topics in the previous editions, more classical questions related to
fluid motion on various scales and the related theoretical studies of variants of the
Euler equations have played a dominant role this time.

A highlight of the workshop has been the historical overview given by Felix
Otto — one of the founding fathers and greatest promoters of the field — on
the role of optimal transport in viscous fluid dynamics, and in particular the
modeling of multi-phase mixtures by gradient descent, nowadays known as JKO
scheme. The presentation by another pioneer in the field, Yann Brenier, was also on
multi-phase fluids, specifically electrically charged ones, and a novel related convex
optimization problem. Doubtlessly one of the most impressive contributions has
been made by David Bourne, who was covering two quite different applications of
optimal transport in a single talk: the first was a model for large-scale air motion
for use in weather prediction, the second was about formation of grains in steel
for use in material science. Applications to climate and to material design were
actually recurrent themes during the workshop, e.g. Lauro Silini picked up on the
former by analysing the semigeostrophic equations, and Benedikt Wirth continued
on the latter by discussing shape optimization for maximal resistance to forces. As
final example of many further applications that were presented, we mention the
gradient flows studied by Yao Yao, that were motivated by models for collective
behaviour of animals, and whose analysis uses profound results on the geometry
underlying optimal transportation.

About half of the presented topics were not immediately linked to a physi-
cal or biological system, but exhibited recent developments of optimal transport
theory and related numerical methods that have been motivated by applications.
For example, the first presentation of the workshop, given by Alexander Mielke,
featured novel results on the Hellinger-Kantorovich metric, which has been intro-
duced to describe reaction-diffusion systems by means of gradient flows. Another
example is the sophisticated and very efficient method for numerical solution of
multi-marginal problems presented by Gero Friesecke, with the target at density
function theory. Let us finally mention the talks of Quentin Mérigot and Dejan
Slepčev on fine properties of the sliced Wasserstein distance, a distance that was
born out of the need to find an efficient yet intuitive method to sample from given
data in large dimensions.

As organizers, we were extremely pleased with the mathematical quality of the
talks, that has been constantly extremely high throughout the entire workshop.
The collection of abstracts below nicely reflects this, and we warmly invite the
reader to browse through it.
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Synthetic nonnegative cross-curvature: the Wasserstein space . . . . . . . . . 318

Filippo Santambrogio
Estimates on the Brenier map via maximum principle . . . . . . . . . . . . . . . . 320

Aymeric Baradat (joint with Anastasiia Hraivoronska, Filippo Santambrogio)
Using Sinkhorn in JKO adds diffusion in the limiting PDE . . . . . . . . . . . 322

Emanuela Radici (joint with Simone Di Marino, Lorenzo Portinale)
Transport problems with non linear mobilities: a particle approximation
result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
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Diffusive transport: geodesics, convexity, and gradient flows with their
structure preserving discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Jean-David Benamou (joint with Guillaume Chazareix, Marc Hoffmann,
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Abstracts

On EVI flows in the (spherical) Hellinger-Kantorovich space

Alexander Mielke

(joint work with Vaios Laschos, Matthias Liero, Giuseppe Savaré)

Consider a bounded, closed, and convex subset X of Rd with nonempty interior
and denote by M(X) and P(X) the set of all (non-negative) measures and all
probability measures, respectively. The Hellinger-Kantorovich distance HK is a
geodesic distance on M(X) that describes unbalanced optimal transport, where
mass can be created and annihilated, see [LMS16, LMS18]. The same distance
was introduced in the independent works [KMV16, GaM17, CP∗15, CP∗18] under
the name “Wasserstein-Fisher-Rao distance”. We comment on the naming at the
end of this note.

This note summarizes old and recent joint work with V. Laschos, M. Liero, and
G. Savaré, see [LiM13, LMS16, LMS18, LaM19] and [LMS23, LaM23].

1. Geodesics for the Hellinger-Kantorovich distance

Using two non-negative numbers α and β we can scale the interaction between
the pure Hellinger distance He for (α, β) = (0, 4) and the Kantorovich-Wasserstein
distance W for (α, β) = (1, 0). We define

HKα,β(µ
0, µ1)2 := inf

{∫ 1

0

∫

X

(
α|∇ξs|2+βξ2s

)
µs(dx)ds

∣∣∣

µ0 = µ0, µ1 = µ1, s 7→ (µs, ξs) solves (gCE)α,β

}
.

Any minimizer s 7→ µs is called a (constant-speed) geodesic. Here,

(gCE)α,β ∂sµs + div
(
α∇ξsµs

)
= βξsµs in the sense of distributions.

It is shown in [LMS18, LMS23] that the optimal potential ξs is a suitable solution
of the Hamilton-Jacobi equation

∂sξs +
α

2
|∇ξs|2 +

β

2
ξ2s = 0,

satisfying ξt = P
α,β
t−s
(
ξs) for 0 < s < t < 1, where

Pα,β
τ

(
η)(x) = inf

{ 2

βτ

(
1− cos

(√
β/(4α)|x−y|

)

1 + τ β/2 η(y)

) ∣∣∣ |x−y| ≤ π

√
α

β

}
.

One can check that the formal limits α → 0 and β → 0 recover the classical
distances, namely HKα,0 = 1√

α
W and HK0,β = 2√

β
He.

A remarkable fact is that transport can only occur over distances less or equal to
the length ℓ∗ = π/

√
α/β. Thus, in general a geodesic curve between two measures

µ0, µ1 ∈ M(X) consists of three pieces:
• mass of µ0 located further from sppt(µ1) than ℓ∗ is annihilated,
• mass of µ1 located further from sppt(µ0) than ℓ∗ is created,
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• mass of µ0 located less than ℓ∗ from sppt(µ1) is transported but again with
changing mass along the way.

Transport over a distance of exactly ℓ∗ is more difficult, in particular non-
uniqueness of geodesics may happen. Neglecting this case, the geodesics take the
following form. Set A0 =

{
x ∈ spptµ0

∣∣ dist(x, spptµ1) > ℓ∗
}
, A1 =

{
x ∈

spptµ1

∣∣ dist(x, spptµ0) > ℓ∗
}
, and Atra =

{
x ∈ spptµ0

∣∣ dist(x, spptµ1) < ℓ∗
}
,

then

µs = (1−s)2µ0|A0 + Φα,βs
(
µ0|Atra

)
+ s2µ1|A1 ,

where Φα,βs is given in terms of a growth factor q2s and a transport map Ts:

Φα,βs (µ) = T#

(
q2sµ) with q

2
s(x) =

(
1+s

β

4
ξ0(x)

)2
+
αβ

4
|∇ξ0(x)|2

and Ts(x) = x+

√
4α

β
arctan

( s
√
αβ

2+sβξ0(x)
∇ξ0(x)

)
.(1)

2. Geodesic Λ-convexity on (M(X),HKα,β)

A function E : M(X) → R∞ is called geodesically Λ-convex, where Λ ∈ R, if

E(µs) ≤ (1−s)E(µ0) + s E(µ1)− Λ
s−s2
2

HKα,β(µ0, µ1)
2 for s ∈ [0, 1],

along all constant speed geodesics. The total mass functional satisfies

µs(X) = (1−s)µ0(X) + s µ1(X)− β

2

s−s2
2

HKα,β(µ0, µ1)
2,

i.e. µ 7→ aµ(X) is (aβ/2)-convex for all a ∈ R.
The geodesic convexity of linear functionals µ 7→

∫
X
V (x)µ(dx) was resolved in

[LMS16, Prop. 20] and amounts for smooth functions V in the condition
(
αD2V (x) + β

2 V (x)
√
αβ/4∇V (x)√

αβ/4∇V (x)⊤ β
2 V (x)

)
≥ Λ Id+1 in R

(d+1)×(d+1).

For internal energies of the form E(µ) =
∫
X E(ρ)dx+E′

∞µ
⊥, where µ = ρL+µ⊥

with L ⊥ µ⊥, the necessary and sufficient conditions for geodesic Λ-convexity in
[LMS23] involve the auxiliary function NE(γ, δ) = (δ/γ)dE

(
γ2+d/δd

)
and read as

follows:

E is Λ-convex ⇐⇒
{

(a) (γ, δ) 7→ NE(γ, δ)− 2Λ
β γ

2 is convex,

(b) δ 7→ (d−1)NE(γ, δ) is non-decreasing.

Ignoring all technicalities, the proof relies on rewriting the transport part of the
geodesics in the form µs = ρs(x)dx with ρs(Ts(x)) = ρ0(x)qs(x)

2/ detDTs(x).
Setting γs = ρ0(x)

1/2qs and δs = ρ0(x)
1/2qs(detDTs(x))

1/d one obtains

E(µs) =
∫

Ts(Atra)

E(ρs(y))dy =

∫

Atra

E
(ρ0(x)qs(x)2
detDTs(x)

)
dx =

∫

Atra

NE
(
γs(x), δs(x)

)
dx.

Using the properties (a) and (b) and the explicit representation of qs and Ts from
(1), the result follows via lengthy computations.



Applications of Optimal Transportation 315

Reducing the conditions to γ ≡ 1 one obtains the McCann conditions for ge-
odesic convexity in (M(X),W), and reducing to δ ≡ 1 gives the conditions for
geodesic Hellinger convexity. However, the joint condition is stronger, see below.

Examples are functionals with E(c) = cm with m ≥ 1 giving Λ = 0. Of course,
for E(c) = ac we obtain Λ = aβ/2. The case E(c) = −cθ leads to geodesic
convexity (with Λ = 0) if and only if θ ∈

[
d/(d+2), 1/2

]
, which only has nontrivial

solutions for d = 1 and 2. Recall that the McCann condition asks for θ ≥ (d−1)/d,
and Hellinger convexity asks for θ ≤ 1/2.

For β > 0, the Boltzmann entropy with E(c) = c log c is not geodesically Λ
convex in (M,HKα,β) for any Λ ∈ R.

3. EVIλ flows in (M(X),HKα,β) and (P(X), SHKα,β)

For metric gradient systems (M, E ,D), where (M,D) is a geodesic space and E
is geodesically Λ-convex, a curve u : [0,∞[ → M is called an EVIλ-solution (see
[AGS05, MuS20] if it is continuous and satisfies

1

2

d

dt
D(u(t), w)2 +

Λ

2
D(u(t), w)2 ≤ E(w) − E(u(t)) for all w ∈ dom(E).

The existence theory for EVI solutions was recently extended in [MuS20, MuS24]
where the crucial new idea is to use the so-called local-angle condition and K-
concavity of the squared norm norm u 7→ 1

2D(w, u)2. This approach was extended
in [LaM23] based on previous results in [LaM19] onK-concavity on suitable subsets
of M(X), where measures have densities with upper and lower bounds. A general
existence result for EVIλ flows in (M(X),HKα,β) was obtained, by constructing
solutions via the minimizing movement scheme, such that lower and upper bounds
for the densities propagate andK-concavity can be exploited at least on finite time
horizons. By density and the Λ-contraction property of EVI flows, these results
lead to global EVI flows.

The space (P(X), SHKα,β) is geodesic if the spherical HK distance is defined via

SHKα,β(ν0, ν1) := 2 arcsin
(√β

4
HKα,β(ν0, ν1)

)
∈ [0, π/2].

This is a consequence of the following scaling relation: HKα,β(r
2
0µ0, r

2
1µ1)

2 =

= r0r1HKα,β(r0µ0, r1µ1)
2 +

4

β

[
(r20 − r0r1)µ0(X) + (r21 − r0r1)µ1(X)

]
,

which was established in [LaM19] and allows us to interpret (M(X),HKα,β) as a
metric cone over (P(X), SHKα,β). The geodesics s 7→ νSHKs are obtained from the HK
geodesics µHK via νs = n(s)µHK

σ(s), where the functions n(s) and σ(s) are explicitly

given in [LaM19].
The EVI-flow theory on (P(X), SHKα,β) works similarly as in the HK case, but

has the caveat that there are almost no functionals for which geodesic Λ-convexity
in (P(X), SHKα,β) is known. So far, only for the family µ 7→

∫
X(−ρ)θ dx with

θ ∈
[
d/(d+2), 1/2

]
geodesic convexity is established in [LaM23].
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4. Reaction-diffusion equations versus EVI flows

The corresponding PDE associated with the EVI flows can be obtained by the
Otto calculus. The Onsager operators for HKα,β and SHKα,β are given by

K
α,β
HK (µ)ξ = −α div(µ∇ξ) + βµξ and K

α,β
SHK (ν)ξ = −α div(ν∇ξ) + βν

(
ξ−
∫
Xξdν

)
.

Hence for functionals E(µ) =
∫
X

(
E(ρ)−ρV

)
dx the induced reaction-diffusion

equations take the form

∂tρ = α div
(
ρ∇(E′(ρ)−V )

)
− βρ (E′(ρ)−V ) + δSHKβρ

∫

X

ρ (E′(ρ)−V )dx,

where δSHK = 0 for the case HK and δSHK = 1 for SHK, where also
∫
X
ρdx ≡ 1.

Existence of weak solutions for these equations based on minimizing movement
schemes was established in a series of papers, see e.g. [GaM17, GLM19, DiC20,
Fle21]. The following example provides a case where there are several weak so-
lutions, but there is only one EVI solution, because the EVI theory generates a
contractive semiflow using Λ = 0.

We choose V ≡ 0 and E(c) = −c1/2 + 1
3 c

3/2 and the initial datum µ(0) = 0.
Clearly, the energy E is geodesically Λ-convex on (M(X),HK1,4) for some Λ > 0,
and it is shown in [LaM23] that µ(t) = tanh(t)2L is the unique EVI solution.
However, the induced reaction-diffusion equation reads

∂tρ = ∆
(1
2
ρ1/2 +

1

6
ρ3/2

)
+ 2
(
ρ1/2 − ρ3/2

)
in X, ∇ρ · n = 0 on ∂X.

It is easily seen that there are multiple solutions starting with µ(0) = 0, namely

µζ(t) = 0 for t ∈ [0, T ] and µζ(t) =
(
tanh(t−ζ)

)2
for t ≥ ζ.

Thus, the usage of the gradient structure (M(X), E ,HK1,4) and its EVI flow
provides a much better theory than the concept of weak solutions.

5. On the names “Hellinger-Kantorovich” and

“Wasserstein-Fisher-Rao”

In his dissertation [Hel07] and habilitation [Hel09] thesis, Hellinger introduced

integrals of the type
∫ b
a
u(t)df1df2dg for functions u, f1, f2, g, h ∈ C0([a, b]) where

additionally g and h are increasing, lie in BV([a, b]) and satisfy
(
fj(t2)−fj(t1)

)2 ≤(
g(t2)−g(t1)

)(
h(t2)−h(t1)

)
.

Using the modern tool of the Radon-Nikodým derivative, [Kak48, Eqn. (11)]

introduces the so-called Hellinger integral ρ(µ, ν) =
∫
Ω

√
µ(dω)ν(dω) and defines

what is nowadays called the Hellinger distance

He(µ, ν) =
(
2−2ρ(µ, ν)

)1/2 ∈
[
0,
√
2
]

for µ, ν ∈ P(Ω).

Note that different normalizations for He are used in the literature.
Since the early 1960s, the name Hellinger distance is consistently used, which

can be checked by a search of “Hellinger distance” in MathSciNet which leads
to more than 600 hits in abstracts or titles. In particular, Rao’s paper [RaV63]
introduces the Hellinger integral and distance explicitly by name.



Applications of Optimal Transportation 317

The Fisher-Rao distance was popularized by [Rao45] as geodesic distance for
the Fisher information metric. The construction is as follows: For a (finite-
dimensional) parameter manifold Θ and a function p̂ : Θ → P(Ω) consider the
parametrized family

{
µ = p̂(·, θ) ∈ P(Ω)

∣∣ θ ⊂ Θ
}
of measures. To distinguish

objects in this family Fisher introduces the information metric GFi on Θ via

〈GFi(θ)v1, v2〉 =
∫

Ω

Dθ(log p̂(ω, θ)
)
[v1] Dθ(log p̂(ω, θ)

)
[v2] p(dω, θ),

where v1, v2 are tangent vectors in TθΘ. The Fisher-Rao distance is then the
geodesic distance dFR : Θ×Θ → [0,∞[ induced by the Riemannian tensor GFi.

Taking Θ = P(Ω) itself with µ = p̂(µ) one obtains indeed, as a special case of
Fisher’s information metric, the infinitesimal metric

〈GHe(µ)ν1, ν2〉 =
∫

Ω

dν1
dµ

dν2
dµ

dµ =

∫

Ω

dν1dν2
dµ

,

which is again has the form of Hellinger’s original integrals
∫ b
a df1df2/dg, see

[BBM16] for an instance of this usage. On M(Ω) the induced “Fisher-Rao dis-
tance” is (one half of) the Hellinger distance He; however, the associated Fisher-
Rao distance on P(Ω) is the Bhattacharya distance (see [Bha42] and [Rao45,
p. 246]) given by Bh(ν1, ν2) = 2 arcsin

(
1
2He(ν1, ν2)

)
∈ [0, π/2], which is also called

the spherical Hellinger distance in [LaM19]. .
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Synthetic nonnegative cross-curvature: the Wasserstein space

François-Xavier Vialard

(joint work with F. Léger and G. Todeschi)

Starting from a cost c on a product space X × Y , the Wasserstein space can be
seen as a natural lift of c on the space of measures. In this ongoing work, we
are interested in an other property of the base space (X × Y, c) that also holds
on the Wasserstein space (P(X)×P(Y ), Tc). This property is called nonnegative
cross-curvature and it was introduced by Kim and McCann around 2010 [3] as
a strenghtening of the Ma-Trudinger-Wang condition which is a necessary condi-
tion for smoothness of optimal transport maps. The Ma-Trudinger-Wang tensor
is reformulated as the evaluation of the curvature tensor of the Kim-McCann Rie-
mannian pseudo-metric in orthogonal directions for this metric. Recall that the
Kim-McCann metric is defined by

(1) g(x, y) = −
(

0 1
2∂yxc

1
2∂xyc 0

)
.

The Ma-Trudinger-Wang condition says that the curvature tensor of g is nonnega-
tive on some planes whereas the nonnegative cross-curvature imposes more planes.
Although more stringent, this new condition which we refer to nonnegative cross-
curvature is more stable under natural geometric properties such as products and
submersions as shown by Kim and McCann.
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A formal argument on Riemannian manifolds: Consider the case where
X = Y and the cost is the distance squared of a Riemannian metric. The starting
point of our work is the remark that there is a formal Riemannian submersion
between the space of maps L2(X,X) and the space of measures endowed with the
Wasserstein metric. Using a formal computation due to Freed and Groisser, the
cross-curvature tensor of the space L2(X,X) is nonnegative when it is the case for
the base space (X×X, d2) where d2 is the Riemannian squared distance. Now, we
can apply formally the result of Kim and McCann on Riemannian submersions in
this infinite dimensional case to infer that it is also the case for the Wasserstein
space.

The rigorous formulation: In fact, we are able to prove the following state-
ment:

If (X × Y, c) has synthetic nonnegative cross-curvature, it is also
holds for the Wasserstein space.

In order to formulate the statement on the Wasserstein space, we needed a more
synthetic formulation on a space of nonnegative cross-curvature which can encom-
pass boundaries and singularities of the space. For instance, Dirac masses in the
Wasserstein space are extremal points in the sense of convex geometry. On the
space of positive symmetric matrices, rank deficient matrices lie on the boundary.
Our definition of synthetic nonnegative cross-curvature (SNCC) is as follows: We
say that (X × Y, c) has synthetic nonnegative cross-curvature (on X , or w.r.t. Y )
if for every couple (x0, x1) ∈ X2 and y ∈ Y , there exists a curve x(t) joining x0
and x1 such that for all y′ ∈ Y , the following function is convex:

(2) t 7→ c(x(t), y)− c(x(t), y′) .

This definition is called synthetic since it does not require any differentiability
property of the cost and on the curve. However, in a smooth setting, x(t) is
necessarily unique and given by the c-segment for c between x0 and x1 w.r.t. the
point y, whose definition is recalled below:

(3) ∂yc(x(t), y) = (1 − t)∂yc(x0, y) + t∂yc(x1, y) , ∀t ∈ [0, 1] .

Examples of spaces that satisfy our synthetic notion of nonnegative cross-curvature
are

(1) compact manifolds with the distance squared cost that are nonnegatively
cross-curved on the injectivity domain of the exponential map,

(2) the space of positive semidefinite matrices (PSD) endowed with the Bures-
Wasserstein metric,

(3) the Wasserstein space when the underlying cost has the SNCC property,
for instance probability measures on the sphere with the Riemannian dis-
tance squared, probability on the space of PSD matrices endowed with the
Bure-Wasserstein metric as a cost.

