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ON OVERGROUPS OF DISTINGUISHED UNIPOTENT ELEMENTS IN
REDUCTIVE GROUPS AND FINITE GROUPS OF LIE TYPE

MICHAEL BATE, SÖREN BÖHM, BENJAMIN MARTIN, AND GERHARD RÖHRLE

Dedicated to the fond memory of Gary Seitz

Abstract. Suppose G is a simple algebraic group defined over an algebraically closed field
of good characteristic p. In 2018 Korhonen showed that if H is a connected reductive
subgroup of G which contains a distinguished unipotent element u of G of order p, then
H is G-irreducible in the sense of Serre. We present a short and uniform proof of this
result using so-called good A1 subgroups of G, introduced by Seitz. We also formulate a
counterpart of Korhonen’s theorem for overgroups of u which are finite groups of Lie type.
Moreover, we generalize both results above by removing the restriction on the order of u
under a mild condition on p depending on the rank of G, and we present an analogue of
Korhonen’s theorem for Lie algebras.

1. Introduction and main results

Throughout, G is a connected reductive linear algebraic group defined over an algebraically
closed field k of characteristic p ≥ 0 and H is a closed subgroup of G.
Following Serre [30], we say that H is G-completely reducible (G-cr for short) provided

that whenever H is contained in a parabolic subgroup P of G, it is contained in a Levi
subgroup of P , and that H is G-irreducible (G-ir for short) provided H is not contained in
any proper parabolic subgroup of G at all. Clearly, if H is G-irreducible, it is trivially G-
completely reducible, and an overgroup of a G-irreducible subgroup is again G-irreducible;
for an overview of this concept see [6], [29] and [30]. Note that in case G = GL(V ) a
subgroup H is G-completely reducible exactly when V is a semisimple H-module and it is
G-irreducible precisely when V is an irreducible H-module. Recall that if H is G-completely
reducible, then the identity component H◦ of H is reductive, [30, Prop. 4.1].

A unipotent element u of G is distinguished provided any torus in the centraliser CG(u)
of u in G is central in G. Likewise, a nilpotent element e of the Lie algebra Lie(G) of G is
distinguished provided any torus in the centraliser CG(e) of e in G is central in G, see [9,
§5.9] and [15, §4.1]. For instance, regular unipotent elements in G are distinguished, and
so are regular nilpotent elements in Lie(G) [32, III 1.14] (or [9, Prop. 5.1.5]). Overgroups
of regular unipotent elements have attracted much attention in the literature, e.g., see [35],
[27], [37], [20], and [7].

In [16], Korhonen proves the following remarkable result in the special case when G is
simple.
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Theorem 1.1 ([16, Thm. 6.5]). Suppose G is connected reductive and p is good for G. Let
H be a reductive subgroup of G. Suppose H◦ contains a distinguished unipotent element of
G of order p. Then H is G-irreducible.

Korhonen’s proof of Theorem 1.1 depends on checks for the various possible Dynkin types
for simple G. E.g., for G simple of exceptional type, Korhonen’s argument relies on long
exhaustive case-by-case investigations from [18], where all connected reductive non-G-cr
subgroups are classified in the exceptional type groups in good characteristic. For classical
G, Korhonen requires an intricate classification of all SL2(k)-representations on which a
non-trivial unipotent element of SL2(k) acts with at most one Jordan block of size p. Our
main aim is to give a short uniform proof of Theorem 1.1 in §5 without resorting to further
case-by-case checks, using a landmark result by Seitz (see §4.2).

Remark 1.2. Suppose as in Theorem 1.1, that G is simple classical with natural module V ,
and p ≥ dimV > 2. Then, thanks to [14, Prop. 3.2], V is semisimple as an H◦-module,
and by [30, (3.2.2(b))], this is equivalent to H◦ being G-cr. Then H is G-ir, by Lemma 3.2.
This gives a short uniform proof of the conclusion of Theorem 1.1 in this case, as the bound
p ≥ dimV > 2 ensures that every distinguished unipotent element (including the regular
ones) is of order p. The conclusion can fail if the bound is not satisfied: see Theorem 1.3.