Interestingly, we also study the unbalanced setting of optimal transport for which
we have the following result: If the cost on the product of cones (see [1, 2]), then
it is also the case for unbalanced optimal transport. Examples are the following:
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(1) the base space is the sphere with the Riemannian distance squared,
(2) the base space is the set of unit trace PSD matrices endowed with the

Bures angle metric.

We touched upon important potential applications for optimization on measures,
gradient flows of first and second-order in time.

References

[1] Liero, Mielke and Savaré, Optimal entropy-transport problems and a new Hellinger–
Kantorovich distance between positive measures, Inv. Math 211 (2018), 969–2017.
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Estimates on the Brenier map via maximum principle

Filippo Santambrogio

I presented in this talk three results concerning the optimal transport map T
between two densities on the Eulidean space, all obtained with the same technique,
consisting in differentiating once the Monge-Ampère equation.

1. Lipschitz bounds and displacement in the JKO scheme

The first result concerns the preservation of the Lipschitz bounds of log ρ + V in
the JKO scheme for the Fokker-Planck equation ∂tρ = ∆ρ+∇ · (ρ∇V ). Given a
time step τ > 0, the JKO scheme consists in finding a sequence ρk such that, at
each step, the new density ρk+1 is obtained by solving

min
ρ

∫
ρ(log ρ+ V ) +

W 2
2 (ρ, ρk)

2τ
.

The optimal ρ is characterized by log ρ+ V + ϕ
τ = c, where ϕ is the Kantorovich

potential for the cost 1
2 |x−y|2 from ρ itself to ρk. The function ϕ solves the Monge-

Ampère equation det(I −D2ϕ) = ρ/ρk ◦T , where T is the optimal transport map
given by T (x) = x − ∇ϕ(x). By looking at the maximum point of |∇ϕ|2, using
the first and second order optimality conditions and the derivative of the Monge-
Ampère equation, one obtains the following result

if D2V ≥ λI then (1 + λτ)||∇(log ρk+1 + V )||L∞ ≤ ||∇(log ρk + V )||L∞ .

This is also a result on ||T − id||L∞ , which will be estimated by Cτ . This result
was already proven by Lee ([1]) in the case of the torus, and extended to the case
of convex domains in collaboration with Ferrari ([2]). The main novelty of [2]
consists in proving that, on the Euclidean ball, the maximum of |∇ϕ|2 cannot be
attained on the boundary when the densities are smooth, and then proceed by
approximation.
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2. Convergence to equilibrium in a reproduction model

The second result (taken from [3]) concerns the convergence to the equilibrium
of a non-linear reproduction model in mathematical biology. This model is a
discrete-in-time evolution given by ρk+1 = T [ρk], where the operator T is given
by

T [ρ](x) := e−m(x)

∫ ∫
G(x − x1 + x2

2
)ρ(x1)ρ(x2)dx1dx2,

where x1, x2 ∈ R represent the traits of two parents, and ρk+1 is the distribution of
this trait in the next generation, obtained after reproduction, averaging of the two
parents’ traits, mutation (i.e. convolution with the Gaussian G) and then applying
a mortality rate e−m. It is assumed that m is strongly convex, i.e. m′′ ≥ α > 0.

It can be proven that there exists an invariant state F with a number λ > 0
such that T [F ] = λF . Moreover, if ρ is γ-log-concave then T [ρ] is (α + 2γ

2γ+1)-

log concave, which implies that F is of the form F = e−V with V ′′ ≥ β and
β = α + 2β

2β+1 . In particular, β > 1/2. We then look at the evolution ρk writing

ρk = uk · F and we observe that we have

uk+1(x) =

∫
Px(x1, x2)uk(x1)uk(x2)dx1dx2,

where Px is a probabily density on R2 proportional to e−W (x,x1,x2) where we set
W (x, x1, x2) = V (x1)+V (x2)+ |x− x1+x2

2 |2. We want to prove that uk converges
(and quantify this convergence) to a constant and we use the following estimate

| log(uk+1(x))− log(uk+1(x
′))| ≤ Lip(log(uk))W∞,1(Px, Px′),

where W∞,1 stands for the W∞ distance in R2 coputed according to the norm ℓ1.
In order to estimate the distance W∞,1(Px, Px′), we consider the optimal Brenier
map T between Px and Px′ and estimate ||T − id|| in a similar way as what done
in [2]. Since we need to deal with a particular norm and obtain a sharp result, we
adapt the proof or [2] replacing the Euclidean ball with the ℓ1 ball and obtain,

W∞,1(Px, Px′) ≤ ||T − id||L∞,1 ≤ |x− x′|
1 + 2β

.

The condition β > 1/2 allows to obtain exponential convergence.

3. Linear growth of the optimal map

The last result, obtained in collaboration with G. Carlier and A. Figalli and still
in preparation, concers instead the map T itself and not its displacement T − id.
The goal being to extend the celebrated Caffarelli’s theorem on Lipschitz transport
maps between log-concave measures to the case of measures with a different tail
at infinity. For this proof, it is useful to have a uniform bound on the ration
|T (x)|/|x| in the limit |x| → ∞. We considering the optimal transport map T
between two densities of the form ρ0 = V −d and ρ1 = W−d (the number d being
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the dimension of the space) and set T (x) = ∇u(x). By looking at the maximum
point of |∇u|2/u it is possible to obtain the following result

if V (x) ≈ |x|p,W (x) ≈ |x|q , p ≤ q then |T (x)| ≤ C(1 + |x|)
for a constant C depending on V and W (and on their precise estimates in terms
of the powers |x|p or |x|q).
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Using Sinkhorn in JKO adds diffusion in the limiting PDE

Aymeric Baradat

(joint work with Anastasiia Hraivoronska, Filippo Santambrogio)

The JKO scheme [6], has become in the last decades a very popular numerical
scheme to compute solutions to PDEs that have the structure of gradient flows in
the Wasserstein space [1, 9].

The purpose of our work is to understand how replacing the Wasserstein dis-
tance by its entropic regularization in the JKO scheme – as done when using
variants of the Sinkhorn algorithm – affects the limiting PDE. We show that in
the scaling where the regularization parameter is proportional to the time step,
this replacement amounts to adding linear diffusion.

1. The JKO scheme

Working in the flat torus Td, d ∈ N∗, giving ourselves three regular functions
V : Td → R, W : Td → R even, and f : R+ → R+ convex, as well as an
initial datum ρ0 ∈ P(Td), a classical instance of a Wasserstein gradient flow in the
Wasserstein space P(Td) is the following Cauchy problem:

(1)




∂tρ = div

(
ρ(∇V +∇W ∗ ρ)

)
+∆g(ρ),

ρ|t=0 = ρ0,

where g : R+ → R+ satisfies the differential relation g′(s) = sf ′′(s). Indeed, it
appears formally as the gradient flow of the functional

(2) E : ρ ∈ P(Td) 7−→





∫ (
V +

1

2
W ∗ ρ

)
dρ+

∫
f(ρ)dx if ρ≪ dx or f = 0,

+∞ else.
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In this context, calling D the 2-Wasserstein distance on P(Td) and given a time
step τ > 0, the JKO scheme consists in considering a sequence (ρτn)n∈N satisfying
ρτ0 = ρ0 and the following induction relation:

(3) ∀n ∈ N, ρτn+1 is a minimizer of ρ ∈ P(Td) 7−→ D(ρτn, ρ)
2

2τ
+ E(ρ).

Under mild assumptions on V , W and f , such a sequence always exists. Also, the
family labelled by τ of piecewise constant curves valued in P(Td) jumping to ρτn
at time τn for all n ∈ N∗ is relatively compact for the topology of local uniform
convergence, and its limit points solve (1) distributionally [9].

2. Regularization of the scheme and main result

A very popular way to compute Wasserstein distances nowadays is to use the
Sinkhorn algorithm [4]. It has the advantage of being very fast, but the drawback
of computing only approximately the Wasserstein distance, or more precisely, of
computing exactly an approximation of the Wasserstein distance. We will call here
the Schrödinger cost this approximation. We refer to [8] for various definitions of
this cost and its links with statistical mechanical problems (in fact, the definition
we use will be specified in (5) below). This cost depends on a parameter ε > 0,
and therefore we will denote it by Dε.

The convergence Dε → D is now well understood [7, 3, 2]. Hence, replacing
D by Dε in (3) should be reasonable when ε is small. However, our discovery is
that when ε is taken proportional to the time step τ , then this replacement has
the effect of adding linear diffusion to the limiting PDE.

Theorem. Let E be defined as in (2) with V and W of class C2 and with f : s ∈
R+ 7→ 0, s log s or sm/(m− 1), for some m > 1.

Let θ > 0 and ρ0 ∈ P(Td) ∩ L logL be such that E(ρ0) < +∞. For any τ > 0,
there exists a sequence (ρτn)n∈N satisfying ρτ0 = ρ0 and the induction relation:

∀n ∈ N, ρτn+1 is a minimizer of ρ ∈ P(Td) 7−→ Dθτ (ρ
τ
n, ρ)

2

2τ
+ E(ρ).

Moreover, the family labelled by τ of piecewise constant curves jumping to ρτn at
time τn for all n ∈ N∗ is relatively compact for the topology of local uniform
convergence in P(Td), and its limit points are distributional solutions of

(4)




∂tρ = div

(
ρ(∇V +∇W ∗ ρ)

)
+∆g(ρ) +

θ

2
∆ρ,

ρ|t=0 = ρ0.

Remark. Let us make two remarks about this result.

• First, it implies that if we do not want to see any effect of the regularization
and recover (1) as the limiting PDE, we have to take at worst ε = o(τ)
as τ → 0. Actually, our proof shows that this condition is sufficient, and
hence extends a result from [3].
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• The speed of the Sinkhorn algorithm increases with ε. So when there is
linear diffusion in the PDE we want to solve, our result suggests to remove
the entropic part of E and to make it appear through the regularization.

3. Idea of the proof

The key is to use the most appropriate definition of the Schrödinger cost. Even
in Benamou-Brenier formulation, there are two ways to do it: either one adds a
Fischer information term in the action to minimize, or one includes linear diffusion
in the continuity equation [5]. As we want to see linear diffusion appearing, we
choose the second one. That is, for all ε > 0 and µ, ν ∈ P(Td)∩L logL, we define

(5)
Dε(µ, ν)

2

2
:= ε

∫
µ logµ+inf

{
1

2

∫ 1

0

∫
|v|2dρ dt

∣∣∣∣∣
∂tρ+ div(ρv) =

ε

2
∆ρ

ρ0 = µ, ρ1 = ν

}
.

Duality shows that given θ, τ > 0 and µ ∈ P(Td) ∩ L logL, an optimizer of

ρ ∈ P(Td) 7−→ Dθτ(µ, ρ)
2

2τ
+ E(ρ)

must be the value at time τ of a solution of the forward-backward system




∂tρ = div(ρ∇ϕ) + θ

2
∆ρ, ρ0 = µ,

∂tϕ =
1

2
|∇ϕ|2 − θ

2
∆ϕ, ϕτ = V +W ∗ ρτ + f ′(ρτ ).

The first line of this system would coincide exactly with our targetted PDE (4) if
ϕ would be V +W ∗ ρ+ f ′(ρ) for all time. But this identity holds at time τ only,
as expressed in the second line. Thus, the proof reduces to showing that ϕ is well
approximated by its value at the time steps. This can be read in the PDE on ϕ.

4. An open problem

So far, there is no result concerning the crucial point of estimating the rate of
convergence of our regularized scheme. Yet, it is worth it to use Sinkhorn in order
to improve the computational speed of each step only if the rate of convergence of
the scheme is not catastrophically affected by the regularization.
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Transport problems with non linear mobilities: a particle
approximation result

Emanuela Radici

(joint work with Simone Di Marino, Lorenzo Portinale)

We are interested in evolutive dynamics of the form

(1) ∂tρ−∇ · (m(ρ)v) = 0

which might include local and/or non local effects, in particular prevention of over-
crowding. Congested evolutions mathematically translate into considering concave
non-linear mobility functions m in expression (1). We further request the support
of m to be compact [0, ρmax] so to focus on the more singular situation of hard
congested dynamics where the total density of the system cannot go beyond a
certain maximal density ρmax.

When the velocity field v can be written as ∇δF [ρ] for some energy functional
F , one can associate to the system a corresponding Wasserstein-like distance that
takes into account the nonlinearity. Such distances allow only for a dynamical
formulation: for every µ0, µ1 probability measures which are absolutely continuous
with respect to Lebesgue we write

W̃ 2(µ0, µ1) = inf

{∫ 1

0

∫

R

|vt|2m(ρt) dxdt : ∂tρt +∇ · (m(ρt)vt) = 0, ρt=0,1 = µ0,1

}

while W̃ is +∞ otherwise. These distances were first introduced in [3] and further
studied in [2, 1] for monotone concave mobilities m and in [5] for the compactly
supported case. However, in this latter case there is not yet an exaustive under-
standing of the underlying metric, e.g. no characterization of geodesics is available
at the moment.

Our goal is to study suitable discretisations of the problems (1) when F [ρ] =∫
R
V dρ, both at the level of the generalised optimal transport distances and the

associated gradient flows, with particular attention to two types of approximations:
in space and in time. We introduce, in the scalar case, a space discretisation
in the framework of nonlinear mobilities, adopting a Lagrangian point of view
through systems of N -ordered particles. Our discrete settings correspond to finite-
dimensional manifolds (KN , dN ) where KN is the N -dimensional cone of points
with ordered components (describing the possible configurations of the moving
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N -ordered particles) and dN : KN × KN → [0,∞) are suitable mobility-weighted
distances on KN .

In [4] we provide a Γ-convergence result for the associated discrete metrics dN
as N → ∞ towards W̃ in the framework of probability measures on R and dis-
cuss applications to the approximation of one-dimensional conservation laws when
F [ρ] =

∫
R
V dρ via the so-called generalised minimising movements (JKO schemes)

involving metrics dN and W̃ respectively. Our contribution aim towards the un-
derstanding of the discrete-to-continuum time and space commuting diagram re-
garding the one dimensional evolutionary PDEs that can be seen as gradient flows
with respect to a non-linear mobility Wasserstein like distance, as described in
Figure

discrete in space
continuous in time

ODEN → PDE continuous in space
continuous in time

JKO → PDE

discrete in space
discrete in time

JKON → ODEN

τ
→
0

(KN , dN )
N → ∞

(P (ℝ), W̃)

JKON → JKO continuous in space
discrete in time

With respect to the diagram, this work deals with the bottom arrow for (1)
with velocity fields of the form v = ∇V (x). The top arrow has been already
investigated in the scalar case by several authors, see [6] for the most general
result. We aim this work to be the first of a series trying to shed new lights
on the interplay between generalised gradient-flow structures, conservation laws,
and Wasserstein distances with nonlinear mobilities. The analysis of the vertical
arrows in the dyagram being the first step in this direction.
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Diffusive transport: geodesics, convexity, and gradient flows with their
structure preserving discretizations

André Schlichting

(joint work with Daniel Matthes, Eva-Maria Rott, Giuseppe Savaré)

1. The diffusive transport metric

We consider the space X := {ρ ∈ L1(S1)|ρ ≥ 0,
∫
ρ dx = 1} of probability densities

on the circle. On X , we recall the dynamic formulations of the Hellinger distance
H and the L2-Wasserstein metric W and propose a new diffusive transport distance
D defined by

H(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dxds

∣∣∣∣ ∂sρs − ws = 0

}
,(1)

W(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dxds

∣∣∣∣ ∂sρs + ∂xws = 0

}
,(2)

D(ρ0, ρ1)
2 = inf

{∫ 1

0

∫

S1

w2
s

ρs
dxds

∣∣∣∣ ∂sρs − ∂xxws = 0

}
.(3)

In those definitions, the infima are taken over all parametrized pairs (ρs, ws)s∈[0,1]

of probability densities ρs and Radon measures ws on S1, respectively, that connect
ρ0 to ρ1 by means of suitable zeroth, first and second order continuity equations,
respectively, understood in the weak sense.

The space (X,H) is a complete metric space with the L1-topology, and (X,W)
is a complete metric space, where the completion X is the space of probability
measures on S1, with the narrow topology. A similar results holds for (X,D).

Theorem. (X,D) is a complete metric space with the narrow topology and the
diffusive transport metric D satisfies

∥∥µ1 − µ0

∥∥
(Ẇ 2,∞(S1))′

≤ D(ρ0, ρ1) ≤
2

− log
∥∥µ1 − µ0

∥∥
(Ḣ1(S1))′

.

Besides being a generalization of the Hellinger and Wasserstein distances, the
diffusive transport can be also seen as the relaxation of martingale transport. The
dynamic formulation of martingale transport recently obtained in [3] is given by (3)
with the additional martingale constraint manifesting in the condition ws ≥ 0 for
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a.e. s ∈ [0, 1]. In particular, for marginals in convex order, the geodesics of D agree
with those of martingale transport.

However, for marginals not of convex order, which is the situation on any com-
pact manifold like S1, geodesics w.r.t D are currently little understood, since there
will be space-time regions for which the diffusive flux is negative ws < 0. At least
formally, the geodesic equations for H, W and D read, respectively, as

∂sρs − ρs ψs = 0, ∂sψs +
1
2ψ

2
s = 0,

∂sρs + ∂x(ρs ∂xψs) = 0, ∂sψs +
1
2 (∂xψs)

2 = 0,

∂sρs − ∂xx(ρs ∂xxψs) = 0, ∂sψs +
1
2 (∂xxψs)

2 = 0.

We recall that the first system is solvable by plain linear interpolation w.r.t.
√
ρs,

and the second one is solvable in principle by the method of characteristics. Except
for very special solution, the third one appears inaccessible to explicit construc-
tions, which leaves also possible static formulations of D open for the moment.

2. Contractive and gradient flows

Observation 1. The linear diffusion equation ∂tρ = ∂xxρ induces on X . . .

• . . . a contractive flow w.r.t. H,
• . . . a contractive gradient flow w.r.t. W,
• . . . a contractive flow w.r.t. D.

The contractivity properties are essentially consequences of Jensen’s inequality
and the fact that linear diffusion is a linear averaging process. The free energy for
the gradient flow w.r.t. W is Boltzmann’s entropy functional H(ρ) =

∫
ρ log ρ dx.

On R instead of S1, the linear diffusion equation is actually a gradient flow w.r.t. D
for the negative second moment − 1

2

∫
x2ρ(x) dx.

Observation 2. The DLSS equation [1] ∂tρ = −∂xx(ρ ∂xx log ρ) is on X . . .

• . . . a contractive flow [4] w.r.t. H;
• . . . a (non-contractive) gradient flow [2] w.r.t. W for the Fisher informa-
tion F(ρ) =

∫
ρ (∂x log ρ)

2 dx;
• . . . a (non-contractive) gradient flow [7] w.r.t. D for the entropy H.

There is apparently no easy explanation for the contractivity in H.

3. Discretization

Consider an equidistant discretization of S1 of mesh width δ > 0, denote the space
of piecewise constant probability densities by Xδ. A mere restriction of the dis-
tances W or D to Xδ would produce metric spaces with pathological properties.
Instead, the definitions of H, W and D can be modified to provide adapted dis-
tances Hδ, Wδ and Dδ on Xδ: replace the derivative(s) in the continuity equations
by (forward) difference quotients, and replace the denominator in w2

s/ρs by a suit-
able mean value of the neighboring densities — simply ρk for H

δ, a two-point
average m(ρk, ρk+1) for W

δ, and a three-point average M(ρk−1, ρk, ρk+1) for D
δ.
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Observation 3. The discretization ρ̇k = (ρk+1 − 2ρk + ρk−1)/δ
2 of the linear

diffusion equation by central finite differences induces on Xδ . . .

• . . . a contractive flow w.r.t. Hδ,
• . . . a contractive gradient flow w.r.t. Wδ [5, 6]
• . . . a contractive flow w.r.t. Dδ [7].

Contractivity follows again by the linear averaging effect of the (discretized)
diffusion. For the appropriate mean in the definition of Wδ, one uses the logarith-
mic mean m(ρk, ρk+1) = (ρk+1 − ρk)/ log(ρk+1 − log ρk), and in the definition of
Dδ, one uses M(ρk−1, ρk, ρk+1) = ρk.

Observation 4 ([7]). The following discretization of the DLSS equation

ρ̇k =
(
Fk+1 − 2Fk + Fk−1

)
/δ2, Fℓ =

(√
ρℓ+1ρℓ−1 − ρℓ

)
/δ2(4)

induces on Xδ . . .

• . . . a contractive flow w.r.t. Hδ

• . . . a (non-contractive) gradient flow w.r.t. Wδ for some suitable discrete
Fisher information Fδ

• . . . a (non-contractive) gradient flow w.r.t. Dδ for the discrete entropy Hδ.

Differently from Observation 3, we choose m(ρk, ρk+1) =
√
ρk+1ρk for Wδ, and

for Dδ the 3-stencil mobility

M(ρk−1, ρk, ρk+1) =

√
ρk+1ρk−1 − ρk

log
√
ρk+1ρk−1 − log ρk

.

These choices of mobilities m/M appear to be crucial to guarantee the contrac-
tivity in Hδ. Indeed, the proof uses that (4) can be re-formulated as

∂t
√
ρk = −uk+1 − 2uk + uk−1

δ2
+

u2k√
ρk

with uk =

√
ρk+1 − 2

√
ρk +

√
ρk−1

δ2
,

which is the discrete analog of the identity ∂t
√
ρ = −∂xxxx√ρ+ (∂xx

√
ρ)2√
ρ .

Formally, the sceme (4) provides a second order approximation of the DLSS
equation ∂tρ = −∂xx(ρ∂xx log ρ) as can be seen by the expansion of the flux

Fℓ = − 2

δ2
ρℓ

[
exp
(
log

√
ρℓ−1ρℓ+1 − log ρℓ

)
− 1
]
≈ −ρ∂xx log ρ+O(δ2).

Our main result is about that those heuristics are indeed correct and scheme (4)
converges to a weak solution of hte DLSS equation.

Theorem ([7]). Let an initial condition ρ̂ ∈ X be given. For each mesh width δ,
consider a strictly positive approximation ρ̂δ ∈ Xδ of ρ̂. Then the initial value
problem for (4) possesses a unique solution ρδ : [0,∞) → Xδ, and

ρδ → ρ∗ in L1
loc

(
(0,∞)× S

1
)
∩ Cα

(
[0,∞); (W 2,∞(S1))′

)
as δ → 0,

where ρ∗ is a weak solution to the DLSS equation.
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The proof heavily uses the properties stated in Observation 4, particularly the
contractivity in Hδ and the monotonicity of H. The key a priori estimate is

− d

dt
H(ρδ) ≥ δ

∑

k

(√
ρk+1 − 2

√
ρk +

√
ρk+1

δ2

)2

,

which provides weak compactness of the
√
ρδ in L2

(
(0,∞);H2(S1)

)
.
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[4] A. Jüngel, R. Pinnau, Global nonnegative solutions of a nonlinear fourth-order parabolic
equation for quantum systems, SIAM J. Math. Anal. 32 (2000), 760–777.

[5] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (2011),
2250–2292.

[6] A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var.
Partial Differ. Equ. 48 (2013), 1–31.
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Entropic optimal martingale transport

Jean-David Benamou

(joint work with Guillaume Chazareix, Marc Hoffmann, Grégoire Loeper,
François-Xavier Vialard)

Entropic regularisation is a powerful theoretical and numerical tool for optimal
transport problems. We introduce a new concept of “specific relative entropy reg-
ularisation” (3) for a prototype stochastic optimal transport problem (1-2) leading,
after time discretisation, to an unconstrained multi-marginal entropic (in the clas-
sical sense) optimal transport problem. Conversely to “standard” relative entropy
regularisation (see [6] [2] for instance) freezing volatility and leaving the control to
the drift; “specific” relative entropy induces, through time discretisation, a local in
time and space volatility control on the process, hence the title of our contribution.
The martingale part is here the optimiser and not simply a constraint or a regu-
larisation. This note is a formal summary, see [3] for a complete description and a
numerical study. For applications in mathematical finance see [5] [4]. Our starting
point is a class of optimal control problems governed by diffusion processes of the
form [7] [5] :

(1) inf
(P, bt, at) ∈ DP (ρ0, ρ1)

EP

(∫ 1

0

F (bt(Xt), at(Xt)) dt

)
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(2) DP (ρ0, ρ1) =





(P, bt, at) s.t.

dXt = bt(Xt) dt+
√
at(Xt) dWt .

Pt := et# P ∼ Xt, t ∈ (0, 1),
e0# P = ρ0 e1# P = ρ1.

Here, ρ0 and ρ1 are the usual initial/final probabilities of optimal transport with
finite second moments, Wt is the Wiener process, Xt the canonical process under
P (a probability over paths in H1((0, 1),R), (bt, at) are time and space dependent
deterministic functions acting as drift and diffusion coefficients controlling the
process, EP) is the expectation over P. We also introduced the push-forward
notation to disintegrate P into a curve in time of marginals: Pt := et# P, the same
notation will be used lated for joint probabilities: Ps,t := (es, et)# P. The cost
function F is convex and has to enforce the positivity of at. A simple example
is the classical dynamic optimal transport problem: F = ‖b‖2/2 + χat=0. Note
that the set of diffusions process DP (ρ0, ρ1) is non-empty, containing at least the
(ρ0, ρ1) Schroedinger bridge. Specific relative entropy between diffusion processes
P and P ([1] for details and references) is defined as (SI given in (5)):

(3) SH(P|P) := lim
hց0

hH(Ph|Ph) = 1

2
EP

(∫ 1

0

SI(at(Xt)|a)) dt
)
.

where Ph = (et0 , . . . , etN ))#P is a time discretisation of P (ti = i h and h = 1/N

a time step) and same for P
h
, H is the usual relative entropy. We choose P to be

a martingale with initial distribution ρ0 and volatility
√
a (later possibly local in

time and space). Formally, SI is explicitly identified using the discrete relative
entropy

hH(Ph|Ph) = 1

2
EPh

(
h

N−1∑

i=0

ahi (X
h
i )

a
− 1− log

(
ahi (X

h
i )

a

))
+O(h)

with ((Xh
i )i=0..N being the discrete Markov chain associated to Ph i.e. Xh

i ∼ P hti):

(4)





bhi (xi) =
1

h
EPh

(
Xh
i+1 − xi|Xh

i = xi
)
,

ahi (xi) =
1

h
EPh

(
(Xh

i+1 − xi)
2|Xh

i = xi
)
.

Letting hց 0 we get in (3):

(5) SI(a|a) = a

a
− 1− log

(a
a

)
.

This function is strictly convex with minimum at a, a barrier for vanishing a and
strictly increasing but just sub-linearly as a→ +∞.
The “specific” entropy regularisation of (1) is

(6) inf
(P, bt, at) ∈ DP (ρ0, ρ1)

EP

(∫ 1

0

F (bt(Xt), at(Xt)) + SI(at(Xt)|a)) dt
)
.
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Well-posedness of this class of problems is discussed in [7] [5] for instance. In view
of (3) the natural discretisation of the cost functional is:

(7) Ih(Ph) = EPh

(
h

N−1∑

i=0

F (bhi (X
h
i ), a

h
i (X

h
i ))

)
+ hH(Ph|P) .

with (bhi , a
h
i ), the discrete drift and quadratic variation increments defined in (4).

The final modelling step is to relax the diffusion process constraint and solve as
an approximation of (6-2):

(8) inf
{

(Ph), s.t. Pht0 = ρ0 and P
h
t1 = ρ1

}

Ih(Ph).

The strict convexity and lower semi continuity is not immediately seen but ob-
tained, as often in optimal transport, using a change of variable in the conditional
moments (bhi (X

h
i ), a

h
i (X

h
i )) uncovering a perspective function. Simplifying and

abusing notations:

Ph → EPh

(
F (

1

h
EPh

(
(Xh

i+1 −Xh
i )
β |Xh

i

)
)

)
is replaced by

(Phti(X
h
i ),

1

h
EPh

ti+1

(
(Xh

i+1 −Xh
i )
β)
)
→ EPh

ti


F ( 1

h

EPh
ti+1

(
(Xh

i+1 −Xh
i )
β
)

Phti(X
h
i )

)


 .

The Markovianity of the minimisers is a direct consequence of the structure of the
cost and allow to consider the minimisation under this change of variable. We thus
obtain the relative entropic regularisation of a multi marginal optimal transport
problem involving moments of P. Under further assumptions on F , essentially Lp

control of (b, a) and also over higher order conditional moments of Ph, we claim:
i) that sequences of minimisers (Ph)h admit weakly converging subsequences as
h ց 0, ii) that the limit P0 is in DP (ρ0, ρ1) (in a weak sense [9]) and iii) P0 is a
minimiser of (6). A key point of the proof is to remark that for any Markov chain
P
h (i.e. not necessarily the discretisation of a diffusion process):

hH(Ph|Ph) ≥ 1

2
EPh

(
h

N−1∑

i=0

SI(aih(X
h
i )|a)

)
,

giving a control of the h-scaled discrete relative entropy over the specific entropy.
The function SI (5) seems unfortunately too weak to enforce point ii) and stronger
assumption on F are needed to meet the criteria in [8] for the convergence of
Markov chains towards diffusion processes. After space discretisation and trunca-
tion, neglecting the tails of the controlled diffusion, (8) can be solved as in [2] in
its dual formulation using Sinkhorn algorithm. Sinkhorn iterates are not explicit
and dealt with a newton method. As we now are on a compact space can consider
a simple test case: F (b, a) = α ‖b‖2 (α >> 1) strongly penalising the drift (a soft
martingale constraint). We use a parabolic scaling for the space grid size dx2 = h.
The numerical test (more in [3]) is for marginal data (figure A) not in convex order
and a constant reference measure volatility a (figure B). The implementation can
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be optimised to give a linear time complexity in the number of space-time grid
points (see figure G) when h = 1/N goes to 0. The final drift/volatility surfaces
(figures F and E) are consistent with F and SI(a|a). Figure H illustrates the
specific relative entropy definition (3).
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Sharp comparisons between the sliced Wasserstein and
Wasserstein distances

Quentin Mérigot

(joint work with Guillaume Carlier, Alessio Figalli, Yi Wang)

Sliced Wasserstein distances have originally be introduced by Marc Bernot as
a computationally inexpensive variant of the optimal transport distances. The
sliced Wasserstein distance with exponent p ≥ 1 between two probability measures
µ, ν on Rd with finite pth moment is defined as an average of (one-dimensional)
Wasserstein distances between orthogonal projection of these measures on lines:

SWp(µ, ν)
p =

∫

θ∈Sd−1

Wp(Pθ#µ, ν)
pdθ.

In the previous formula, given a unit vector θ, the projection Pθ : Rd → R is
defined by Pθ(x) = x · θ. Moreover, we assume that the surface measure on the
unit sphere Sd−1 is normalized to one. Sliced Wasserstein distances have been
used first in the context of texture generation and generally imaging science [3]
and have since then emerged as a useful variant of optimal transport distances in
many applications. Their statistical and computational advantages make these dis-
tances and particularly suited to high-dimensional statistics and machine learning
applications. We refer to the PhD thesis [1] and references therein. The interest of
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the analysis/PDE side of the optimal transport community to sliced-Wasserstein
distances is more recent [2, 4], with the notable exception of [5].

Our aim in this talk is to understand quantitatively the relation between the
sliced Wasserstein distance and the standard Wasserstein distance in the case
p = 1. The first (immediate) remark is that since the projection Pθ is 1-Lipschitz,

SW1(µ, ν) ≤W1(µ, ν).

Conversely, Bonnotte established an upper bound on the Wasserstein distance
from the sliced one, for measures supported in a ball [5]. More precisely, for any
R > 0, he showed that there exists a constant CR such that

(1) ∀µ, ν ∈ P(B(0, R)), W1(µ, ν) ≤ CRSW1(µ, ν)
1

d+1 .

A similar Hölder comparison result between distances on probability measures
and sliced distances has been established in the much older article [6]. In this arti-
cle, the authors compare the bounded-Lipschitz distance dbL between probability
measures on a fixed ball, and the maximum sliced distance maxθ dbL(Pθ#µ, Pθ#ν).

The aim of our work was to see by how much the exponent in the estimation
of Bonnotte (1) can be improved. We prove the following: for any R > 0, there
exists a constant CR such that

(2) ∀µ, ν ∈ P(B(0, R)), W1(µ, ν) ≤ CRSW1(µ, ν)
1
d .

Moreover, the exponent 1/d is sharp: there exists two family of probability mea-
sures (µε)ε and (νε)ε supported in a fixed ball for ε small enough, such that

W1(µε, νε) ≥ Cε and SW1(µε, νε) ≤ C′εd.

In addition to this result, we present similar comparisons between general sliced
distances which involve average of Wasserstein distances between the projections
of µ, ν on k-dimensional linear subspaces of Rd.
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Geometry of sliced optimal transport and projected-transport
gradient flows

Dejan Slepčev

(joint work with Sangmin Park and Lantian Xu)

The sliced-Wasserstein (SW) distance, introduced by Rabin, Peyré, Delon, and
Bernot [5], compares probability measures on Rd with finite second moment
(P2(R

d)) by taking averages of the Wasserstein distances between projections
of the measures to 1-dimensional subspaces of Rd. For θ ∈ Sd−1 let πθ : Rd → R

be the projection to span{θ}:
πθ(x) = θ · x.

The sliced Wasserstein distance SW is defined by

SW (µ, ν) =

(
1

|Sd−1|

∫

Sd−1

W 2(πθ#µ, π
θ
#ν) dθ

) 1
2

where πθ# denotes the pushforward of a measure by πθ, W is the Wasserstein
distance, and dθ denotes the integration with respect to surface measure.

The sliced Wasserstein distance has found a variety of applications in statistics
and machine learning due to the fact that it can be approximated well in high
dimensions based on finite samples of the measure [2, 3], which is not the case for
the Wasserstein metric.

Our goal was to gain a better understanding of the properties of the metric
and its associated geometry. We first establish that (P2(R

d), SW ) is not a length
space, which leads us to investigate sliced Wasserstein length metric ℓSW (the
infimum of the lengths of curves between measures in the SW -space), in addition
to the SW metric.

Comparing sliced Wasserstein metric locally with with negative Sobolev
norms and the Wasserstein metric. We show that sliced Wasserstein metric
exhibits rather different properties near measures with positive densities with re-
spect to the Lebesgue measure and near discrete measures. In particular, consider
an absolutely continuous measure µ bounded away from zero and infinity on some
bounded open convex domain Ω. For all measures µ, ν which are within constant
multiples of the Lebesgue measure restricted to Ω, we show

(1) ‖µ− ν‖
Ḣ−

d+1
2 (Rd)

. SW (µ, ν) ≤ ℓSW (µ, ν) . SW (µ, ν) . ‖µ− ν‖
Ḣ−

d+1
2 (Rd)

,

where the rightmost inequality additionally requires ν to coincide with µ near the

boundary of Ω. In other words, near µ, SW is equivalent to Ḣ− d+1
2 .

On the other hand, for ν near discrete measures, µn =
∑n

i=1miδxi ,

(2) SW (µn, ν) ≤ ℓSW (µn, ν) ≤ 1

d
W (µn, ν) ≤ (1 + o(1))SW (µn, ν).

In conclusion, near smooth measures SW behaves like a highly negative Sobolev
space, in contrast to the Wasserstein metric which for such measures behaves like
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the Ḣ−1 norm as shown by Peyre [4], while near discrete measures SW behaves
like the Wasserstein distance.

Approximation by discrete measures in sliced Wasserstein length. The
results of [2, 3] show that finite-sample estimation of measures with respect to
Sliced Wasserstein distance enjoys parametric rate. We remark that finite-sample
estimation of measures with respect to maximum mean discrepancy (MMD) also
enjoys parametric rate [6, Theorem 3.3]. MMD distance is nothing but the norm in
the dual of a reproducing kernel Hilbert space (RKHS). In particular the results of
[6] apply to the dual of the Sobolev space Hs with s > d

2 (when the spaces embeds
in the spaces of Hölder continuous functions and are RKHS). The comparison (1)

says that near absolutely continuous measures, SW behaves like Ḣ−(d+1)/2-norm;
as the associated norm ‖ · ‖H−(d+1)/2(Rd) is an MMD, we can formally understand
SW to exhibit behaviors like an MMD. Thus MMD parametric estimation can be
seen as a tangential or a linearized analogue of the finite sample estimation rates
in SW distance.

We establish that finite sample approximation in ℓSW happens at the parametric
rate up to a logarithmic correction, namely that

SW (µ, µn) ≤ ℓSW (µ, µn) .

√
logn

n
with high probability,

where µn = 1
n

∑n
i=1 δXi with Xi

i.i.d.∼ µ. As mentioned, this is in stark contrast

with the Wasserstein distance where the approximation rate scales like n− 1
d .

Implications to gradient flows. The comparison results on ℓSW and SW can
be used to obtain comparisons for the metric slopes. Given a metric space (X,m),
recall that metric slope |∂E|m of a functional E : X → R is defined by

(3) |∂E|m(u) = lim sup
v

m−→u

[E(u)− E(v)]+
m(u, v)

.

Consider the potential energy V(µ) :=
∫
Rd V (x) dµ(x). When V is smooth and

compactly supported, for suitable absolutely continuous µ ∈ P2(R
d) it holds that

(4) |∂V|Ḣ(d+1)/2(Rd)(µ) . |∂V|ℓSW (µ) ≤ |∂V|SW (µ) . |∂V|Ḣ(d+1)/2(Rd)(µ)

whereas the slope behaves quite differently at discrete measures, µn =
∑n

i=1miδxi ,
namely that

(5) |∂V|SW (µn) = |∂V|ℓSW (µn) =
√
d |∂V|W (µn).

Hence |∂V|SW (resp. |∂V|ℓSW ) is not lower-semicontinuous in SW (resp. ℓSW )
in general, even when V ∈ C∞

c (Rd). This implies that the potential energy is
not λ-geodesically convex in (P2(R

d), ℓSW ). Furthermore, the curves of maxi-
mal slope in the sliced Wasserstein space starting from discrete measures, after a
constant rescaling of time, are the curves of maximal slope in W space. On the
other hand, for smooth measures, the curves of maximal slope with respect to the
Wasserstein metric are not curves of maximal slope in SW space. We formally
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show that SW gradient flow of potential energy is a higher order equation given
by a pseudodifferential operator of order d.

Projected Wasserstein gradient flows. To obtain gradient flows of relative
entropy that can be approximated well in high dimensions we introduce the pro-
jected Wasserstein distance where the space of velocities has been restricted to
have low complexity. Namely first consider the local metric with a very small
space of tangent velocities: Given a unit vector θ let

gθ(w,w) =

{∫
u(x · θ))2dρ(x) if wθ(x) = θu(θ · x)

∞ otherwise.

Consider the projected metric g given by

g(v, v) = inf

{∫

§d−1

gθ(wθ, wθ)dθ : v(x) =

∫

§d−1

wθdS(θ)

}

= inf

{∫

§d−1

gθ(wθ, wθ)dθ : v = ~R∗w

}
.

The gradient flow of relative entropy

E(ρ) =

∫
log

ρ

π
dρ

(where π ∼ e−U ), with respect to g is

∂tρ+∇ · (ρv) = 0

v = −
∫

§d−1

θ

(
∂s ln(Rθρ) +

Rθ(ρ∇U · θ)
Rθρ

)
(x · θ)dθ

= −R∗∇ ln(Rρ) +R∗Rθ(ρ∇U · θ)
Rθρ

where for s ∈ R the Radon transform

Rθ(s) =

∫

θ⊥
f(sθ + y)dy.

The key property of the flow is that the equations are closed for any θ.
While well-posedness of this gradient flow is still open, we discussed that it

can be approximated accurately in high dimensions using particle approximations.
Numerical experiments in 256d indicate that the flow can be computed in relatively
high dimensions and that its output approximates the target measure π well.
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Weak optimal transport with unnormalized kernels

Nathael Gozlan

(joint work with Philippe Choné, Francis Kramarz)

Given two probability measures µ, ν on two compact Polish spaces X ,Y and a
cost function c : X × P(Y) → R, where P(Y) denotes the set of all probability
measures on Y, the Weak Optimal Transport (WOT) problem is defined by

Tc(µ, ν) = inf
p

∫
c(x, px)µ(dx)

where the infimum runs over all probability kernels p = (px)x∈X such that ν(dy) =∫
px(dy)µ(dx).
This definition was first introduced in [6] and [1]. The WOT framework en-

compasses the classical Monge-Kantorovich Optimal Transport problem (which
corresponds to a cost function c linear with respect to p), as well as several well
studied variants of this problem such as the Entropy Regularized Optimal Trans-
port or the Martingale Optimal Transport probems. General tools are available for
studying WOT problems, such as a Kantorovich type duality formula or a cyclical
monotonicity criterion for optimality ; see [6, 1, 2]. WOT also founds specific ap-
plications in the field of concentration of measure [8, 7, 6, 5]. Other applications
are discussed in [3].