There are only a few cases when G is simple, p is bad for G, and G admits a distinguished
unipotent element of order p, by work of Proud–Saxl–Testerman [26, Lem. 4.1, Lem. 4.2]
(see Lemmas 4.1 and 4.3). In this case the conclusion of Theorem 1.1 fails precisely in
one instance, as observed in [16, Prop. 1.2] (Example 4.2), else it is valid (Example 4.4).
Combining the cases when p is bad for G with Theorem 1.1, we recover Korhonen’s main
theorem from [16]. Here and later on, we say that a subgroup of G is of type A1 if it is
isomorphic to SL2(k) or PSL2(k).

Theorem 1.3 ([16, Thm. 1.3]). Let G be simple and let H be a reductive subgroup of G.
Suppose H◦ contains a distinguished unipotent element of G of order p. Then H is G-
irreducible, unless p = 2, G is of type C2, and H is a type A1 subgroup of G.

Our second goal is an extension of Theorem 1.1 to finite groups of Lie type in G. Let
σ : G → G be a Steinberg endomorphism of G, so that the finite fixed point subgroup
Gσ = G(q) is a finite group of Lie type over the field Fq of q elements. For a Steinberg
endomorphism σ of G and a connected reductive σ-stable subgroup H of G, σ is also a
Steinberg endomorphism for H with finite fixed point subgroup Hσ = H ∩Gσ, [33, 7.1(b)].
Obviously, one cannot directly appeal to Theorem 1.1 to deduce anything about Hσ, because
H◦

σ is trivial. For the notion of a q-Frobenius endomorphism, see §2.4.

Theorem 1.4. Let H ⊆ G be connected reductive groups. Suppose p is good for G. Let
σ : G → G be a Steinberg endomorphism stabilizing H such that σ|H is a q-Frobenius en-
domorphism of H. If G admits components of exceptional type, then assume q > 7. If Hσ

contains a distinguished unipotent element of G of order p, then Hσ is G-irreducible.

Combining Theorem 1.4 with the aforementioned results from [26], we are able to deduce
the following analogue of Theorem 1.3 for finite subgroups of Lie type in G.

Theorem 1.5. Let G be simple and let H be a connected reductive subgroup of G. Let
σ : G → G be a Steinberg endomorphism stabilizing H such that σ|H is a q-Frobenius endo-
morphism of H. If G is of exceptional type, then assume q > 7. If Hσ contains a distinguished
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unipotent element of G of order p, then Hσ is G-irreducible, unless p = 2, G is of type C2,
and H is a type A1 subgroup of G.

In the special instance in Theorems 1.4 and 1.5 when Hσ contains a regular unipotent
element u from G, the conclusion of both theorems holds without any restriction on the
order of u and without any restriction on q (and without any exceptions of the type seen in
Theorem 1.5); see [7, Thm. 1.3].

Section 2 contains background material. In Section 3 we extend Theorem 1.1 to distin-
guished unipotent elements of arbitrary order under an extra hypothesis on p, and we prove
an analogue of Theorem 1.1 for Lie algebras under the same hypothesis. We recall Seitz’s
notion of good A1 subgroups in Section 4. Theorems 1.1 and 1.3–1.5 are proved in Section 5.

2. Preliminaries

2.1. Notation. Throughout, we work over an algebraically closed field k of characteristic
p ≥ 0. All affine varieties are considered over k and are identified with their k-points. A
linear algebraic group H over k has identity component H◦; if H = H◦, then we say that H
is connected. We denote by Ru(H) the unipotent radical of H; if Ru(H) is trivial, then we
say H is reductive.
Throughout, G denotes a connected reductive linear algebraic group over k. All subgroups

of G considered are closed. By DG we denote the derived subgroup of G, and likewise for
subgroups of G. We denote the Lie algebra of G by Lie(G) or by g.
Let Y (G) = Hom(Gm, G) denote the set of cocharacters of G. For µ ∈ Y (G) and g ∈ G we

define the conjugate cocharacter g · µ ∈ Y (G) by (g · µ)(t) = gµ(t)g−1 for t ∈ Gm; this gives
a left action of G on Y (G). For H a subgroup of G, let Y (H) := Y (H◦) = Hom(Gm, H)
denote the set of cocharacters of H. There is an obvious inclusion Y (H) ⊆ Y (G).
Fix a Borel subgroup B of G containing a maximal torus T . Let Φ = Φ(G, T ) be the root

system of G with respect to T , let Φ+ = Φ(B, T ) be the set of positive roots of G, and let
Σ = Σ(G, T ) be the set of simple roots of Φ+. For each α ∈ Φ we have a root subgroup Uα

of G. For α in Φ, let xα : Ga → Uα be a parametrization of the root subgroup Uα of G.

2.2. Good primes. A prime p is said to be good for G if it does not divide any coefficient
of any positive root when expressed as a linear combination of simple ones. Else p is called
bad for G, [32, §4]. Explicitly, if G is simple, p is good for G provided p > 2 in case G is of
Dynkin type Bn, Cn, or Dn; p > 3 in case G is of Dynkin type E6, E7, F4 or G2 and p > 5
in case G is of type E8. We observe that if L is a Levi subgroup of G and p is good for G,
then it is also good for L.

2.3. Springer isomorphisms. If p is good for G, then there exists a G-equivariant homeo-
morphism ϕ : U → N between the unipotent variety U of G and the nilpotent cone N of
Lie(G). Such a map is called a Springer isomorphism, see [32, III, 3.12] and [4, Cor. 9.3.4].
Its inverse is the analogue of exponentiation in characteristic 0. By means of such a map, all
the results below formulated for unipotent elements in G stem from analogues for nilpotent
elements in Lie(G). In what follows we fix such a Springer isomorphism once and for all.

2.4. Steinberg endomorphisms of G. Recall that a Steinberg endomorphism of G is a
surjective homomorphism σ : G → G such that the corresponding fixed point subgroup
Gσ := {g ∈ G | σ(g) = g} of G is finite. Frobenius endomorphisms σq of reductive groups
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over finite fields are familiar examples, giving rise to finite groups of Lie type G(q). See
Steinberg [33] for a detailed discussion (for this terminology, see [12, Def. 1.15.1b]). The set
of all Steinberg endomorphisms of G is a subset of the set of all isogenies G → G (see [33,
7.1(a)]) which encompasses in particular all (generalized) Frobenius endomorphisms, i.e.,
endomorphisms of G some power of which are Frobenius endomorphisms corresponding to
some Fq-rational structure on G. In that case we also denote the finite group of Lie type
Gσ by G(q). If S is a σ-stable set of closed subgroups of G, then Sσ denotes the subset
consisting of all σ-stable members of S .
If σq : G → G is a standard q-power Frobenius endomorphism of G, then there exists

a σq-stable maximal torus T and Borel subgroup B ⊇ T , and with respect to a chosen
parametrisation of the root groups as above, we have σq(xα(t)) = xα(t

q) for each α ∈
Φ and t ∈ Ga, cf. [12, Thm. 1.15.4(a)]. Following [26], we call a generalized Frobenius
endomorphism σ a q-Frobenius endomorphism provided σ = τσq, where τ is an algebraic
automorphism of G of finite order, σq is a standard q-power Frobenius endomorphism of G,
and σq and τ commute. When p is bad for G, a q-Frobenius endomorphism does not involve
a twisted Steinberg endomorphism, cf. [26, §3]. In particular, if G is simple and p is good
for G, then any Steinberg endomorphism of G is a q-Frobenius endomorphism, cf. [33, §11].
If G is not simple and p is bad for G, then a generalized Frobenius map may fail to factor
into a field and algebraic automorphism of G, cf. [13, Ex. 1.3].

2.5. Bala–Carter Theory. We recall some relevant results and concepts from Bala–Carter
Theory. A parabolic subgroup P of G admits a dense open orbit on its unipotent radical
Ru(P ), the so-called Richardson orbit ; see [9, Thm. 5.2.1]. A parabolic subgroup P of G is
called distinguished provided dim(DP/Ru(P )) = dim(Ru(P )/DRu(P )), cf. [9, §5.8]. For G
simple, the distinguished parabolic subgroups of G (up to G-conjugacy) were worked out in
[2] and [3]; see [9, pp. 174–177].

The following is the celebrated Bala–Carter theorem, see [9, Thm. 5.9.5, Thm. 5.9.6],
which is valid in good characteristic, thanks to work of Pommerening [23], [24]. For the Lie
algebra versions see also [15, Prop. 4.7, Thm. 4.13].

Theorem 2.1. Suppose p is good for G.