In [4] is introduced a new variant of the WOT problem involving unnormalized
kernels (WOTUK problem). More precisely, given a cost function c : X ×M(Y) →
R, where M(Y) denotes the set of all finite non-negative measures on Y, one
considers

(1) Ic(µ, ν) = inf
q

∫
c(x, qx)µ(dx)

where the infimum now runs over all non-negative kernels q = (qx)x∈X such that
ν(dy) =

∫
qx(dy)µ(dx). Let us emphasize that, in this definition, qx(Y) is not

always 1.
One of the main results of [4] is the following theorem which gives primal at-

tainment and a Kantorovich type duality formula for the WOTUK problem.

Theorem. Assume that

(A) c is lower bounded, convex w.r.t its second variable and jointly l.s.c
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(B) for all x ∈ X and m ∈ M(Y) \ {0},

c′∞(x,m) := lim
λ→∞

c(x, λm)

λ
= +∞.

Then, there exists a non-negative kernel q achieving equality in (1).
Moreover, it holds

(2) Ic(µ, ν) = sup
f∈C(Y)

{∫
Kcf dµ−

∫
f dν

}
,

where C(Y) denotes the space of continuous functions on Y and

Kcf(x) = inf
m∈M(Y)

{∫
f dm+ c(x,m)

}
, x ∈ X .

The duality formula (2) is actually true under less restrictive conditions than
Assumption (B) (see [4, Theorem 4.3] for more details).

If Assumption (B) is not in force, the WOTUK problem can have no solution.
To palliate this problem, a notion of weak solution is introduced in [4]. A prob-
ability measure π on X × Y with second marginal equal to ν is called a weak
solution if it is a limit point of a sequence πn(dxdy) = µ(dx)qn(dy), with (qn)n≥1

a minimizing sequence for the problem (1). Under a suitable assumption on the
cost function c, it can be shown that weak solutions are minimizers of the following
functional

Īc[π] =

∫
c

(
x,
dπac1
dµ

(x)πx

)
dµ(x) +

∫
c′∞(x, πx) dπ

s
1(x)

among probability measures π on X ×Y with second marginal equal to ν and first
marginal π1 such that π1(Support(µ)) = 1 and having the Lebesgue decomposition
π1 = πac+πs1 into absolutely continuous and singular parts with respect to µ. See
[4, Theorem 3.7] for a precise statement.

As a byproduct of the Kantorovich type duality(2), a generalization of Strassen’s
characterization of the convex order [9] is obtained in [4]. It reads as follows: two
compactly supported probability measures µ, ν on R

d are such that

∫
f dµ ≤

∫
f dν

for all f : Rd → R convex and positively 1 homogenous, if and only if there exists
a non-negative kernel q = (qx)x∈Rd such that ν(dy) =

∫
qx(dy)µ(dx) and

∫
y qx(dy) = x,

for µ almost every x ∈ Rd.
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An ordinary differential equation characterization of optimal
transport and variants with linear constraints

Brendan Pass

(joint work with Luca Nenna)

Given marginal probability measures µi supported on compact sets Xi ⊆ Rn, for
i = 1, 2, ...m and a cost function c(x1, ..xm), the multi-marginal optimal transport
problem is to minimize

inf
γ∈Γ(µ1,...,µm)

∫

X1×···×Xm

c(x1, ..., xm)dγ.

Here Γ(µ1, ..., µm) represents the set of joint measures on the product space
X1 × ...×Xm whose marginals are the µi. This problem is very challenging both
theoretically, as well as computationally, because of the large state space.

The contribution described in this extended abstract is to characterize solutions,
when each of the marginals µi is a discrete probability measure, via ordinary
differential equations (ODEs). In fact, we deal with an entropically regularized
version of the problem, which is, for a small η > 0, to minimize

(1) inf
γ∈Γ(µ1,...,µm)

∫

X1×···×Xm

c(x1, ..., xm)dγ + ηH⊗n
i=1µi(γ),

where

H⊗n
i=1µi(γ) =

∫

X1×···×Xn

dγ

d(⊗ni=1µi)
log
( dγ

d(⊗ni=1µi)

)
d(⊗ni=1µi)
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is the relative entropy (taken to be +∞ is γ is not absolutely continuous with
respect to the product measure ⊗ni=1µi of the marginals). It is well known that
solutions to the regularized problem converge to solutions of the unregularized one
as η → 0. We will describe two different ODE characterizations; in the first, the
entropic regularization is not entirely essential, but serves to make the solutions
of the ODE smooth. In the the second project, the regularization is absolutely
essential, as characterizing solutions via an ODE through this approach would be
impossible without it.

In the first project [1], joint work with Luca Nenna, we consider pairwise costs
of the form

(2) c(x1, ..., xm) =
∑

i6=j
cij(xi, xj).

We introduce the one parameter family of costs cǫ defined by:

c(x1, ..., xm) =

m∑

i=2

c1ic(x1, xi) + ǫ
∑

i,j>1i6=j
cij(xi, xj).

When ǫ = 1, we of course have cǫ = c. On the other hand, for ǫ = 0, we have a cost
function c(x1, ..., xm) =

∑m
i=2 c1i(x1, xi) which includes only pairwise interactions

between x1 and the other variables. For this reason, the ǫ = 0 problem may be
solved by solving the m− 1 two marginal optimal transport problems between µ1

and each µi, with cost functions c1i. This is much less complex than solving the
full multi-marginal problem (the complexity of solving m two marginal problems
scales linearly inm whereas for the multi-marginal problem it scales exponentially).
We then show that the evolution of the solution in ǫ can be characterized by a
well posed ODE. This yields a new computational scheme; the problem with the
original cost (2) can be solved by using the two marginals solutions as the initial
condition at ǫ = 0 and then solving the ODE (using an explicit Euler scheme, or,
since solutions are smooth, a higher order Runge-Kutta method) up to ǫ = 1.

The second project, joint work in progress with Nenna as well as Joshua Hiew,
extends this approach to completely general (rather than only pairwise) cost func-
tions [2]. We now take cǫ = ǫc, so that the initial, ǫ = 0 cost is c0 = 0. In this
case, the initial solution is even simpler than in the pairwise case above; we are
now simply minimizing the entropy over Γ(µ1, ..., µm), and the unique minimizer
is well known to be product measure. We again show that the the evolution of
the solution can be characterized by a well-posed ODE. The resulting numerical
scheme is of interest even in the two marginal case, where it yields an interpola-
tion between product measure and solutions to optimal transport problems, and
extends naturally to problems with additional linear constraints (including, for
instance, martingale optimal transport).

Numerical simulations suggest that using the ODE method is roughly compa-
rable to the Sinkhorn method (the standard method for solving regularized OT
problems) in speed and accuracy. It has the additional advantage of yielding the
minimizer γǫ for each ǫ ∈ [0, 1], an object of independent interest. Computing this



342 Oberwolfach Report 7/2024

curve of measures via the Sinkhorn would require a separate calculation for each
ǫ, and would therefore be much more computationally cumbersome.

We also demonstrate the the formulation of the ODE allows one to easily cal-
culate derivatives of the optimal cost C(ǫ) (that is, the value of the infimum
in (1) with c replaced by cǫ) at ǫ = 0. The zeroth and first order terms, C(0) =
ηH⊗n

i=1µi(γ0) and C
′(0) =

∫
X1×···×Xm c(x1, ..., xm)dγ0, are easily determined from

the optimal coupling γ0 = ⊗ni=1µi. The ODE formulation allows one to calculate
hire order derivatives; we illustrate this by providing a formula for C′′(0) when
m = 2.
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Wasserstein valued BV maps

Simone Di Marino

(joint work with Rodolfo Assereto, Kristian Bredies, Emanuele Naldi,
Silvia Villa)

In image processing, a TV regularizer is often used for the retrieval of an image
given a corrupted version of it, expecially in the cases where we want to preserve
sharp edges. In diffusion MRI, for every pixel a measure on the sphere (orientation
distribution function) is given, that can be identified with a measure on S2. This
gives rise to a natural object which is µ : D → P(S2). A natural procedure for
recovering the true µ given some corrupted data µ̂ is the optimization problem

(1) argmin

{∫

D

W1(µx, µ̂x)
2 dx+ TV (µ)

}
,

where the first term is a fidelity term (with respect to W1, the 1-Wasserstein
distance), while the second one is a regularizer. In practice, there have been
attempts to define the term TV (µ), stemming from a generalization to the classical
dual formulation of total variation for functions of bounded variation in euclidean
spaces [3]. Our goal is to give a list of other possible and natural definitions which
will turn out to be equivalent. In the sequel we will consider µ : D → P(Y ) where
D ⊆ Rd and Y ⊆ Rn.

(i) Primal formulation by relaxing cartoon-like functions. Inspired by a gen-
eral approach for metric space valued BV functions [1] we consider finite
range functions C = {µ : µ =

∑
i µ

iχAi} where we can use a geometric BV
energy inspired by the perimeter: E(µ) :=∑i,j Hd−1(Āi ∩ Āj)W1(µ

j , µi).
We can then define

TVc(µ) := inf{lim inf
n→∞

E(µn) : µn → µ in L1(W1), µn ∈ C}.
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(ii) Primal formulation by relaxing smooth functions: whenever µx = ρ(x, y) dy
and ρ is at least twice differentiable in both variables we can consider
TV ∗

s (µ) :=
∫
D ‖∇xρ(x, ·)‖KR dx, where ‖·‖KR is a Katorovich-Rubenstein

norm on the space of zero mean vector valued functions. We define:

TVs(µ) := inf{lim inf
n→∞

TV ∗
s (µn) : µn → µ in L1(W1)}

(iii) Beckmann formulation (which is explored in [2] in the context of functional
lifting). Given a norm ‖ · ‖ on n× d matrices, we define:

TVw(µ) := sup{‖σ‖(D × Y ) : σ ∈ M(D × Y ;Rn×d), ∇xµ+ divy(σ) = 0}
(iv) Dual formulation, namely the original one studied in [3]. Given another

norm ‖ · ‖∗ on n× d matrices, we define:

TVd(µ) := sup

{∫

D

∫

Y

divx(φ) dµx(y) dx : ‖‖∇yφ(x, y)‖∗‖L∞(Y ) ≤ 1, ∀x ∈ D

}
,

where the supremum is taken among all smooth functions φ : D×Y → R
d

which are uniformly Lipschitz with respect to y.

We can prove that all the formulations produce the same BV space, and more-
over TVs(µ) = TVw(µ) = TVd(µ) whenever there is compatibility of the norms,
namely ‖ · ‖∗ (in definition (iv)) should be the dual norm of ‖ · ‖ (in definition
(iii)), while for η ∈ M(Y ;Rd) such that η(Y ) = 0 we have

‖η‖KR = sup

{∫

Y

〈ψ, dη〉 : ψ ∈ Lip(Y ;Rd), ‖∇ψ(y)‖∗ ≤ 1 ∀y ∈ Y

}
.

To have equality also with (i) necessarily ‖ · ‖ should be the nuclear norm
of matrices, that is the 1-Shatten norm. Consequently, ‖ · ‖∗ is the operator
norm, so that ‖ · ‖KR is the Kanthorovich-Rubenstein norm in duality with the
1-Lipschitz functions in the metric sense (so the test functions are ψ ∈ Lip(Y ;Rd)
such that dRd(ψ(y), ψ(y′)) ≤ dRn(y, y)). We generalize these results to the unbal-
anced case. In this setting, we need to change the norm on the Lipschitz space:
all the equivalences are quite robust, and the only formulation that really changes
is the Beckmann one.

There are a lot of interesting future directions: for example, understanding the
structure theorem for BV functions in this case (in particular for the Beckmann
problem) or investigating the role of the norms in the optimization problem (1).

References

[1] L. Ambrosio, Metric space valued functions of bounded variation, Annali della Scuola Nor-
male Superiore di Pisa-Classe di Scienze, 32, no. 3 (1990), 439-478.

[2] H. Lavenant, Lifting functionals defined on maps to measure-valued maps via optimal trans-
port, arXiv preprint arXiv:2309.02260. (2023).

[3] T. Vogt, J. Lellmann, Measure-valued variational models with applications to diffusion-
weighted imaging, Journal of Mathematical Imaging and Vision. 60, (2018) 1482–1502.



344 Oberwolfach Report 7/2024

Lifting functionals via optimal transport

Hugo Lavenant

We investigate the problem of the lifting if functionals defined on maps to measure-
valued maps. A simple example of lifting would be the following: given f : Y →
[0,+∞], we can always lift it as a linear function Tf defined on P(Y ) the space of
probability measures over Y . Indeed for a probability measure µ we set

Tf : µ 7→
∫

Y

f(y) dµ(y).

We now look at E a functional defined on maps from a space X into a space Y
that we want to lift in TE a functional defined on measure-valued maps µ from
X into P(Y ). If E is a functional of zero order then we can extend the previous
lifting:

E : (u : X → Y ) 7→
∫

X

f(x, u(x)) dx

is lifted in

TE : (u : X → P(Y )) 7→
∫

X

∫

Y

f(x, y) dµx(y) dx.

Difficulty (and interest!) arises when E is for instance the Dirichlet energy, or
another functional depending on the derivatives of the map. There has been
several liftings already proposed and studied, see e.g. [2, 4, 8]. Here the goal is to
give a characterization of the possible liftings.

1. The case of the action

The case which is already well understood is the one of the action of a curve, when
X = [0, 1] is a segment of R. We restrict to Y = Rd to be a Euclidean space. For
the p-action, which reads

E(u) =

∫ 1

0

|u̇t|p dt,

there is one canonical lifting which has three equivalent formulations [6, 1].
The lifted energy is the action of the curve of measures (µt)t∈[0,1] in the p-

Wasserstein space:

TE(µ) =
∫ 1

0

|µ̇t|pWp
dt,

being |µt|Wp the metric derivative of the curve in the space Pp(Rd) endowed with
the p-Wasserstein distance Wp. This action has a “Eulerian” representation:

TE(µ) = min
v:[0,1]×Rd→Rd

{∫ 1

0

∫

Rd

|v(t, y)|p dµt(y) dt : ∂tµ+ div(µv) = 0

}
,

where the infimum is taken among all velocity fields such that the continuity
equation ∂tµ+div(µv) = 0 is satisfied, that is, represents the motion of mass (µt)t
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evolving in time. The last representation is the “Lagrangian” one: with et the
evalluation map at time t it reads

TE(µ) = min
Q∈P(H1([0,1],Rd))

{∫

H1([0,1],Rd)

∫ 1

0

|u̇t|p dt dQ(u) : ∀t, et#Q = µt

}
.

Here minimization is done over Q a probability measure over curves whose super-
position represents µ. All these expressions coincide, and moreover for the minimal
v and Q, we have that Q-a.e. curve u satisfies the ODE u̇t = v(t, ut).

2. Functionals of order one

We move on to the case where X = Ω is an open bounded subset of Rq while
Y = Rd. We look at

E(u) =

∫

Ω

W (∇u(x)) dx,

where W is a non-negative, convex and coercive function on d × q matrices. In
the case W grows linearly at infinity we need to account for the singular part of
the distributional derivative of u as usual, but we omit this subtlety here for the
sake of the exposition. We want to mimic the case of the action. We will not
develop the metric point of view on the lifting, referring to [4] in the case E is the
Dirichlet energy and to Simone Di Marino’s talk in the present workshop when E
is a bounded variation norm. The Eulerian lifting reads

T̂E(µ) = min
v:Ω×Rd→Rd×q

{∫

Ω

∫

Rd

W (v(x, y)) dµx(y) dx : ∇xµ+ divy(µv) = 0

}
.

Here v(x, y) ∈ R
d×q is the “density of Jacobian matrix” at the point (x, y). On the

other hand the Lagrangian lifting reads: with L0(Ω,Rd) the space of measurable
functions from Ω to Rd,

TE(µ) = min
Q∈P(L0(Ω,Rd))

{∫

L0(Ω,Rd)

E(u) dQ(u) : “∀x, ex#Q = µx”

}

The condition ∀x, ex#Q = µx is written between “ · ” because a special care has
to be given to define it, as all functions are defined only for a.e. x. We refer to [5]
and not discuss the issue here.

Contrary to the case of the action of a curve, generically there holds

TE 6= T̂E .
The reason is that, if there were equality, then for the optimal Q and v, we should
have that Q-a.e. map u satisfies ∇u(x) = v(x, u(x)). However this equation is in
general not solvable: not every matrix field is a field of Jacobian matrices.

Our results, stated and proved in [5], aim at characterizing these liftings as
the optimal ones in some sense. For a map u, let us write µu for the measure-
valued map sending x to δu(x): this is the canonical embedding of a map u as a
measure-valued map. We proved the following.
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(1) The Lagrangian lifting TE is the largest lifting which is convex, lower semi-
continuous and which satisfies the lifting identity TE(µu) = E(u) for any
map u.

(2) The Eulerian lifting T̂E is the largest lifting which is convex, lower semi-
continuous, subadditive, increasing, inner regular and which satisfies the

lifting identity T̂E(µu) = E(u) for any map u.

As an immediate corollary we deduce T̂E ≤ TE . Here the topology we put on
measure-valued maps is simply the topology of narrow convergence on the product
space Ω × Rd, by identifying a measure-valued map with the “fubinization” it
induces on the product space. For the Eulerian lifting, by subadditive, increasing
and inner regular we refer here to the localized version of the functional, see [3] for
more details. The result for the Lagrangian lifting, which is actually interpreted
as an optimal transport problem with an infinity of marginals, could be valid for
much more general functionals E. It generalizes the result of [7] characterizing the
value of the (classical) optimal transport problem as a suitable convex relaxation.

3. An open question

Consider a functional of second order for a map u : Ω ⊂ Rq → Rd:

E(u) =

∫

Ω

H(∇2u(x)) dx,

being H a convex function over d×q×q tensors. What is the largest convex, lower
semi-continuous and subadditive functional which lifts E in this case? That would
correspond to the “Eulerian” lifting for functionals of second order.
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Applications of optimal transport theory in meteorology and
materials science

David Bourne

In this talk I present two very different applications of optimal transport, one
in meteorology and one in materials science, united by common tools from semi-
discrete optimal transport theory with exotic costs.

1. Application in meteorology

The first half of the talk is about the results in the papers [4], [5], [13]. The
semi-geostrophic (SG) equations are a simplified model of atmospheric flows and
frontogenesis. There has been a lot of interest in these equations in the optimal
transport community ever since the seminal paper of [2] on the 3D incompressible
SG equations. In this talk we focus on the 3D compressible SG equations in
geostrophic coordinates. The main equation is a nonlocal continuity equation of
the form

(1) ∂tαt + div(αtv[αt]) = 0,

where α : [0, T ] → P(Y ), t 7→ αt, is a curve of probability measures, called
the potential vorticity, and Y = R2 × (0,∞) is geostrophic space. The physical
space, where the fluid lies, is a compact set X ⊂ R3 of volume 1. The velocity
v[αt] : Y → R

3 in the continuity equation is defined via an optimal transport
problem with unknown source measure as follows:

v[αt] := J(id− (T [αt])
−1), where J =



0 −1 0
1 0 0
0 0 0


 ,

and T [αt] : X → Y is an optimal transport map from physical space to geostrophic
space. To be precise, T [αt] is the optimal map for transporting the source measure
σ ∈ Pac(X) to αt ∈ P(Y ) with respect to the ‘exotic’ cost c : X×Y → R given by

c(x, y) =
1

y3

(
1
2 (x1 − y1)

2 + 1
2 (x2 − y2)

2 + gx3
)
,

where g is the acceleration due to gravity.1 The source measure σ (corresponding
to the density of the fluid) is an unknown of the problem, and it is defined by the
following convex optimisation problem:

σ[αt] = argmin

{
Tc(ρ, αt) +

∫

X

ργ(x) dx : ρ ∈ Pac(X)

}
,

where γ ∈ (1, 2) and Tc(ρ, αt) is the cost of transporting ρ to αt with respect
to the cost c. The cost c corresponds to the kinetic and gravitational potential
energy of the fluid. The terms

∫
X
ργ dx corresponds to the internal energy of the

fluid. While the physical meaning of the potential vorticity αt is perhaps not very
apparent, the temperature of the fluid and its geostrophic velocity can be read

1The other physical constants have been suppressed throughout.
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off from the components of the optimal transport map T [αt], as described in [10],
where the model was introduced.