(i) There is a bijective map between the G-conjugacy classes of distinguished unipotent
elements of G and conjugacy classes of distinguished parabolic subgroups of G. The
unipotent class corresponding to a given parabolic subgroup P contains the dense P -
orbit on Ru(P ).

(ii) There is a bijective map between the G-conjugacy classes of unipotent elements of
G and conjugacy classes of pairs (L, P ), where L is a Levi subgroup of G and P is
a distinguished parabolic subgroup of DL. The unipotent class corresponding to the
pair (L, P ) contains the dense P -orbit on Ru(P ).

Remark 2.2. (i). Let u ∈ G be unipotent. Let S be a maximal torus of CG(u). Then u
is distinguished in the Levi subgroup CG(S) of G, for S is the unique maximal torus of
CCG(S)(u). Conversely, if L is a Levi subgroup of G with u distinguished in L, then the
connected center of L is a maximal torus of CG(u)

◦, see [15, Rem. 4.7].
(ii). Let σ : G → G be a Steinberg endomorphism of G and let u ∈ Gσ be unipotent.

Then CG(u)
◦ is σ-stable. The set of all maximal tori of CG(u)

◦ is σ-stable and CG(u)
◦ is

transitive on that set ([31, Thm. 6.4.1]). Thus the Lang–Steinberg Theorem ([32, I 2.7])
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provides a σ-stable maximal torus, say S, of CG(u)
◦. Then, by part (i), L = CG(S) is a

σ-stable Levi subgroup of G and u is distinguished in L. Moreover, since the centralizer
of S in CG(u)

◦ is connected, by [31, Thm. 6.4.7(i)], it follows from [32, Cor. I 2.8(a)] that
(CG(u)

◦)σ is transitive on the set of all σ-stable maximal tori of CG(u)
◦ and thus (CG(u)

◦)σ
is transitive on the set of all σ-stable Levi subgroups L = CG(S) of G, where S is as above,
and thus so is CGσ(u).

2.6. Cocharacters and parabolic subgroups of G. Let λ ∈ Y (G). Without loss, we may
assume that λ ∈ Y (T ). Recall that λ affords a Z-grading on Lie(G) = g =

⊕
j∈Z g(j, λ),

where g(j, λ) := {e ∈ g | Ad(λ(t))e = tje for every t ∈ Gm} is the j-weight space of
Ad(λ(Gm)) on g, cf. [9, §5.5] or [15, §5.1]. Let pλ :=

⊕
j≥0 g(j, λ). Then there is a unique

parabolic subgroup Pλ with LiePλ = pλ and CG(λ) := CG(λ(Gm)) is a Levi subgroup of Pλ.
Specifically, we have Uα ⊆ Pλ if and only if ⟨λ, α⟩ ≥ 0, where ⟨ , ⟩ : Y (T ) × X(T ) → Z is
the usual pairing between cocharacters and characters X(T ) = Hom(T,Gm) of T . We have
Uα ⊆ CG(λ) if and only if ⟨λ, α⟩ = 0, and Ru(Pλ) is generated by the Uα with ⟨λ, α⟩ > 0; cf.
the proof of [31, Prop. 8.4.5].

Set J := {α ∈ Σ | ⟨α, λ⟩ = 0}. Then Pλ = PJ =
〈
T, Uα | ⟨α, λ⟩ ≥ 0

〉
is the standard

parabolic subgroup of G associated with J ⊆ Σ.
Let ρ =

∑
α∈Σ cαρα be the highest root in Φ+. Define htJ(ρ) :=

∑
α∈Σ\J cαρ. In view

of Theorem 2.1, the following gives the order of a distinguished unipotent element in good
characteristic.

Lemma 2.3 ([36, Order Formula 0.4]). Let p be good for G. Let P = PJ be a distinguished
parabolic subgroup of G and let u be in the Richardson orbit of P on Ru(P ). Then the order
of u is min{pa | pa > htJ(ρ)}.