The main result of [4] is the existence of weak solutions of the compressible SG
equations, for the case where the initial data α0 is a probability measure. This
extends the existence result of [10] for the case of Lp initial data.

The proof is based on a particle method, where the PDE (1) is reduced to a
system of ODEs by approximating the initial data by a discrete measure. This
extends ideas introduced in [5] from the incompressible case to the compressible
case. The proof relies on a characterisation of the unknown source measure σ
in terms of a dual problem, along with recent regularity results for semi-discrete
optimal transport theory from [11] and [14], as well as the observation that our
‘exotic’ cost satisfies the non-negative cross-curvature condition.

The next step in our research programme is to extend the numerical results for
the 2D incompressible SG equations from [13] and [3] to the compressible case.

2. Application in materials science

The second half of the talk is about the results in the papers [6], [7], [8], in
collaboration with the industrial partner Tata Steel Research & Development.

The microstructure of metals and foams is often modelled by engineers using
generalised Voronoi diagrams. These are used for example as representative volume
elements for computational homogenisation. The challenge is to generate realistic
geometric models with prescribed statistical properties, such as the distribution of
the volumes and shapes of the cells.

Following the influential work of [1], there has been a lot of research in the
microstructure modelling community on representing the microstructure of poly-
crystalline materials, such as steel, using anisotropic power diagrams, which are
a class of tessellations defined as follows. Let X ⊂ Rd be the domain to be tes-
sellated, n be the number of cells in the tessellation, Y = (y1, . . . , yn) ∈ Xn,
W = (w1, . . . , wn) ∈ Rn, and Λ = (A1, . . . , An) ∈ (Rd×d)n be symmetric posi-
tive definite matrices, which represent the anisotropy of the cells. The anisotropic
power diagram (APD) or anisotropic Laguerre tessellation generated by the triples
{(yi, wi, Ai)}ni=1 is the partition {Li}ni=1 of X defined by

Li(Y,W,Λ) =
{
x ∈ X : ‖x− yi‖2Ai

− wi ≤ ‖x− yj‖2Aj
− wj ∀ j

}
,

where ‖ · ‖Ai denotes the Ai-norm, ‖x‖Ai = (xTAix)
1/2 for all x ∈ R

d.
First we consider the isotropic case Ai = I for all i. In the computational

geometry and optimal transport literature it has been known for a long time how
to generate Laguerre tessellations with cells of given volumes, with the state-of-
the-art algorithm being the damped Newton method of [14]. In [6] and [7] we
transferred this knowledge to the microstructure modelling community, where we
applied it to generate synthetic polycrystalline microstructures.

More recently, in [8], we consider the general case of anisotropic APDs, where
we develop a fast algorithm for generating APDs with cells of prescribed volumes.
Our approach uses semi-discrete optimal transport theory with ‘exotic’ anisotropic
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cost c : Rd×Y → R given by c(x, yi) = ‖x−yi‖2Ai
. The challenge here is mainly one

of implementation, namely, how to efficiently compute c-transforms, i.e., how to
compute APDs. In [8] we overcome this difficulty with a fast GPU implementation
using the KeOps library [9]. We present runtime tests and examples of how to
generate synthetic microstructures and fit APDs to EBSD data.

Going forward, we hope to improve the speed of the algorithm further using
adaptive meshing to compute the APDs, using ideas from the optimal transport
community introduced in [12].
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Solutions of the semigeostrophic equation on a rotating sphere

Lauro Silini

The study of the formation of transported interfaces (frontogenesis) is an impor-
tant area of research in meteorology, and Hoskin’s semigeostrophic equation is
believed to be one of the most effective models. It consists in considering trans-
ported in the inviscid Navier-Stokes equation only the wind that balances the
Coriolis term:

(1)

{
(∂t + ut · ∇)uGt + k(u− uGt )

⊥ = 0,

div(u) = 0.

Here ut, pt, k, and u
G
t are the velocity of the incompressible fluid, the pressure, the

Coriolis force, and uGt := k−1∇⊥pt. The most fascinating feature of this equation
was first sensed by Hoskins, and further enriched by Cullen: in the periodic case
with k ≡ constant, the change of variables y = ∇pt+x leads to a dual reformulation

(2)





∂tρt + div
(
ρtUt

)
= 0,

Ut =
(
Id−∇P ∗

t

)⊥
,

det(D2P ∗
t ) = ρt.

that appears as a fully non-linear version of the Euler vorticity equation

(3)





∂tωt + div
(
ωtvt

)
= 0,

vt = −∇ψ,
∆ψ = ω.

where the Laplace is replaced with a Monge-Ampère equation. Optimal transport
theory allowed the construction of a solution for the dual system, see Benamou and
Brenier. The challenging task of converting this solution in the original Eulerian
coordinates was achieved by Ambrosio, Colombo, De Philippis, and Figalli who
established the global-in-time existence and uniqueness of weak solutions for (1)
in the flat case with constant k. This was made possible by the regularity theory
for bounded Monge-Ampère equations, as developed by De Philippis and Figalli,
and further improved by Savin and the latter in the following sharp form

0 < λ ≤ det(D2Q) ≤ Λ ⇒ D2Q ∈ L1+ε, ε = ε(n, λ,Λ, n) > 0.

Local-in-time existence and uniqueness of smooth solutions was then solved in the
same framework by Loeper with sharp higher order regularity estimates on the
Monge-Amère equation. The same result with varying and smooth enough k > 0
was proven later by Cheng, Cullen, and Feldman, via an approximation argument
in Lagrangian coordinates.

Semigeostrophic equations are a very fascinating and not yet completely under-
stood subject. In this talk we address the absence of dual reformulations within
a physically meaningful context. Specifically, we investigate the well-posedness of
(1) on curved domains. The main result presented is the local-in-time existence
and uniqueness of solutions in subdomains of a rotating sphere:
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Theorem (S. 2022). Let Ω be an open, smooth, and simply connected subset of
the sphere S2 such that Ω̄ is contained either in the upper or in the lower open
hemisphere. Let ∇p0 ∈ Hs(Ω,R2), s ≥ 4, and suppose that there exists µ0 < 1
such that the uniform ellipticity condition

(4) Q0 := Id+D2p0 −∇p0 ⊗∇ ln(k)−∇ ln(k)⊗∇p0 ≥ (1− µ0)Id > 0,

is satisfied in Ω. Then, there exists t∗ > 0 such that for all 0 < t′ < t∗ there exists
a unique pair

∇pt ∈ C1(0, t′;Cs−3,α(Ω,R2)) ∩ L∞(0, t′;Hs(Ω,R2)),

and

ut = −∇⊥ψt ∈ C(0, t′;Cs−2,α(Ω,R2)) ∩ L∞(0, t′;Hs(Ω,R2)),

solving Equation (1) in [0, t′]× Ω with ∇pt|t=0 = ∇p0, and ut tangent to ∂Ω.
The proof is robust and overcomes the absence of a dual reformulation on the

sphere, holding true in general bounded and conformally flat domains with nowhere
vanishing and possibly varying k.

We finally present some questions and open problems that naturally arise from
the previous part of the talk. In particular: Is it possible to extend Theorem to
include the whole sphere as domain, and not only a closed subdomain strictly con-
tained in an hemisphere? This problem is interesting from a physical standpoint
because it involves the well-posedness of the semigeostrophic equation in a more
accurate context, which, to my knowledge, remains an open question even for me-
teorologists. The major difficulty relies on the singular nature of the geostrophic
wind uGt = k−1∇⊥pt: being the Coriolis force k proportional to the latitude, it is
not clear if the equation makes sense at all in proximity of the equator. A possible
toy model could be the upper half plane {x2 > 0} with degenerate weight k = 1

x2 .
For what concerns the existence of weak solutions in the curved setting, one of

the major difficulty relies in the absence of a clear dual reformulation that allows
the application of optimal transport theory. In the flat periodic setting the map

y = ∇Pt(x) = x+∇pt,
can be seen as an optimal transport map if Pt is convex, in virtue of Brenier The-
orem. A direct computation shows that the transported density ρt := (∇Pt)#dx
solves the transport equation

∂tρt + div(ρt(∇P ∗
t − y)⊥) = 0.

On a sphere the direct parallelism with the Riemannian generalization given by
McCann implies that the map should be in the form

y = expx(∇pt(x)),
with pt c-convex, with respect to the cost function c(x, y) = d2(x, y)/2. When
deducing the associates differential equations for transported density

ρt := (expx(∇pt(x)))#d volS2
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even in the simple case k ≡ 1 however, the curvature of the underlying space
enters into play, generating in the orthogonal direction of the pressure gradient
additional terms in the forms of Jacobi fields

∂tρt + div(ρt∇⊥pc) = E(ut,∇pt, κ),
where E(ut,∇pt, κ) denotes the extra term, and κ > 0 the curvature of S2. Two
natural and interesting questions are :
Formally one can check that E → 0 as κ → 0 (at least point-wise). Is it possible
to prove stability properties of the solutions in terms of κ≪ 1?
Is there another cost function c = c(x, y) on S2 for which the transport map c-
expx(∇pt(x)) gives a continuity equation for the associated density that does not
involve ut?
Because ut and ∇pt are much smaller in size compared to the Earth’s radius
(around 10 meters/second versus approximately 6 millions meters), the fact that
E(ut,∇pt, 1/R) is also small is a fundamental aspect of the problem. Solving the
dual problem on the sphere when we set E to zero is a significant and challenging
first step in this direction.

Quantum mechanics, density functional theory, optimal transport, and
the curse of dimension

Gero Friesecke

Abstract. I survey the state of the art regarding the application of optimal
transport to density functional theory, covering both analysis and numerics.

The area of (electronic) density functional theory, in which optimal transport ideas
have been very fruitful, is a re-formulation of quantum mechanics (for electrons).
I begin by describing, formally, how one gets from quantum mechanics to OT.

Quantum mechanics. The fundamental governing equation for electrons, called
electronic Schroedinger equation, was first formulated not by Schroedinger (who
only covered the case of 1 electron) but by Dirac in 1929. This equation, “in
principle”, predicts the chemically specific behaviour of molecules, such as emis-
sion/adsorption spectra, binding energies, equilibrium geometries, interatomic
forces. In the Born-Oppenheimer approximation, for stationary states, and N
electrons, one needs to solve

(
− 1

2∆+
∑

1≤i<j≤N

1

|ri − rj |
+

N∑

i=1

v(ri)
)
Ψ = EΨ

for Ψ ∈ L2
(
(R3 × Z2)

N ;C
)
subject to the constraints of antisymmetry and nor-

malization,

Ψ(z1, .., zi, .., zj , .., zN) = −Ψ(z1, .., zj , .., zi, ..zN ), ||Ψ||L2 = 1.

Here v : R3 → R is the external potential exerted by the molecule’s atomic nuclei

onto the electrons, v(r) = −∑M
α=1

Zα

|r−Rα| .
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The N -point probability density of positions is

γΨ(r1, ..., rN ) =
∑

s1,...,sN∈Z2

|Ψ(r1, s1, ..., rN , sN)|2 (Born formula).

A key collective variable is the electron density

ρ =

N∑

i=1

πi♯ γΨ (= Nπ1♯ γΨ = ... = NπN♯ γΨ).

Curse of dimension → DFT. The problem with the N -electron Schroedinger
equation is that it suffers from the curse of dimension. Discretizing each coor-
dinate of R3N by 10 gridpoints gives, for a single CO2 molecule (N = 22), a
totally unfeasible 1066 gridpoint values. DFT overcomes this by approximating
the Schroedinger equation by system of equations – or equivalently a variational
principle – based on the single-particle density. Under the above discretization,
one is left with a mere 103 gridpoint values, independently of N .

An exact re-formulation goes as follows. The electronic Schroedinger equation
is the optimality condition of the variational principle

stationarize T [Ψ] + Vee[Ψ] + Vext[Ψ] s/to ||Ψ||2L2 = 1, Ψ antisymm.

Here T [Ψ] =
∫
R3N

∑
s∈(Z2)N

N∑
i=1

|∇riΨ|2 (kinetic energy),

Vee[Ψ] =
∫
R3N

∑
s∈(Z2)N

∑
1≤i<j≤N

1
|ri−rj| |Ψ|2 (interaction energy),

Vext[Ψ] =
∫
R3N

∑
s∈(Z2)N

N∑
i=1

v(ri)|Ψ|2 (external potential energy).

The physicist M.Levy introduced the following constrained-search formulation of
the above variational priniple:

E0 = min
Ψ : ||Ψ||2

L2=1

(
T [Ψ] + Vee[Ψ] + Vext[Ψ]

)

= min
ρ

min
Ψ :πi♯γΨ=ρ ∀i

(
T [Ψ] + Vee[Ψ] + Vext[Ψ]

)

= min
ρ

(
min

Ψ :πi♯γΨ=ρ ∀i

(
T [Ψ] + Vee[Ψ]

)

︸ ︷︷ ︸
=:FLL[ρ] universal part

+

∫

R3

v(r)ρ(r)dr

︸ ︷︷ ︸
chemically specific part

)

The outer min is just over densities. But the universal functional still involves
a minimization over the high-dimensional space of wavefunctions, and must be
approximated to obtain practical methods.

Density scaling → OT. For any given density, consider its dilation ρλ(r) =
λ3ρ(λr), λ > 0. An elementary calculation shows that

FLL[ρλ] = min
πi♯γΨ=ρ/N ∀i

(
λ2T [Ψ] + λVee[Ψ]

)
.
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It follows that at high density (λ≫ 1) kinetic enery dominates,

FLL[ρλ] ≈ λ2 min
πi♯γΨ=ρ/N ∀i

T [Ψ],

whereas at low density (λ≪ 1) potential energy dominates,

FLL[ρλ] ≈ λ min
πi♯γΨ=ρ/N ∀i

Vee[Ψ].

Since Vee[Ψ] =
∫
R3N

∑
1≤i<j≤N

1
|ri−rj | dγΨ(r1, ..., rN ) this is OT (with Coulomb

cost). The minimum on the right, i.e. the optimal cost as a functional of the mar-
ginal density, is called the SCE functional V SCEee [ρ]. It is the Coulomb analogue of
the Wasserstein distance. The above considerations mean that when ρ solves the
constrained-search problem with FLL replaced by VSCE , then the optimal plan γ
for OT with Coulomb cost approximates the quantum wavefunction squared, and
this approxiation is (formally) asymptotically correct in the low density limit.

Analytical work. A great deal of analytical work has been done on this problem.
Here is an incomplete list of important contributions (for a much longer list and
precise references see the review [1]).
* Seidl ’99: introduces model (in the physics lit.); found the exact solution in 1D

* Cotar, F, Klueppelberg 2011-13; Buttazzo, Gori-Giorgi, de Pascale 2012:

rigorous formulation, interpretation as OT

* Colombo, DiMarino, DePascale 2015: proof of exact sol’n in 1D

* Cotar, F, Klueppelberg 2018: rigorous justif. of low-density limit as Gamma conv.

* Colombo, DiMarino, Stra 2022: rigorous results on next-order correction.

Numerical work. Numerically, OT with Coulomb cost forN particles still suffers
from the curse of dimension, just like the Schroedinger equation it approximates.
Many authors have tackled the problem with different approaches (including Chen,
F. and Mendl 2014, Benamou, Carlier and Nenna 2015, Khoo and Ying 2019,
Alfonsi, Coyaud and Ehrlacher 2021, Nenna and Pass 2022 (see the review [1]).
A very efficient approach delivering highly accurate solutions (the latter being
important in electronic structure) was recently developed by F, Schulz and Voegler
[4] and F and Penka [2]. This approach rigorously overcomes the curse of dimension
with a sparse ansatz similar to, but different from, the Monge ansatz. More
precisely one has the following theorem on discretized multi-marginal OT

min 〈c, γ〉 over γ : X1 × ...×XN → R s/to γ ≥ 0, πi♯γ = µi.

Theorem [4, 2]. If |Xk| = ℓk, for any cost the discrete multi-marginal OT problem
has an optimizer with

|supp γ| ≤
N∑

k=1

ℓk

(instead of |supp γ| ≤
N∑

k=1

ℓk as needed for general plans).
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This breaks the curse of dimension in terms of the number of nonzero parame-
ters needed, as this number grows only linearly instead of exponentially with the
number N of particles/marginals.

An algorithm – termed Genetic column generation – which finds the optimal
plan was introduced in [4] for the (symmetric) Coulomb problem and extended
in [2] to general (non-symmetric) multi-marginal problems. Numerically, on the
benchmark problem of the homogeneous electron gas in one dimension where the
exact plan is known, the algorithm has been demonstrated to find the exact ground
state extremely efficiently, in polynomial computational time with respect to the
particle number N [4]. The idea of the algorithm is as follows: Instead of full
discrete OT, which has ℓ1 · ... · ℓN DOF’s, iteratively solve OT on a small subset,

min 〈c, γ〉Ω over γ : Ω ⊂ X1× ...×XN → R s/to γ ≥ 0, πi♯γ = µi,

with
|Ω| ≤ β (ℓ1 + ...+ ℓN),

and update the subset. Here β is a hyperparameter (taken to be 3 in our simula-
tions).

The following didactic example, taken from [2], shows how GenCol solves clas-
sical OT with quadratic cost, exhibiting exponential convergence to the unique
optimal plan.

The algorithm builds on classical column generation going back to Dantzig and
Wolfe. But there one never discards any configuration, so that the domain grows
with each iteration, and one uses a deterministic search rule (“pricing problem”)
which is known to be NP-hard.

The updating step of Ω is partially inspired by ML protocols in adversarial
learning, with the correspondence

proposal step ∼ SGD step for generator

acceptance step ∼ learning from a critic (the current dual, as in WGANs).

In particular, the algorithm contains initial stochasticity through the initally poor
critic, which is automatically tuned down (as in GANs, and unlike SGD).
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For N = 2 one has the following global convergence result; the main proof idea
is due to my PhD student Maximilian Penka.

Theorem [3]. Let X, Y discrete with |X | = ℓ1, |Y | = ℓ2. For any cost, any
marginals, any β ≥ 2, and any feasible initial subset Ω ⊂ X × Y with |Ω| ≤
β(ℓ1 + ℓ2), GenCol converges with probability 1 to a global minimizer.

This result is quite remarkable because GenCol maintains the nonconvex constraint

||γ||ℓ0 ≤ β(ℓ1 + ℓ2)

yet does not get stuck in a local minimizer subject to the local update Ω Ω∪{r′}.
The proof can be generalized to N marginals when children are searched for in the
(in practice too large) search space differing from a parent in N−1 components,
but breaks down when children are searched for in the (in practice efficient) search
space differing from a parent in only 1 component.

An application. OT with Coulomb cost is only an accurate DFT model in the
low-density limit. This regime is of interest for certain physical systems (electron
gas; nanowires) but not for molecules. To build realistic DFT models for real
molecules with the help of OT, one needs to interpolate between the high and low
density limits. Recent advances, providing e.g. a remarably accurate binding en-
ergy curve for the pyridine-pyridine dimer (C5NH5)2 (which contains 84 electrons),
are discussed in [5].
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Optimal transport bounds on pattern-forming energies with
divergence constraint

Benedikt Wirth

So-called energy scaling laws represent a basic approach to understand the pat-
terns forming during minimization of singularly perturbed energies. If the energies
involve a divergence constraint, then a simple and elegant argument for the deriva-
tion of the lower bounds is sometimes possible using convex duality arguments for
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optimal transportation. Below we exemplify this for the setting of compliance min-
imization under a uniaxial load (we will stay at the level of an informal description,
but it is not much work to make everything rigorous).

Compliance minimization is the task to optimize the shape of an elastic body
O ⊂ Ω within some fixed domain of interest Ω ⊂ Rd, d = 2, 3, such that it
withstands well a given applied mechanical load (a surface stress) f : ∂Ω → R

d

and at the same time uses little material. A simple measure for the mechanical
weakness of O under the load f is given by the compliance, the total elastic
energy stored within O as soon as the load is applied. Assuming for simplicity
the elasticity tensor of the employed material to be the identity, the compliance is
given by the squared L2-norm of the equilibrium stress field, which in turn is the
minimizer of that squared L2-norm among all admissible stress fields σ,

comp(O) = min
σ admissible

∫

O
|σ|2 dx.

Admissible stress fields are those that conserve angular and linear momentum and
are consistent with the boundary loads, thus σ is admissible if and only if

σ ∈ Σ = {σ ∈ L2(Ω;Rd×dsym) | divσ = 0 in Ω, σn = f on ∂Ω, σ = 0 on Ω \ O},

where n is the unit outward normal on ∂Ω. One now aims to minimize the energy

J (O) = comp(O) + vol(O).

Unfortunately, this energy is not lower semicontinuous so that minimizers do not
exist. Instead, along a minimizing sequence, microstructure will form. As a remedy
one can add the perimeter of the shape as regularization with a positive weight ε,

J ε(O) = J (O) + εper(O),

which then can be shown to have minimizers.
For small ε (modelling for instance bone), very fine, complex structures will be

optimal. In this regime one may try to obtain some understanding of the forming
structures by proving an energy scaling law, an estimate of the form

(1) ch(ε) ≤ ∆J (Oopt) = J ε(Oopt)− inf J ≤ Ch(ε)

for the optimal shape Oopt, two constants C ≥ c > 0, and some function h.
∆J (Oopt) represents the excess cost paid for introducing the regularization. The
relevance of (1) is: If one finds a shape O with ∆J (O) ≤ Ch(ε) (which is how one
proves the upper bound), then this shape already has optimal cost ∆J up to a
constant factor, since the lower bound rules out any stronger improvement. Thus,
the found shapes give an indication of how near-optimal shapes may look like.

The analysis of energy scaling laws really got started in the 90s with work by
Müller, Kohn and others on martensite patterns, but meanwhile many different
patterns have been analysed this way. For the example of compliance minimization
under a uniaxial load f = Fe3 ⊗ e3n on Ω = [0, ℓ)2 × [0, 1] with F ∈ R, e3 =
(0, 0, 1)T , and n the unit outward normal, one obtains the following.
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Figure 1. Left to right: Setting, subdivision of Ω into elementary
cells, construction sketch for F ≤ 1

2 , sketch for F > 1
2 .

Theorem ([1]). Under some conditions on ℓ, ch(ε, F ) ≤ ∆J (Oopt) ≤ Ch(ε, F )

for h(ε, F ) =





ε if F ≤ ε
1
2 ,

F
2
3 ε

2
3 if ε

1
2 < F ≤ 1

2 ,

(1−F )| log(1−F )| 13 ε 2
3 if 1

2 <F & ε
2
3 ≤(1−F )|log(1−F )|− 1

3 ,

(1−F )2 if (1−F ) | log(1−F )|− 1
3 < ε

2
3 .

In addition to ε there is another small parameter, F or (1 − F ), so that the
energy scaling exhibits different regimes, depending on the relative size of these
parameters. (Note: For F ≥ 1 even J has a minimizer, O = Ω.) The constructed
O’s to prove the upper bound are illustrated in Fig. 1 (except for the last regime
for which Oopt = Ω): Near the boundary the structure needs to be fine to support
the load, but towards the center the structure coarsens to save perimeter. This is
done by stacking levels consisting of many copies of an elementary cell, where the
elementary cell width halves from level to level (the aspect ratio changes as well).
For F ≤ 1

2 the elementary cell contains thin struts along the edges of a pyramid,

while for F > 1
2 it is a material block with a (not quite) conical hole at the centre

and four holes of similar shape but half width arranged around the centre.
Before sketching the lower bound proof via optimal transport, let us mention

that, using exactly the same type of constructions for the upper and techniques
for the lower bound, also other patterns can be analysed, for instance the ones
of the intermediate state in type-I superconductors [2] (the underlying singularly
perturbed energy is closely related to J ε, and [1] actually follows the analysis of
[2]) or the ones found in so-called branched transport or urban planning [3].

We just sketch the proof of the lower bound for the second regime, setting ℓ = 1
for notational simplicity. We argue by contradiction, so assume ∆J (Oopt) ≪
(εF )2/3 and abbreviate Ot to be the cross-section of Oopt at height t.

Step 1. We bound volume/perimeter of a typical cross-section (using inf J = 2F ):

∆J (Oopt) ≥
∫ 1

0

∫

Ot

σ2
33 dx+ volOt − 2F

︸ ︷︷ ︸
=A

+ εperOt︸ ︷︷ ︸
=B

dt.
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If A+B were bigger than (εF )2/3 for, say, half the cross-sections, our assumption
on ∆J (Oopt) would be violated, so A and B are both small for at least half the
cross-sections. Now notice that due to force balance, the total vertical force in
cross-section t must equal the total force applied at the bottom, thus

∫
Ot
σ33 dx =

F . This then leads to

(εF )2/3 & A ≥ 1

volOt

(∫

Ot

σ33 dx

)2

+ volOt − 2F =
F 2

volOt
+ volOt − 2F,

which implies volOt ≈ F up to a small error, as well as

(εF )2/3 & A =

∫

Ot

(σ33 − 1)2dx,

which implies σ33 ≈ 1Ot , the characteristic function of Ot, up to a small error.

Step 2. We now know volOt and have an upper bound on perOt. This implies that
the typical width of Ot is no smaller than volOt/perOt & (εF )1/3 =: w. In other
words, Ot must contain N ∼ volOt/w

2 balls of diameter comparable to w.

Step 3. Abbreviating ω = (σ31, σ32), we finally find

∆J (Oopt) ≥

∫
t

0

∫

Os

|ω|2 dx+

∫

Os

σ
2
33dx+volOs−2F

︸ ︷︷ ︸

≥0

ds ≥
1

∫
t

0
volOs ds

(∫
t

0

∫

Os

|ω|dxds

)2

.

The fraction scales like 1/F , and the term in parenthesis equals the Benamou–
Brenier formulation of the Wasserstein-1 distance W1(σ33|s=0, σ33|s=t) between
σ33 at height 0 and height t. Indeed, ω is the momentum associated with the
transport of σ33, since they satisfy the continuity equation

0 = divσ3 = ∂tσ33 + divx1,x2ω.

Now σ33|s=0 = FL and σ33|s=0 ≈ 1OtL for the Lebesgue measure L so that one
can easily exploit Kantorovich–Rubinstein duality to find a lower bound on the
Wasserstein-1 distance (knowing that Ot contains N balls of diameter w). This
finally yields the desired lower bound on ∆J (Oopt).
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Aggregation-diffusion equation: symmetry, uniqueness and
non-uniqueness of steady states

Yao Yao

(joint work with José Carrillo, Matias Delgadino, Sabine Hittmeir,
Bruno Volzone, Xukai Yan)

The aggregation-diffusion equation describes the mean-field limit of an interacting
particle system driven by local repulsion and pairwise local attraction, and it arises
in various models in mathematical biology and physics. The equation reads

(1) ∂tρ = ∆ρm +∇ · (ρ∇(W ∗ ρ)), x ∈ R
d, t ≥ 0.

See [1, 5] for surveys on this equation regarding the modeling, analysis and nu-
merical aspects. We assume the interaction potential W is be radially symmetric
and attractive, that is, W is differentiable in Rd \ {0} and satisfies W ′(r) > 0 for
all r > 0, where r is the radial variable.

When m = 1, the linear diffusion term corresponds to the Brownian motion
of the particles. One can also change linear diffusion into a degenerate diffusion
term ∆ρm with m > 1, which models the anti-overcrowding mechanism between
individuals. In particular, when m ≥ 1 and W = N is the Newtonian potential in
Rd, the equation becomes the Patlak-Keller-Segel equation which models collective
motion of cells driven by chemotaxis, and it also arises in the study of gravitational
collapse models.

In the analysis of (1), the following free energy functional plays an important
role:

(2) E [ρ] = 1

m− 1

∫

Rd

ρm(x) dx +
1

2

∫

Rd

∫

Rd

ρ(x)W (x − y)ρ(y) dxdy,

where the first integral on the right hand side is called entropy, and the second in-
tegral is called interaction energy. (Note that whenm = 1, the entropy integral be-
comes

∫
Rd ρ log ρdx.) A simple computation yields that the E[ρ] is non-increasing

along a solution. In fact, the solution ρ(·, t) is formally a gradient flow of E [ρ] in
the metric space endowed by 2-Wasserstein metric, but rigorously justifying this
gradient flow requires some convexity assumptions on W .

Using the monotonicity of the free energy functional, the global well-posedness
v.s. finite-time blow-up question for (1) has been well understood. However,
in the cases where solutions are known to exist globally, the long-time behavior
of solutions remain unclear in many cases. And to understand the long time
dynamics, a necessary step is to identify all the steady states.

In a joint work [3] with Carrillo, Hittmeir and Volzone, we study the stationary
solutions to (1) for all attracting kernels W that is no more singular than Newto-
nian potential, and prove that every L1 ∩L∞ stationary solution must be radially
symmetric. This is done by combining Steiner symmetrization techniques with
some a priori regularity estimates on stationary solutions. As an application of
this symmetry result, we show that it leads to asymptotic convergence towards
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(a translation of) the global minimizer as t → ∞ for the 2D Patlak-Keller-Segel
equation with degenerate diffusion.

Once the radial symmetry (up to a translation) of all steady states is known,
the next natural question is whether there is a unique radial steady state for each
given mass. Previously, uniqueness in the diffusion-dominated regime was known
for Newtonian and other Riesz potentials, and also for convex potentials due to
displacement convexity along the geodesic in 2-Wasserstein metric. But for a
generic attractive potential, the only results in the literature were done for the
m = 2 case, under some additional assumption on the regularity of the potential
at the origin.

Together with Delgadino and Yan [4], we show that m = 2 is indeed the thresh-
old separating uniqueness and non-uniqueness for a generic attractive potential.
Namely, we obtain the following:

• Let m ≥ 2 and W ∈ C1(Rd \ {0}) be an attractive potential with W ′(r) ≤
Cr−d−1+δ for some δ > 0 for all r ∈ (0, 1). Then there is at most one
steady state for (1) (up to a translation) for any given mass.

• Let 1 < m < 2. There exists a smooth attractive kernel W which gives an
infinite sequence of radially decreasing steady states of (1) with the same
mass.

The proof of the uniqueness result is based a natural idea: since steady states
are (formally) critical points of the free energy functional, suppose we are able to
construct a smooth curve conecting them such that the energy along this curve is
strictly convex, it immediately yields that there cannot be more than one critical
points.

Of course, the main question is how to find an interpolation curve along which
the energy is convex, if it exists at all. Note that the most common interpolations
such as linear interpolation or Wasserstein geodesics all fail to be convex for a
general attractive potential W , as they require some additional convexity prop-
erties of W . We introduce a novel interpolation curve between any two radially
decreasing functions, such that the interaction energy along this curve is convex
for any attractive potential, and the entropy along this curve is convex if and only
if m ≥ 2.

Open questions. Now that the uniqueness/nonuniqueness question has been
understood for a generic attractive poential for m > 1, the following open question
remains:

(1) When m = 1, for a given mass, are stationary solutions unique for a
generic attractive interaction potential W? Note that they are known to
be radially decreasing by [3], but both our uniqueness and non-uniqueness
proofs in [4] fail in the m = 1 case.

(2) When m > 2, as t → ∞, does the solution to (1) converge to the unique
stationary solution with the same mass and center of mass as the initial
data? Here the difficulty is to show that mass cannot escape to infinity as
t→ ∞. For large m, some progress has been made in [6].
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(3) If W is such that there is no blow-up and no steady state, as t → ∞,
does all solutions dissipate with the heat equation (for m = 1) / porous
medium equation (for m > 1) scaling? For the m = 1 case, there has been
some recent progress in [2] when W is bounded, but this question remains
open when W is growing very slowly at infinity.
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Extrapolation in the Wasserstein space

Andrea Natale

(joint work with Thomas O. Gallouët, Gabriele Todeschi)

Given a metric space (X, d), a (globally minimizing) geodesic on X defined on
[t0, t1] ⊂ R, with t1 > t0, is a curve x : s ∈ [t0, t1] → x(s) ∈ X verifying

(1) d(x(s0), x(s1)) =
|s1 − s0|
|t1 − t0|

d(x(t0), x(t1)) ,

for all s0, s1 ∈ [t0, t1]. Given two points x0, x1 ∈ X and t > 1, consider the
following minimization problem

(2) inf
x∈X

{
d2(x, x1)

2(t− 1)
− d2(x, x0)

2t

}
.

By triangular and Young’s inequality, we always have that such infimum is larger
than −d2(x0, x1)/2. Moreover, if there exists a geodesic x : s ∈ [0, t] → x(s) ∈ X
such that x(0) = x0 and x(1) = x1 then this lower bound is attained by x(t), which
is therefore a minimizer. In general, problem (2) gives a variational definition of
geodesic extrapolation even if no geodesic connecting x0 to x1 on the interval [0, 1]
may be extended up to time t > 1.

We consider a specific instance of problem (2) where (X, d) is P2(R
d), the

set of probability measures with finite second moments, equipped with the L2-
Wasserstein distance W2. This latter is defined as follows: for any µ, ν ∈ P2(R

d)

(3) W 2
2 (µ, ν) = inf

{∫
|x− y|2dγ(x, y) : γ ∈ Γ(µ, ν)

}
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where Γ(µ, ν) ⊂ P2(R
d × Rd) is the set of couplings having µ and ν as first and

second marginal, respectively. The problem we consider is therefore given by:

(P) inf
µ∈P2(Rd)

{
W 2

2 (µ, ν1)

2(t− 1)
− W 2

2 (µ, ν0)

2t

}
.

By the derivation above, problem (P) provides a natural notion for geodesic ex-
trapolation in the Wasserstein space. It was introduced in [2] for the construction
of a second order time discretization of Wasserstein gradient flows. Here we show
that this problem admits a convex formulation which can be derived via Toland
duality, and that it can be also further reformulated as a weak optimal transport
problem.

1. Geodesics in the Wasserstein space

Consider the optimal transport problem (3) from ν0 to ν1. If, for example, ν0
is absolutely continuous then Brenier’s theorem states that there exists a unique
solution γ∗ to this problem which is furthermore induced by a transport map
∇u : Rd → R

d, where u : Rd → R is a convex function usually called the Brenier
potential for the transport from ν0 to ν1, i.e.

γ∗ = (∇u, Id)#ν0 .
Furthermore, in this case, there exists a uniquely defined geodesic on the interval
[0, 1] connecting ν0 to ν1, which is given by

(4) ν(s) = ((1− s)Id + s∇u)#ν0, , ∀ s ∈ [0, 1] .

This curve can be extended up to s = t > 1 while staying a length-minimizing
geodesic if and only if ((1−t)Id+t∇u) is an optimal transport map, or equivalently

x 7→ u(x)− t− 1

t

|x|2
2

is convex.

However, this condition is not verified in general, since we may only expect u to be
convex (and not strongly convex) which corresponds to the fact that the particle
trajectories induced by (4) may cross precisely at s = 1.

2. Toland duality

Toland’s duality concerns the minimization of the difference of two convex, proper
and lower semi-continuous function F,G : V → (∞,∞], where V is a normed
vector space. Specifically, we have the equivalence

inf
x∈V

{F (x) −G(x)} = inf
p∈V ∗

{G∗(p)− F ∗(p)}

where V ∗ is the topological dual of V and F ∗ and G∗ are the Legendre transforms
of F and G respectively. The idea of using Toland duality to deal with differences
of Wasserstein distances stems from the work of Carlier [1]. In our case, F and G
are replaced by the maps

µ ∈ P2(R
d) 7→ W 2

2 (µ, ν1)

2(t− 1)
and µ ∈ P2(R

d) 7→ W 2
2 (µ, ν0)

2t
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Then, at least formally, one can check that the resulting dual problem is given by

(P∗) inf

{∫
u∗dν1 +

∫
udν0 : u− t− 1

t

| · |2
2

is convex

}
.

Remarkably, and differently from (P), this is a convex optimization problem in
the usual sense. Also, we observe that requiring u to be only convex, one recovers
the usual dual formulation of the optimal transport problem from ν0 to ν1 and in
particular, any Brenier potential u is a solution and, if ν1 is a.c., ∇u∗#ν1 = ν0.

In general, however, if u is a solution to (P∗) one only has that ν0 = ∇u∗#ν1 is
domininated in the convex order by ν0, i.e.

(5)

∫
ϕdν0 ≤

∫
ϕdν0

for all convex function ϕ : Rd → R. Moreover, we show that the (unique) solution
to problem (P) can be written as

νt = ((1 − t)Id + t∇u)#ν0 ,
at least in the case where ν0 is absolutely continuous. Since u is strongly convex
this means that the measure ν0, defined via the solution of problem (P∗) is such
that the geodesic from ν0 to ν1 on the time interval [0, 1] can be extended up to
time t and the resulting extension is precisely the solution to (P).

3. Weak optimal transport formulation

The convex order relation between ν0 = ∇u∗#ν1 and ν0, with u solving (P∗),
can be exploited to derive an equivalent formulation of problem (P) which fits
in the framework of weak (and in particular barycentric) optimal transport, a
generalization of optimal transport introduced in [3]. This reads as follows:

(B) inf
γ∈Γ(ν0,ν1)

∫
|tx1 − (t− 1)bary(γx1)|2dν1(x1) , bary(γx1) =

∫
x0dγx1(x0) .

By Strassen’s theorem, condition (5) implies the existence of a coupling θ ∈
Γ(ν0, ν0) which is the law of a martingale, i.e. dθ(x, y) = dθx(y)dν0(x) and

∫
y dθx(y) = x , for ν0-a.e. x ∈ R

d.

The link bewteen problem (P∗) and (B) is the following: u solves (P∗) if and only
if the coupling π ∈ Γ(ν0, ν1) defined by

(6) dπ(x0, x1) = dθ∇u∗(x1)(x0)dν1(x1)

solves (B). Note that this gives a characterization of minimizers of problem (B) as
the composition of a martingale and a suffiently smooth transport plan. Such a
characterization can also be derived as a slight modification of a result in [4]. Our
proof shows that this can be alternatively obtained as a consequence of Strassen
theorem and Toland duality.
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Optimal transport for stationary point processes

Matthias Erbar

(joint work with Martin Huesmann, Jonas Jalowy, Bastian Müller)

We develop a theory of optimal transport for stationary random measures with a
focus on stationary point processes and construct a family of distances on the set
of stationary random measures. These induce a natural notion of interpolation
between two stationary random measures along a shortest curve connecting them.
In the setting of stationary point processes we leverage this transport distance to
give a geometric interpretation for the evolution of infinite particle systems with
stationary distribution. Namely, we characterise the evolution of infinitely many
Brownian motions as the gradient flow of the specific relative entropy w.r.t. the
Poisson point process. Further, we establish displacement convexity of the spe-
cific relative entropy along optimal interpolations of point processes and establish
a stationary analogue of the HWI inequality, relating specific relative entropy,
transport distance, and a specific relative Fisher information.

We consider random measures ξ•, i.e. random variables with values in the space
M(Rd) of locally finite measures on Rd. ξ• is a point process if it almost surely
takes values in the N. The distribution of a random measure is an element of
P
(
M(Rd)

)
the set of probability measures over M(Rd). Rd naturally acts on

M(Rd) by shift of the support and we say that P ∈ P
(
M(Rd)

)
is stationary

if it conicides with its image measure under the shift operation by any vector
x ∈ Rd. Stationarity of the distribution of a random measure is implied by the
following stronger property. A random measure ξ• : (Ω,F ,P) → M(Rd) is called
invariant if the probability space (Ω,F ,P) admits a measurable flow, i.e. a family
of measurable mappings Rd×Ω ∋ (x, ω) 7→ θxω ∈ Ω with θ0 = id and θx◦θy = θx+y
for all x, y ∈ Rd, such that P is invariant under θ and for all x ∈ Rd, ω ∈ Ω, we
have ξω(·) = ξθxω(· − x).

On the space M(Rd) we introduce a cost function that measures the asymptotic
transport cost per volume:

c(ξ, η) = inf
q∈cpl(ξ,η)

lim sup
n→∞

1

nd

∫

Λn×Rd

|x− y|pq(dx, dy) ,(1)
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where cpl(ξ, η) denotes the set of all couplings q ∈ M(Rd × Rd) of ξ and η and
Λn = [−n/2, n/2]d denotes the box of side length n centered at the origin.