2.7. Cocharacters associated to nilpotent and unipotent elements. The Jacobson–
Morozov Theorem allows one to associate an sl(2)-triple to any given non-zero nilpotent
element in N in characteristic zero or large positive characteristic. This is an indispensable
tool in the Dynkin–Kostant classification of the nilpotent orbits in characteristic zero as
well as in the Bala–Carter classification of unipotent conjugacy classes of G in large prime
characteristic, see [9, §5.9]. In good characteristic there is a replacement for sl(2)-triples, so-
called associated cocharacters ; see Definition 2.4 below. These cocharacters are important
tools in the classification theory of unipotent and nilpotent classes of reductive algebraic
groups in good characteristic, see for instance [15, §5] and [25]. We recall the relevant
concept of cocharacters associated to a nilpotent element following [15, §5.3].

Definition 2.4. A cocharacter λ ∈ Y (G) of G is associated to e ∈ N provided e ∈ g(2, λ)
and there exists a Levi subgroup L of G such that e is distinguished nilpotent in LieL and
λ(Gm) ≤ DL.

A cocharacter λ ∈ Y (G) of G is associated to u ∈ U provided it is associated to ϕ(u),
where ϕ : U → N is a fixed Springer isomorphism as in §2.3; cf. [22, Rem. 23]. Following
[11, Def. 2.13], we write

Ωa
G(u) := {λ ∈ Y (G) | λ is associated to u}
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for the set of cocharacters of G associated to u. This notation stems from the fact that
associated cocharacters are destabilising cocharacters of G for u in the sense of Kempf–
Rousseau theory, see [25] and [22]. Likewise, for M a connected reductive subgroup of G
containing u, we write Ωa

M(u) for the set of cocharacters of M that are associated to u.

Remark 2.5. Let u ∈ G be unipotent, λ ∈ Ωa
G(u), and g ∈ CG(u). Then g ·λ is also associated

to u, cf. [15, §5.3]. Proposition 2.6(ii) gives a converse to this property.

We require some basic facts about cocharacters associated to unipotent elements. The
following results are [15, Lem. 5.3; Prop. 5.9] for nilpotent elements, see also [25, Thm. 2.3,
Prop. 2.5].

Proposition 2.6. Suppose p is good for G. Let u ∈ G be unipotent.

(i) Ωa
G(u) ̸= ∅, i.e., cocharacters of G associated to u exist.

(ii) CG(u)
◦ acts transitively on Ωa

G(u).
(iii) Let λ ∈ Ωa

G(u) and let Pλ be the parabolic subgroup of G defined by λ as in §2.6.
Then Pλ only depends on u and not on the choice of λ.

(iv) Let λ ∈ Ωa
G(u) and let P (u) := Pλ be as in (iii). Then CG(u) ⊆ P (u).

If u is distinguished in G, then the parabolic subgroup P (u) of G from Proposition 2.6(iii)
is a distinguished parabolic subgroup of G and u belongs to the Richardson orbit of P (u) on
its unipotent radical, see Theorem 2.1(i); cf. [22, Prop. 22].

Let u be unipotent in G and let λ ∈ Ωa
G(u). Let P = P (u) be the canonical parabolic

subgroup defined by u from Proposition 2.6. Then P = CG(λ)Ru(P ) is a Levi decomposition
of P . Following [15, §5.10] and [25, §2.4], we define the subgroup

(2.7) CG(u, λ) := CG(u) ∩ CG(λ)

of CG(u). In view of [25, Prop. 2.5], our next result is [25, Thm. 2.3(iii)], see also [15, Prop.
5.10, Prop. 5.11].

Proposition 2.8. Suppose p is good for G. Let u ∈ G be unipotent and let λ ∈ Ωa
G(u). Then

CG(u) is the semidirect product of CG(u, λ) and Ru(CG(u)), and CG(u, λ) is reductive.

We note that cocharacters of G associated to a unipotent element u of G are compatible
with certain group-theoretic operations; see [15, §5.6].

Remark 2.9. Suppose p > 0 and u ∈ G is unipotent of order p contained in a subgroup A of
G of type A1. Such a subgroup A always exists when p is good, and when p is bad there is
essentially only one exception, due to Testerman [36] and Proud–Saxl–Testerman [26] — see
Theorems 4.5 and 4.6 below. Then, since p is good for A, by Proposition 2.6(i) there exists
a cocharacter λ ∈ Ωa

A(u). Note that λ(Gm) is a maximal torus in A.

It follows from the work of Pommerening [23], [24] that the description of the unipotent
classes in characteristic 0 is identical to the one for G when p is good for G. In both in-
stances these are described by so-called weighted Dynkin diagrams. As a result, an associated
cocharacter to a unipotent element acts with the very same weights on the Lie algebra of
G as its counterpart does in characteristic 0. This fact is used in the proof of the following
result by Lawther [17, Thm. 1]; cf. the proof of [28, Prop. 4.2].
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Lemma 2.10. Let G be simple and suppose u ∈ G is unipotent. Suppose p is good for G.
Let λ ∈ Ωa

G(u). Denote by ωG the highest weight of λ(Gm) on Lie(G). Then u has order p if
and only if ωG ≤ 2p− 2.

The concept of associated cocharacter is not only a convenient replacement for sl(2)-triples
from the Jacobson–Morozov Theory, it is a very powerful tool in the classification theory.
Specifically, in [25] Premet showcases a conceptual and uniform proof of Pommerening’s
extension of the Bala–Carter Theorem 2.1 to good characteristic. His proof uses the fact
that associated cocharacters are optimal in the geometric invariant theory sense of Kempf–
Rousseau–Hesselink. In §5, we demonstrate the utility of this concept further with short
uniform proofs of parts of Seitz’s Theorem 4.10 on good A1 subgroups.

2.8. Cocharacters associated to distinguished elements. The linchpin of our proofs
of Theorems 1.1 and 1.4 is the following fact.

Lemma 2.11 ([11, Lem. 3.1]). Suppose p is good for G. Let M ⊂ G be a connected reductive
subgroup of G. Let u ∈ M be a distinguished unipotent element of G. Then Ωa

M(u) =
Ωa

G(u) ∩ Y (M).

The assertion of the lemma fails in general if u is not distinguished in G, even when p is
good for both M and G, e.g., see [15, Rem. 5.12]. However, we do have the following result
for all unipotent elements in good characteristic.

Lemma 2.12 ([11, Cor. 3.22]). Suppose p is good for G. Let L ⊂ G be a Levi subgroup of
G. Let u ∈ L be unipotent. Then Ωa

L(u) = Ωa
G(u) ∩ Y (L).

3. Generalizations of Theorems 1.1 and 1.4

The aim of this section is to generalize Theorem 1.1 to the situation where there is no
restriction on the order of the unipotent element at hand, see Theorem 3.1. For a unipotent
element u in G to be distinguished is a mere condition on the structure of the centralizer
CG(u) of u in G. The extra condition for u to have order p is thus somewhat artificial.
The restriction in Theorem 1.1 is due to the methods used in [16] and in our proofs in §5,
which require the unipotent element to lie in a subgroup of type A1; such an element must
obviously have order p.

Along the way we prove an analogue of Theorem 1.1 for Lie algebras, i.e., under the
hypothesis that Lie(H) contains a distinguished nilpotent element of Lie(G). In order to
state this theorem, we need to introduce an invariant a(G) of G from [30, §5.2]: for G
simple, set a(G) = rk(G) + 1, where rk(G) is the rank of G. For reductive G, let a(G) =
max{1, a(G1), . . . , a(Gr)}, where G1, . . . , Gr are the simple components of G.

Theorem 3.1. Suppose p ≥ a(G). Let H be a reductive subgroup of G. Suppose H◦ contains
a distinguished unipotent element of G or Lie(H) contains a distinguished nilpotent element
of Lie(G). Then H is G-irreducible.

The following analogue of [7, Cor. 4.6] shows that in order to derive the G-irreducibility
of H in Theorem 3.1, it suffices to show that H is G-cr, cf. [16, Lem. 6.1]. This also applies
to Theorem 1.1 and Theorem 1.4.
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Lemma 3.2. Let H be a G-completely reducible subgroup of G. Suppose that H contains a
distinguished unipotent element u of G or Lie(H) contains a distinguished nilpotent element
e of Lie(G). Then H is G-irreducible.

Proof. Suppose H is contained in a parabolic subgroup P of G. Then, by hypothesis, H is
contained in a Levi subgroup L of P . As the latter is the centraliser of a torus S in G, S
centralises u (resp., e) and so S is central in G. Hence L = G, which implies P = G. □

Along with Lemma 3.2, the following theorem of Serre immediately yields Theorem 3.1.