Given P0,P1 ∈ P
(
M(Rd)

)
two distributions of stationary random measures

with unit intensity we consider the transport problem

C(P0,P1) = inf
Q∈Cpls(P0,P1)

∫
c(ξ, η)Q(dξ, dη) = inf

(ξ•,η•)
E
[
c(ξ•, η•)

]
,(2)

where the first infimum is taken over the set of stationary couplings of P0 and P1

and the second infimum is taken over all pairs of jointly invariant random measures
(ξ•, η•) with distributions P0 and P1 respectively.

Note that (2) is a two layer optimisation problem. The first layer of optimisation
is on the level of the coupling of the distributions, the second layer is on the
level of the spatial coupling of the realisations of the random measures in the
transport problem defining c. Moreover, it is an optimal transport problem with
an additional probabilistic constraint, namely stationarity.

Alternatively, the value of the transport problem can be represented in terms
of a cost function for pairs jointly invariant random measures with given joint
distribution that was analysed by Sturm and Huesmann [1, 2]:

cost(ξ•, η•) := inf
q•∈cple(ξ

•,η•)
E

[ ∫

Λ1×Rd

|x− y|pq•(dx, dy)
]
,

where the infimum runs over all invariant couplings q• of ξ•, η•. Then the following
representation holds:

C(P0,P1) = inf
(ξ•,η•)

cost(ξ•, η•).(3)

where the infimum runs over all jointly invariant random measures (ξ•, η•) such
that ξ• ∼ P0, η

• ∼ P1. Moreover, if C(P0,P1) < ∞, there exists an optimal pair
(Q, q•) of a coupling Q of P0,P1 and q• achieving the infimum.

We fix p ≥ 1 in (1) and put Wp := C
1
p .

Theorem. Wp defines a geodesic extended distance on the space of stationary
distributions Ps(M(Rd)) with unit intensity.

For P0 and P1 with Wp(P0,P1) < ∞ and an optimal pair (Q, q•) the geo-
desic (Pa)a∈[0,1] is given as follows. Let ξ•a := (geoa)#q

• be the random mea-
sure interpolating the points of ξ•0 ∼ P0 and ξ•1 ∼ P1 along straight lines, i.e.
geoa(x, y) = x+ a(y − x), and put Pa = law(ξ•a).

The novel geometry induced by the transport distance W2 can be used to study
functionals on stationary point processes and infinite particle dynamics.

We consider the specific relative entropy of a stationary point process P with
respect to the Poisson point process Poi given by

E(P) := lim sup
n→∞

1

nd
Ent(PΛn |PoiΛn) ,

where PΛn denotes the restriction of P to Λn. Our second main result is
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Theorem. The specific entropy E is convex along W2-geodesics, i.e. for any W2-
geodesic (Pa)a∈[0,1] we have

E(Pa) ≤ (1− a)E(P0) + aE(P1) .

This can be seen as the natural analogue in the context of stationary point
processes of McCann’s seminal result that the relative entropy wr.t. Lebesgue
measure is convex along Wasserstein geodesics.

Similarly, we obtain an analogue for stationary point processes of the celebrated
HWI inequality by Otto and Villani which relates entropy, Wasserstein distance,
and Fisher information. We define the specific (relative) Fisher information of a
stationary point process P with respect to Poi by

I(P) := lim sup
n→∞

1

nd
I(PΛn |PoiΛn) .(4)

i.e. as the large volume limit of the normalized relative Fisher information of P on
boxes. Then we have the following

Theorem. For any stationary point processes P0,P1 with W2(P0,P1) < ∞,
E(P0) <∞ we have

E(P0)− E(P1) ≤ W2(P0,P1)
√
I(P0).(5)

In fact, the convexity of the specific entropy in Theorem is a consequence of
our analysis of the gradient flow of E w.r.t. to the geometry induced by W2. For a
stationary point process P, let Pt be the point process obtained by evolving each
point of P by an independent Brownian motion for time t.

Theorem. (Pt)t is the gradient flow of E wr.t. W2 in the sense of the follow-
ing Evolution Variational Inequality: For any stationary point processes R with
W2(P,R) <∞ we have

W2
2(Pt,R)−W2

2(P,R) ≤ 2t
[
E(R)− E(Pt)

]
.

This result can be seen as the analogue for stationary point processes of the cel-
ebrated result by Jordan, Kinderlehrer and Otto that the heat flow is the Wasser-
stein gradient flow of the Boltzmann entropy. Among several possible character-
isations of gradient flows in metric spaces, Evolution Variational Inequalities are
among the strongest entailing numerous consequences for the evolution. One is
the geodesic convexity of the functional E . Furthermore, we obtain e.g. that for
any P with W2(P,Poi) < ∞, E(P) < ∞ we that Pt converges to Poi as t → ∞ in
the strong sense that E(Pt) → 0. An example is the shifted lattice in d ≥ 3 where
each point is perturbed by an i.i.d. random variable which is uniform on a small
ball.
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Minimizing the total variation in a congested setting

Annette Dumas

(joint work with Filippo Santambrogio)

The model I presented is motivated by the study of the dynamics of the population
inside a city. For example, inhabitants can either chose to live in the center of the
city or in the suburbs. Their trajectory can be seen as a piecewise constant curve
γ that associates time t ∈ [0, T ] to a place in the city Ω. Each agent would like to
minimize the following cost:

min
γ∈BV([0,T ],Ω)

γ(0)=x0

S(γ)︸︷︷︸
number of jumps

+

∫ T

0

dI

dm
(et♯Q)(γ(t))

︸ ︷︷ ︸
I admits a first variation

dt

+

∫ T

0

F (γ(t), et♯Q)︸ ︷︷ ︸
C(Ω,P(Ω))

dt+ ϕ(γ(T ))︸ ︷︷ ︸
penalization at time T

where Q ∈ P(BV([0, T ],Ω)) is a probability measure over the curves and et the
evaluation at time t.

Since we consider that each player is negligible, but their strategy depends on
the distribution of the other’s et♯Q, this model is some class of Mean Field Games
model whose theory was introduced simultaneously by Lasry and Lions ([1, 2]) and
Caines, Huang and Malhamé ([3]). In particular, this model is a Variational Mean
Field Games whose idea was introduced by Santambrogio in his lectures notes [4].

In our case, we would like to find a measure Q̄ such that it is minimizes

(1) UQ̄(Q) :=

∫
S(γ)dQ(γ) +

∫
I(et♯Q)dt+

∫ ∫
F (γ(t), et♯Q̄)dt dQ(γ).

Such a measure exists by restricting to a compact subset Γ of probability measures
and applying Kakutani’s theorem in order to find a fixed point.

Considering measures Q ∈ P(BV([0, T ],Ω)) over the curves corresponds to the
Lagrangian point of view. Now, we switch to the Eulerian point of view where
we consider curves of measures such as ρ(t) = et♯Q ∈ P(Ω). A result in Optimal
Transport says that when the transport cost is trivial, then the whole cost is equal
to half of the total variation of the difference between the two measures:

(2) inf
π∈Π(µ,ν)

∫

Ω×Ω

1x 6=ydπ(x, y) =
1

2
‖µ− ν‖TV .

Thanks to this remark, minimizing (1) is equivalent to minimizing

(3) min
ρ∈E,ρ≥0

∀t∈[0,T ],
∫

Ω
ρ(t,x)dx=1

∫ T

0

∫

Ω

1

2
|ρ̇|+ V ρ+ f(ρ)dxdt+ ψ0(ρ(0)) + ψT (ρ(T )),
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in the sense that the minimas are equal and if ρ̄ minimizes (3), then one can
construct a measure Q̄ by (2) such that et♯Q̄ = ρ̄(t) and Q̄ minimizes (1). One
may notice that we have considered the problem in a purely variational way, which
means that F = 0. Moreover, the function I(ρ) = V ρ+ f(ρ) is the sum of a linear
term and an α-convex term.

This motivates the main result of the talk, which is the Lipschitz regularity in
time valued in L2(Ω) of the unique solution ρ̄ to (3) for which I presented an idea
of the proof. The Lipschitz regularity still holds on an infinite time horizon where
we consider ρ : [0,+∞[→ L2(Ω) and we add a discount factor in the integrand of
(3).

When it comes to regularity in space, it can occur when we impose Dirichlet
boundary conditions in time. Actually, the solution ρ̄ inherits the regularity of V ,
m0(x) and mT (x) if m0 and mT are the boundary conditions at time 0 and T .

Numerical simulations can be carried out thanks the proximal gradient method
which is presented in [5]. Several examples were displayed in the case where
Ω = [0, T ] for different forms of the given V : V (t, x) = cos(t − x), V (t, x) =
(x − x0(t))

2, etc. Generally, the solution ρ̄(t) either equals c − V (t, ·), or it is
constant. We noticed that with Dirichlet boundary conditions, the solution can
appear non-constant in space where it should be.

It is possible to apply the model to a two-population model where we consider
the densities ρ1 and ρ2. The problem is not necessarily purely variational since
we define Ii(ρi) = f(ρi) and Fi(ρ1, ρ2) = V (ρ1, ρ2)ρi, but the equivalence result
still holds. Thanks to Banach fixed point theorem, a solution (ρ̄1, ρ̄2) exists and
can be computed by applying the algorithm several times in order to perceive the
aspect of the solution.
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Stefan problem via optimal Skorokhod problem

Inwon Kim

In the talk we discuss particle-oriented formulation of Stefan problem, both for the
stable problem which describes melting of the ice into water, and for the unstable
problem which describes freezing of the supercooled water into the ice. While
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this formulation itself is interesting for both problems, it is particularly helpful to
understand the unstable problem, in that our formulation yields global existence
(and partial stability) of solutions for the problem: previously such existence was
only known in one space dimension.

Our approach builds on an optimization problem, where the stopping time of
brownian motion is optimized to minimize the given Lagrangian cost, with a given
initial and final-time distribution of the brownian motion.This problem (optimal
Skorokhod problem) can be viewed as a variant of optimal transport problem, as
discussed in [1]. Their it is shown that the optimal stopping time is characterized
as an exit time of a space-time domain. This suggests potential connections be-
tween the optimal Skorokhod problem and interface motions created by Brownian
particles. In the talk we describe how one can characterize both types of Stefan
problems when one add another layer on the optimal Skorokhod problem, where
now one optimize over the final-time distribution of the brownian motion, under
a upper bound constraint. Formally the optimization problem describes the mo-
tion of Brownian particles with stopping time that tries to minimize the kinetic
energy during their motion, but also under the capacity constraint for where they
are allowed to stop. This interpretation coincides with the formal description of
interacting particle systems that leads to the Stefan problem. The talk is based
on the works [3] and [2].
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Thermodynamic gradient flow evolution from particles

Johannes Zimmer

In this talk, we consider diffusive scalar equations and discuss methods to deter-
mine coefficients of their evolution operator or the entire operator itself from data,
here particle models. Thus, a prerequisite is that the equation under consideration
is the hydrodynamic limit of a particle model.

We study equations of the form

∂tρ(x, t) = K(ρ)DS(ρ),
where K is the evolution operator, acting on the derivative of the entropy S. Ex-
amples include linear and nonlinear diffusion (as scaling limit of Brownian particles
and the zero-range process, for example).

The description of the evolution of finitely many particles can be shown, at
least formally, to be given by a stochastic differential equation, namely

∂tρ = K(ρ)DS(ρ) + ǫ
√
2K(ρ)Ẇx,t,
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where ǫ is related to the number of particles and Ẇx,t is space-time white noise.
For example, for the zero-range process, which has a nonlinear diffusion equation
∂tρ(x, t) = ∆(Φ(ρ(x, t)) as hydrodynamic limit, this equation can be written in
more explicit form as

∂tρL =
1

2
∆(Φ(ρL)) +

1√
Ld

div
(√

2m(ρL)Ẇx,t

)
.

The talk concerns the question how to compute the mobility m from particle
data, and more generally the evolution operator K, first in situations where S is
known and then in one situation where the entropy/free energy is unknown. To
explain the idea, we describe the analogous situation for a stochastic ODE (see [1]
for this analogy and more details):

dX = f dt+
√
σdW.

It is a classic result that σ can be determined from trajectories X by computing
the quadratic variation,

lim
hց0

1

h
E

[
[X(t0 + h)−X(t0)]

2
]
= σ.

The benefit for us in this formula is that the left-hand side can be determined in
computer simulations.

In this talk, we show that this idea can be extended to the setting of diffusive
partial differential equations. Details are described in the papers [1, 4, 3]. At
the core, the idea is to study fluctuations, by considering the stochastic process

Y L(t, x) :=
√
Ld (ρL(t, x)− ρ(t, x)) (where ρL is the empirical measure of finitely

many particles and ρ is the limit L→ ∞; d is the dimension). It is convenient to

consider a weak formulation, Y Lγ (t) :=
√
Ld 〈γ, ρL(t, ·)− ρ(t, ·)〉, with test function

γ. Then Y Lγ (t) = 〈Y, γ〉+O(1/Ld) =: Yγ +O(1/Ld), with

dYγ(t) =
1

2
〈∆γ,Φ′(ρ(t, .))Y (t, ·)〉 dt−

〈
∇γ,

√
2m(ρ(t, ·))dWx,t

〉
,

see [2]. The noise term contains the quantities of interest (the mobility m and in
fact the associated Wasserstein operator in a weak form). As in the case of the
ODE, this expression can be computed using the quadratic variation. Indeed, one
can show that [1]

m(ρ(t0, x0)) ≃
limhց0

1
hE

[
[Yγ(t0 + h)− Yγ(t0)]

2
]

2 〈∇γ,∇γ〉 .

For the zero-range process, it is possible to compute the mobility m explicitly
in the case of quadratic jump rates, and one finds [1] an expression in terms of

modified Bessel functions Ij , ρ
(
m
2

)
=

√
m · I1(2

√
m)

I0(2
√
m)

, which defines m implicitly.

One can show that with his approach, one can compute diffusivities even in
situations where standard approaches based on the mean square displacement
are not applicable, as tagged particles move too slowly (standard mean square
displacement methods require the mean square displacement to scale∼ t, while the



372 Oberwolfach Report 7/2024

mean square displacement for the symmetric exclusion process in one dimension
scales ∼

√
t).

One can see that in this manner, it is possible to compute the entire operator K
in this way, hence, if the entropy S is known. This can be achieved by considering
the weak formulation of the gradient flow ∂tρ = K(ρ)F , (that is, F = DS), where
{γa} is a basis of functions parametrised by a,

ρ(x, t) ≈∑a ρa(t)γa(x)

F (x, t) ≈∑a Fa(t)γa(x)∑
a〈γa, γb〉∂tρa ≈∑a〈K(ρ)γa, γb〉Fa for all b.

Similar as in the case of the mobility, one can show [4]

〈K(ρ)γa, γb〉 = lim
hց0

1

2h
E

[
(Yγa(t0 + h)− Yγa(t0))· (Yγb(t0 + h)− Yγb(t0))

]
.

For example, it is possible to determine in this way the evolution of the hydro-
dynamic limit of the zero-range process.

We remark that it is possible to apply this framework also in situations where
the entropy is not known. An example is Arrhenius diffusion, which appears in
surface absorption, chemical reactions, or vacancies and intersticials in solids. Here
jump rates are given by p(x → y) = d η(x) (1− η(y)) e−βU(x) (jump frequency d,
energy U(x) = U0 +

∑
ξ 6=x J(x − ξ)η(ξ), with binding energy U0 and interaction

J), where it is possible to learn the free energy as driving functional in the case of
short-range interaction [3]. In the case of long-range interaction the hydrodynamic
limit is known [5],

∂tρ = −div (m(ρ)∇DS) =: K(ρ)DS(ρ)
with mobility m (ρ) = Dρ(1− ρ)e−J∗ρ, D = de−U0 and free energy

S(ρ) =

∫
1

2
ρ (J ∗ ρ) dx−

∫
[ρ ln ρ+ (1− ρ) ln (1 − ρ)] dx .

The difference to short-range interaction is that under long-range, fluctuations
around averages become independent, and law of large number applies.
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Disentangling Entropy and Suboptimality in Entropic
Optimal Transport

Maxime Sylvestre

(joint work with Hugo Malamut)

In this work we study the regularized optimal transport problem for a cost c ∈
C2(Rd × Rd,R)

(1) inf
γ∈Π(µ0,µ1)

∫
cdγ + εH(γ|µ0 ⊗ µ1)

where the infimum is taken over all measures γ ∈ P(Rd×Rd) with marginals µ0, µ1

which are two absolutely continuous probability measures with finite moment of
ordre two. Here H(.|.) is the relative entropy also known as Kullback-Leibler
divergence. We focus on the case where µ0, µ1 have finite entropy with respect
to Hd, the Lebesgue measure, that is H(µi | Hd) < ∞ and have finite order two
moments. In that case the minimizer γε is the same as if µ0 ⊗ µ1 is replaced by
the Lebesgue measure H2d in the entropy term, and hence we consider

(εEOT) OTε := inf
γ∈Π(µ0,µ1)

∫
cdγ + εH(γ|H2d).

Note that ε = 0 yields the classical optimal transport problem. In this case the
minimizer need not to be unique and γ0 will denote any of them.

The regularized problem (εEOT) is a smoothed version of the optimal transport
problem it is thus natural to ask its properties as ε→ 0. It is well known [6] that
the problem (εEOT) Γ-converges to the optimal transport problem OT0 . Here in
trying to understand the convergence of the entropic optimal transport problem,
we are interested in disentangling the role of the entropy H(γε | H2d) and the
role of the suboptimality

∫
cdγε−

∫
cdγ0. The suboptimality is of interest in itself

because it is a faster converging approximation of OT0. And the entropy term is
of interest because is lower bounds W2(γε, γ0), the Wasserstein distance between
the entropic optimal transport plan γε and any optimal transport plan γ0.

The disentangling relies on two key elements. First the known convergence
rates of the value of the regularized problem. Indeed under a compactness of the
support assumption [2, 5] on µ0, µ1, we have

(2) OTε = (c, γε) + εH(γε | H2d) ≤ OT0 −
d

2
ε ln(ε) +O(ε).

Also for the quadratic cost and under the stronger assumption of finite Fisher
information for the marginals, [3, claim 4.1], we have

(3) OTε = OT0 −
d

2
εln(2πε) + εHm + o(ε)

where Hm := 1
2 [H(µ0 | Hd) +H(µ1 | Hd)].

The second key element is the lower bound of the entropy by quadratic distance
to lower dimensional measure. This can be stated in the following way. Let γ be



374 Oberwolfach Report 7/2024

a probability measure on R2d with finite entropy with respect to Hd. Let γ0 be a
probability measure on R2d supported on a k-dimensional subspace of R2d. Then

H(γ | Hd) ≥ 2d− k

2
ln(W 2

2 (γ, γ0)) + Cγ0 .

In fact the suboptimality enjoys a similar property

H(γε | Hd) ≥ 2d− d

2
ln

(∫
cdγε −

∫
cdγ0

)
+ Cγ0 .

By combining the two elements above we get the following three results of increas-
ing generality.

First if the marginals have finite Fisher information and are compactly sup-
ported then we are able to retrieve a taylor expansion for the suboptimality and
the entropy term. It is remarkable that the suboptimality is always d

2ε at the first
order.

Theorem. Suppose that the cost is quadratic, that is c(x, y) = 1
2‖x−y‖2. Further

assume that I(µi) <∞ and Supp(µi) compact. Then

(4) H(γε | H2d) = −d
2
ln(2πε) +Hm − d

2
+ o(1)

and

(5) (c, γε) = OT0 +
d

2
ε+ o(ε)

Secondly if we relax the finite Fisher information and the compact support
assumptions then in the case of the quadratic cost we still recover the first order
of magnitude. However the precise expansion is unclear.

Theorem. Suppose that the cost is quadratic, that is c(x, y) = 1
2‖x−y‖2. Further

assume that µi have finite moment of order 2 + δ then
(6)

(c, γε) = OT0 +Θ(ε), H(γε | H2d) = −d
2
ln(ε) +O(1),

√
ε = O(W2(γε, γ0))

In the special case where the Monge map ∇f associated to the optimal transport
plan γ0 is Lipschitz then

(7) W2(γε, γ0) = Θ(
√
ε)

Note that the lower bound on the Wasserstein distance between γε and the
unique optimal transport plan γ0 is tight in the sense that if the Monge map is
Lipschitz then the Wasserstein distance is exactly of order

√
ε.

Finally we introduce a similar result for infinitesimally twisted costs under the
stronger assumption of compactly supported marginals. We recall that a function
c : Rd × Rd → R is infinitesimally twisted if it is twice differentiable ∇2

xyc is
invertible everywhere. This property of the cost allows to locally retrieve the
structure of the optimal transport plan γ0 that we have in the quadratic case [1].
And we conclude by localizing the argument of the previous theorem.
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Theorem. Suppose that the cost is C2 and infinitesimally twisted. Further assume
that µi is compactly supported then
(8)

(c, γε) = OT0 +Θ(ε), H(γε | H2d) = −d
2
ln(ε) +O(1),

√
ε = O(W2(γε, γ0))
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vergence of entropic schemes for optimal transport and gradient flows. SIAM Journal on
Mathematical Analysis, 49, 2, 1385–1418, 2017.

Opial Property in Wasserstein Spaces and Asymptotic Convergence of
EVI Flows and of Proximal Point Algorithms

Giuseppe Savaré

(joint work with Emanuele Naldi)

According to a nice result by Opial [9], weak convergence in a separable Hilbert
space (H, | · |) admits a purely metric characterization: if (xn)n∈N is a sequence in
H weakly converging to x ∈ H , then

(1) |y − x|2 + lim inf
n→∞

|xn − x|2 ≤ lim inf
n→∞

|xn − y|2.

The proof can be easily obtained by passing to the limit in the identity

|xn − y|2 = |xn − x|2 + |x− y|2 + 2〈xn − x, x− y〉,
using the fact that limn→∞〈xn − x, x − y〉 = 0 by weak convergence. (1) shows
in particular that the weak limit x of a sequence (xn)n∈N is the unique strict
minimizer of the function

L(y) := lim inf
n→∞

|xn − y|.

Opial property has been further extended and studied in more general Banach
spaces (see e.g. [10]) and has many interesting applications: we just quote here
the approximation of a fixed point of a non-expansive map defined in a closed and
convex subset of H [9], the asymptotic convergence of gradient flows of convex and
lower semicontinuous functions ϕ : H → (−∞,+∞] to a minimizer of ϕ [2], and
the convergence of the Proximal Point Algorithm [4, 5, 11].
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In the paper [8] we study the extension of the Opial Lemma to the metric space
(P2(H),W2) of Borel probability measures on H with finite quadratic moments,
endowed with the Kantorovich-Rubinstein-Wasserstein distance W2 (see e.g. [13,
1, 12]) and we derive similar applications.

A first question concerns the appropriate definition of a suitable weak topol-
ogy in P2(H), which enjoys at least some of the most useful properties of weak
convergence in Hilbert spaces:

(1) bounded sequences admit weakly convergent subsequences,
(2) the distance function from a given element is a weakly lower semicontinu-

ous map,
(3) the scalar product is sequentially continuous w.r.t. strong/weak conver-

gence of its factors,
(4) weakly convergent sequences are bounded,
(5) strongly closed convex sets are also weakly closed.

Recalling that the topology of P2(H) can be equivalently characterized as the
initial topology induced by the family of real functions Fζ : P2(H) → R (i.e. the
coarsest topology that makes all the functions Fζ) where

Fζ : µ→
∫

H

ζ dµ, ζ ∈ C(H), sup
x∈H

ζ(x)

1 + |x|2 <∞,

we thus define the weak topology in P2(H) as the initial topology σ(P2(H),Cw2 (H))
induced by Fζ as ζ varies in the set

Cw2 (H) :=
{
ζ : H → R is seq. weakly continuous, lim

|x|→∞

ζ(x)

1 + |x|2 = 0
}
,

and we call Pw2 (H) the corresponding topological space
(
P2(H), σ(P2(H),Cw2 (H))

)
.

In this way, Pw2 (H) inherits the weak∗ topology of a subset of the dual of the
Banach space Cw2 (H). If H is finite dimensional then Cw2 (H) contains all the

continuous functions ζ : H → R such that lim|x|→∞
ζ(x)

1+|x|2 = 0.

The sequence of measures µn = (1− 1
n )δ0 +

1
nδ

√
n in P2(R) is a simple example

of weakly converging sequence to µ = δ0 in Pw2 (R) which does not converge in
(P2(R),W2) since W2(µn, µ) ≡ 1.

We show that the weak topology of Pw2 (H) satisfies all the previous properties
(1),. . . (5). In particular every lower semicontinuous geodesically convex function
[6] φ : P2(H) → (−∞,+∞] is also sequentially lower semicontinuous w.r.t. the
weak topology σ(P2(H),Cw2 (H)). As a byproduct, for every µ0 ∈ P2(H) and τ > 0
the Proximal Point Algorithm in P2(H) (also known as JKO [3] or Minimizing
Movement scheme [1])

(2) µkτ minimizes µ 7→ 1

2τ
W 2

2 (µ, µ
k−1
τ ) + φ(µ)

has always a solution (µkτ )k∈N.

It turns out that the Opial property holds in Pw2 (H) with the same structure of
(1).
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Theorem ([8]). If (µn)n∈N is a sequence weakly converging to µ in Pw2 (H) Then

W 2
2 (ν, µ) + lim inf

n→∞
W 2

2 (µn, µ) ≤ lim inf
n→∞

W 2
2 (µn, ν) for every ν ∈ P2(H).

Applications to the asymptotic convergence of the gradient flows of a lower
semicontinuous and geodesically convex functional φ : P2(H) → (−∞,+∞] can
then be easily derived by the same strategy of [2], by using the metric characteri-
zation of a solution µ : (0,∞) → D(φ) of the gradient flow of φ in P2(H) in terms
of Evolution Variational Inequalities [1, 7]

(EVI)
1

2

d

dt
W 2

2 (µt, σ) ≤ φ(σ) − φ(µt) a.e. in (0,∞), for every σ ∈ D(φ).

Theorem ([8]). Let φ : P2(H) → (−∞,+∞] be a proper, l.s.c. and geodesically
convex functional and let µ : (0,+∞) → P2(H) be a locally Lipschitz curve sat-
isfying (EVI). Then argminφ 6= ∅ if and only if the curve (µt)t≥1 is bounded in
P2(H); in this case there exists a minimizer µ of φ such that µt → µ in Pw2 (H)
as t→ +∞.

An analogous result holds for the convergence of the Proximal Point Algorithm
(2) (here we use the discrete estimates of [1] for (2) assuming convexity along
generalized geodesics)

Theorem ([8]). Let φ : P2(H) → (−∞,+∞] be proper, lower semicontinuous
and convex along generalized geodesics and let (µkτ )k∈N be a solution to the PPA
algorithm (2). Then argminφ 6= ∅ if and only if (µkτ )k∈N is bounded in P2(H).
If this is the case, there exists the limit µ := limk→∞ µkτ in Pw2 (H) and µ is a
minimizer of φ.
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[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space
of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel,
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Convergence rate for the incompressible limit of porous
medium equations

Noemi David

(joint work with T. Debiec, B. Perthame, A.R. Mészáros, F. Santambrogio)

We consider the following porous medium equation with convective effects

(1) ∂̺m = ∆̺mm +∇ · (̺m∇V ), m > 1.

Our goal is to infer quantitative estimates on the rate of convergence of the solution
towards its so-called incompressible or stiff-pressure limit when m→ ∞.

1. Motivations

Nonlinear partial differential equations such as (1) have been employed in a variety
of applications such as, for instance, the description of tissue growth and pedestrian
motion. The density of individuals, ̺m(x, t), evolves under the effect of an external
drift V : Rd → R and Darcy’s law. Indeed, the velocity field of the continuity
equation is −∇pm −∇V where the pressure satisfies the law

pm = Pm(̺m) :=
m

m− 1
̺m−1
m , m > 1.

We also treat the case of the so-called singular pressure law, namely

(2) pε = Pε(̺ε) := ε
̺ε

1− ̺ε
, ε > 0.

In the limit m→ ∞ or ε→ 0, both laws lead to the graph relation

p∞(1 − ̺∞) = 0, 0 ≤ ̺∞ ≤ 1.

It is well known that equation (1) possesses a gradient flow structure with respect
to the 2-Wasserstein distance, and the associated energy functional is

Em(̺) =

∫

Rd

̺V dx+
1

m− 1

∫

Rd

̺mdx.

In [2] the authors prove that as m→ ∞ the gradient flow solution, ̺m, converges
to ̺∞, which is the gradient flow associated to the limit energy functional

(3) E∞(̺) =

{∫
Rd ̺V dx, for ̺ ≤ 1 a.e.,

+∞, otherwise.
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The gradient flow associated to (3) has been extensively studied due to its impor-
tance in applications, in particular, to its equivalence to the crowd motion model
proposed in the seminal work [4]. In [2] the authors also show that ̺∞ is a solu-
tion of a free boundary problem of Hele-Shaw type, which is also widely used to
describe tumour growth, see for instance [5].

Using the JKO scheme, [2, Theorem 4.2] provides the first result on the con-
vergence rate for ̺m as m→ ∞, namely,

sup
t∈[0,T ]

W2(̺m(t), ̺∞(t)) ≤ C(T )

m1/24
.

The result is obtained assuming the existence of λ ∈ R such that D2V ≥ λId.

2. Results on the convergence rate

2.1. Result in a negative Sobolev norm. In [3], in collaboration with Tomasz
Debiec and Benôıt Perthame, we show that it is possible to find a faster polynomial
rate in the Ḣ−1-norm. We assume that the potential satisfies

(4) D2V − ∆V

2
Id ≥ λId, for some λ ∈ R.

Theorem. Let ̺m be the weak solution of (1) endowed with initial data ̺in with

compact support in Rd. There exists a unique ̺∞ ∈ C(0, T ; Ḣ−1(Rd)) such that

sup
t∈[0,T ]

‖̺m(t)− ̺∞(t)‖Ḣ−1(Rd) ≤
C(T )√
m
.

2.2. Idea of the proof. Unlike for the 2-Wasserstein distance, the drift part in
equation (1) is not a gradient flow with respect to the Ḣ−1-norm. However, this
choice allows us to account also for additional (linear) reaction terms, ̺G(x, t).

Our strategy relies on computing the evolution of the Ḣ−1-norm of the difference
between ̺m1 and ̺m2 , solutions to equation (1) with m1 < m2. The estimation of
the porous medium part of the equation gives the polynomial rate, while the drift
and growth part can be controlled by the distance itself upon using integration by
parts and Young’s and Sobolev’s inequalities. Our estimate leads to a differential
inequality of the form

d

dt
‖̺m1 − ̺m2‖2Ḣ−1 ≤ C

m1
+

C

m2
− λ‖̺m1 − ̺m2‖2Ḣ−1 ,

and we conclude by using Gronwall’s lemma and sending m2 → ∞. The compact
support assumption on the initial data is needed to ensure that the pressure, pm,
is uniformly bounded in L∞(0, T ;L∞(Rd)). This bound is technically necessary
to treat the porous medium term which gives the rate.

We could also recover the same polynomial rate for the singular pressure law (2),
namely

√
ε as ε → 0. However, in this case, the compact support assumption is

no longer needed since the uniform (in ε) bound ̺ε < 1 is already available thanks
to the singularity of the law itself.
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2.3. Result in the 2-Wasserstein distance. In a work in progress in collabo-
ration with Alpár R. Mészáros and Filippo Santambrogio, we are able to further
improve the result in the 2-Wasserstein distance. We adopt the same strategy used
in [3] as, instead of discretizing in time, we compute W 2

2 (̺m1 , ̺m2) along the flow
and then use Gronwall’s lemma. We assume that the potential V satisfies

αId ≤ D2V ≤ βId, for some 0 < α ≤ β.

Theorem. Let ̺m be the gradient flow solution of (1). There exists a unique
̺∞ ∈ C(0,∞;P2(R

d)) such that

(5) sup
t∈[0,∞)

W2(̺m(t), ̺∞(t)) ≤ C√
m
.

2.4. Idea of the proof. Computing the time derivative of the square of the
distance and using the Monge-Ampère equation to estimate the nonlinear diffusion
part, we find the following inequality

d

dt
W 2

2 (̺m1 , ̺m2) ≤
C

m1
+

C

m2
− αW 2

2 (̺m1 , ̺m2).

The fact that the rate is global in time is a consequence of the contractivity prop-
erty of the 2-Wasserstein distance for strictly convex potentials [1]. If α is non-
positive the result holds locally in time. This highlights a clear advantage in using
W2, since to have a global rate in the Ḣ−1-norm one would need λ > 0 in (4),
which is, for instance, not possible for d = 2.

Furthermore, we show that the assumption on the support of the initial data
imposed in Theorem 2.1 is not necessary. In fact, instead of using an L∞-control
on the pressure, pm, we are able to prove that a higher integrability of ̺m is
sufficient to close the computation – in particular, a bound in L2m−1 which is
available thanks to the control of the Fisher information given by the gradient flow
structure of the equation. Once again, this technical argument is not needed for
the singular law. Since we already know that ̺ε < 1, the argument turns out to be
even simpler in that this implies that we can directly compute the time derivative
of W 2

2 (̺ε, ̺∞) rather than considering two different sequences of solutions.

3. Open problems

Despite these recent advances, several questions remain open. In particular:

• is this estimate on the rate optimal?
• which is the convergence rate of the pressure sequence, pm, as m→ ∞?
• can we include pressure-dependent reaction rates, ̺G(p), in equation (1)?
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Solution of the initial value problem for the gravitational
Vlasov-Poisson system in an optimal transport style

Yann Brenier

In a joint work with Ivan Moyano [10], we have introduced an optimal transport
(OT) strategy to solve the initial value problem (IVP) for the (gravitational)
Vlasov-Poisson (VP) system:

∂tf(t, x, ξ)+∇x ·(ξf(t, x, ξ))+∇ξ ·(E(t, x)f(t, x, ξ)) = 0, (t, x, ξ) ∈ [0, T ]×T
d×R

d,

E = −∇ψ(t, x) ∈ R
d, ǫ∇ · E(t, x) = 1−

∫

ξ∈Rd

f(t, x, ξ)

with initial condition f0 ≥ 0 at t = 0, normalized so that
∫
x,ξ f0(x, ξ) = 1.

We rely on the following ingredients: 1) a multi-phase formulation of the VP
system (as was done by E. Grenier and Y.B in the 90’s [11], [6], [7] and renewed
by A. Baradat in the recent years [2]);

2) a reformulation as a convex optimization problem in OT ”Benamou-Brenier”
style [3], which is a priori not suitable for the IVP, going back to G. Loeper [12] in
the monophasic case and Y.B. [6], [7] in the case ǫ = 0, and closely related to the
theory of variational mean-field games (as in J.-D. Benamou, G. Carlier [4], J.-D.
Benamou, G. Carlier F. Santambrogio [5]);

3) the introduction of an augmented Lagrangian to input the initial boundary
conditions, which, unfortunately, no longer corresponds to a convex optimisation
problem, and the use of weak duality to restaure convexity, as was done by Y.B.
[8] in 2018 for the incompressible Euler equations. See also closely related recent
contributions by D. Vorotnikov [13], Y.B. (for Einstein’s equations in vacuum) [9],
A. Acharya and al. [1].

Step I. We first write the Vlasov-Poisson written as a “multi-phase” (pressure-
less, potential) Euler-Poisson system

∂tc+∇ · q = 0, c = c(t, x, a) ≥ 0, q = q(t, x, a) ∈ R
d, t ∈ [0, T ], x ∈ T

d, a ∈ A
(a is the phase label, A may be discrete or continuous),

q = cv, v = v(t, x, a) = ∇θ(t, x, a) ∈ R
d,

∂t(cv) +∇ · (cv ⊗ v) = cE,

E = −∇ψ(t, x) ∈ R
d, 1− ǫ∇ · E(t, x) =

∫

a∈A
c(t, x, a),

so that f(t, x, ξ) =
∫
a c(t, x, a)δ(ξ− v(t, x, a)) (formally) solves the VP system.
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Notice that the limit ǫ = 0 corresponds to the relaxed incompressible Euler
equations (as in [7]).

Step 2. We observe that the multi-phase equations are just the optimality condi-
tions for the convex OT problem, in Benamou-Brenier style (as done by Y.B. 97,
99, for ǫ = 0, and G. Loeper 06 for ǫ > 0 and just one phase):

inf
c,q,E

∫

(t,x,a)∈[0,T ]×Td×A

|q|2
2c

+

∫

t,x

ǫ|E|2
2

,

subject to

∂tc+∇ · q = 0, c = c(t, x, a) ≥ 0, q = q(t, x, a) ∈ R
d,

1− ǫ∇ ·E(t, x) =

∫

a

c(t, x, a), c being prescribed at t = 0,T.

Equivalently, we have the saddle-point formulation:

inf
c,q,E

sup
θ,ψ

BT (θ) +

∫

t,x

ψ + ǫE · ∇ψ +
ǫ|E|2
2

+

∫

t,x,a

|q|2
2c

− (∂tθ + ψ)c− q · ∇θ

where BT (θ) =
∫
x,a

cT (x, a)θ(T, x, a) − c0(x, a)θ(0, x, a). This leads to the opti-

mality conditions: q = c∇θ, − |q|2
2c2 − ∂tθ − ψ = 0, E = −∇ψ.

Step 3. We rewrite the optimality equation

−|q|2
2c2

− ∂tθ − ψ = 0 ⇒ ∂tq +∇ · q ⊗ q

c
= cE

using that q = c∇θ, E = −∇ψ, ∂tc+∇ · q = 0.

The crucial idea (borrowed from [8]) is now to add to the Lagrangian the extra
term∫

t,x,a

−∂tA·q−∇A·(q ⊗ q

c
)−cA·E+

∫

x,a

A(T, x, a)·q(T, x, a)−A(0, x, a)·q(0, x, a)

with a new Lagrange multiplier A(t, x, a) ∈ Rd. This allows us to input the new
time boundary conditions:

θ(T, x, a) = 0, A(T, x, a) = 0, c(t, x, a) and q(t, x, a) being prescribed at t = 0. So,
we have obtained the new saddle-point problem

I(c0, q0) = inf
c,q,E

sup
θ,A,ψ

NBT (θ, A) +

∫

(t,x)∈Q
ψ + ǫE · ∇ψ +

ǫ|E|2
2

+

∫

(t,x,a)∈Q′

|q|2
2c

− (∂tθ + ψ)c− q · ∇θ − ∂tA · q −∇A · (q ⊗ q

c
)− cA · E

where the new boundary term reads

NBT (θ, A) = −
∫

(x,a)∈D×A
c0(x, a)θ(0, x, a) + q0(x, a) · A(0, x, a)

and test functions θ and A must vanish at time t = T .
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This “augmented Lagrangian” strategy allows us to input initial condition q0,
together with c0, while data cT is no longer needed.

By exchanging the sup and the inf, we obtain the ”dual” problem

I(c0, q0) = inf
c,q,E

sup
θ,A,ψ

(·) ≥ sup
θ,A,ψ

inf
c,q,E

(·) = J(c0, q0).

which is a concave maximization problem in (θ, A, ψ), due to the linearity of (·)
with respect to (θ, A, ψ). Observe that we have a priori no more than the “weak”
duality property I(c0, q0) ≥ J(c0, q0). Indeed, by augmenting the Lagrangian,
we have destroyed the convex structure of the original problem because of the
nonlinear term q⊗ q/c and, therefore, a duality gap cannot be excluded. Anyway,
we get the following result [10]:

Theorem (Y.B., I. Moyano 2022). Let (cs > 0, qs, Es) be a smooth solution
of MP-VP on [0, T ]×D ×A of form

qs = csvs, vs(t, x, a) = ∇θs(t, x, a), Es(t, x) = −∇ψs(t, x)

s.t. (∇vs + (∇vs)T )(t, x, a) < Id

T − t
, ∀(t, x, a) ∈ [0, T [×T

d ×A

and, for all fixed t, x and for all vector W in Rd, there is a nonnegative mesure λ
on A (depending on t, x and W ) s.t. W =

∫
a∈A v

s(t, x, a)λ(da).

(We say that vs is weakly “absorbing”).
Then there is no duality gap and the dual problem admits the solution

A(t, x, a) = (t− T )vs(t, x, a), ψ(t, x) = ∂t((T − t)ψs(t, x)),

θ(t, x, a) = (t− T )(ψs(t, x)− |vs(t, x, a)|2
2

)

so that the IVP can be solved by space-time concave maximization.
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40, Avenue Halley
59650 Villeneuve d’Ascq
FRANCE

Prof. Dr. Guillaume Carlier

CEREMADE
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