Theorem 3.3 ([30, Thm. 4.4]). Suppose p ≥ a(G) and (H : H◦) is prime to p. Then H◦ is
reductive if and only if H is G-completely reducible.

Proof of Theorem 3.1. Since p ≥ a(G), Theorem 3.3 applied to H◦ shows the latter is G-cr.
Thus H◦ is G-ir by Lemma 3.2, and so is H. □

Remarks 3.4. (i). The characteristic restriction in Theorem 3.1 (and Theorem 3.3) is needed;
indeed the bound p ≥ a(G) is sharp (see Theorem 1.3).

(ii). The condition in Theorem 3.1 requiring H◦ to contain a distinguished unipotent
element of G is also necessary, as for instance the finite unipotent subgroup of G generated
by a given distinguished unipotent element of G is not G-cr [30, Prop. 4.1].
(iii). Under the given hypotheses, Theorem 3.1 applies to an arbitrary distinguished

unipotent element of G, irrespective of its order. For Theorem 1.1 to achieve the same
uniform result, p has to be sufficiently large to guarantee that the chosen element has order
p. For G simple classical with natural module V , this requires the bound p ≥ dimV ; see
Remark 1.2. For G simple of exceptional type, this requires the following bounds: p > 11
for E6, p > 17 for E7, p > 29 for E8, p > 11 for F4, and p > 5 for G2; see [36, Prop. 2.2]. So
in many cases the bound p ≥ a(G) from Theorem 3.1 is better.

(iv). For an instance when p is bad for G so that Theorem 1.1 does not apply, but Theorem
3.1 does, see Example 4.4.

(v). Theorem 3.1 generalizes [7, Thm. 3.2] which consists of the analogue in the special
instance when the distinguished element is regular in G (or Lie(G)). Note that in this case
no restriction on p is needed, cf. [37, Thm. 1.2], [20, Thm. 1], [7, Thm. 3.2].

(vi). In characteristic 0, a subgroup H of G is G-cr if and only if it is reductive, [30,
Prop. 4.1]. So in that case the conclusion of Theorem 3.1 follows directly from Lemma 3.2.

Once again, in the presence of a Steinberg endomorphism σ of G, one cannot appeal to
Theorem 3.1 directly to deduce anything about Hσ, because H

◦
σ is trivial. In Corollary 3.6 we

present an analogue of Theorem 3.1 for the finite groups of Lie type Hσ under an additional
condition stemming from [5].

Note that for S a torus in G, we have CG(S) = CG(s) for some s ∈ S, see [8, III Prop. 8.18].

Proposition 3.5 ([5, Prop. 3.2]). Let H ⊆ G be connected reductive groups. Let σ : G → G
be a Steinberg endomorphism that stabilises H and a maximal torus T of H. Suppose

(i) CG(T ) = CG(t), for some t ∈ Tσ, and
(ii) Hσ meets every T -root subgroup of H non-trivially.

Then Hσ and H belong to the same parabolic and the same Levi subgroups of G. In particular,
H is G-completely reducible if and only if Hσ is G-completely reducible; similarly, H is G-
irreducible if and only if Hσ is G-irreducible.
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Without condition (i), the proposition is false in general, see [5, Ex. 3.2]. The following is
an immediate consequence of Theorem 3.1 and Proposition 3.5.

Corollary 3.6. Suppose G,H and σ satisfy the hypotheses of Proposition 3.5. Suppose in
addition that p ≥ a(G). If Hσ contains a distinguished unipotent element of G, then Hσ is
G-irreducible.

Corollary 3.6 generalizes [7, Thm. 1.3] which consists of the analogue in the special instance
when the distinguished element is regular in G. Note in this case no restriction on p is needed.

The following example shows that the conditions in Corollary 3.6 hold generically.

Example 3.7. Let σq : GL(V ) → GL(V ) be a standard Frobenius endomorphism which
stabilises a connected reductive subgroup H of GL(V ) and a maximal torus T of H. Pick
l ∈ N such that firstly all the different T -weights of V are still distinct when restricted to
Tσl

q
and secondly there is a t ∈ Tσl

q
, such that CGL(V )(T ) = CGL(V )(t). Then for every n ≥ l,

both conditions in Corollary 3.6 are satisfied for σ = σn
q . Thus there are only finitely many

powers of σq for which part (i) can fail. The argument here readily generalises to a Steinberg
endomorphism of a connected reductive G which induces a generalised Frobenius morphism
on H.

4. Overgroups of type A1

4.1. Overgroups of type A1. We begin with the distinguished case. There are only a few
instances when G is simple, p is bad for G, and G admits a distinguished unipotent element
of order p. We recall the relevant results concerning the existence of A1 overgroups of such
elements from [26].

Lemma 4.1 ([26, Lem. 4.1]). Let G be simple classical of type Bl, Cl, or Dl and suppose
p = 2. Then G admits a distinguished involution u if and only if G is of type C2 and u
belongs to the subregular class C of G. If σ is idG or a q-Frobenius endomorphism of G and
u ∈ C ∩Gσ, then there exists a σ-stable subgroup A of G of type A1 containing u.

Example 4.2. Let G be simple of type C2, p = 2, and suppose u is a distinguished unipotent
of order 2 in G. Let σ be idG or a q-Frobenius endomorphism of G. Then Lemma 4.1 provides
a σ-stable subgroup A of type A1 containing u. Any such subgroup A is not G-ir, thanks
to [16, Prop. 1.2]. In fact, according to loc. cit., there are two G-conjugacy classes of such
A1 subgroups in G; see also Example 4.17 below. Since A is contained in a proper parabolic
subgroup of G, so is Aσ. So the latter is also not G-ir.

Lemma 4.3 ([26, Lem. 3.3, Lem. 4.2]). Let G be simple of exceptional type and suppose p
is bad for G. Then G admits a distinguished unipotent element u of order p if and only if G

is of type G2, p = 3, and either u belongs to the subregular class G2(a1)
1 or to the class A

(3)
1

of G. Moreover, if σ is idG or a q-Frobenius endomorphism of G and u ∈ G2(a1)∩Gσ, then

there exists a σ-stable subgroup A of G of type A1 containing u. In case u ∈ A
(3)
1 , there is

no overgroup of u in G of type A1.

1Throughout, we use the Bala–Carter notation for distinguished classes in the exceptional groups, cf. [9,
§5.9].
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Example 4.4. Let G be simple of type G2 and p = 3. Let H be a reductive subgroup of G
containing a distinguished unipotent element u from G. Then, as p = 3 = a(G2), it follows
from Theorem 3.1 that H◦ is G-ir, and so is H. This applies in particular to the subgroup A
of G of type A1 containing u when u ∈ G2(a1). Since 3 is not a good prime for G, Theorem
1.1 does not apply in this case. See also [34, Cor. 2].

In case of the presence of a q-Frobenius endomorphism of G stabilizing H, we show in our
proof of Theorem 1.5 that Hσ is also G-ir.

The existence of A1 overgroups for unipotent elements of order p is guaranteed by the
following fundamental results of Testerman [36, Thm. 0.1] if p is good for G and else by
Proud–Saxl–Testerman [26].

Theorem 4.5 ([36, Thm. 0.1, Thm. 0.2]). Let G be a semisimple group and suppose p is
good for G. Let σ be idG or a Steinberg endomorphism of G. Let u ∈ Gσ be unipotent of
order p. Then there exists a σ-stable subgroup of G of type A1 containing u.

Testerman’s proof of Theorem 4.5 is based on case-by-case checks and depends in part on
computer calculations involving explicit unipotent class representatives. For a uniform proof
of the theorem, we refer the reader to McNinch [21].

Theorem 4.6 ([26, Thm. 5.1]). Let G be semisimple and suppose p is bad for G. Let σ be idG

or a q-Frobenius endomorphism of G. Let u ∈ Gσ be unipotent of order p. If p = 3, and G
has a simple component of type G2, assume that the projection of u into this component does

not lie in the class A
(3)
1 . Then there exists a σ-stable subgroup of G of type A1 containing u.

Corollary 4.7. Let G be simple of type G2, p = 3 and let σ be idG or a q-Frobenius

endomorphism of G. Let u ∈ A
(3)
1 ∩Gσ. Then there is no proper semisimple subgroup H of

G containing u. In particular, any such u is semiregular, that is, CG(u) does not contain a
non-central semisimple element of G.

Proof. By way of contradiction, suppose H is a proper semisimple subgroup of G containing
u. Since p = 3 is good for H (e.g., see [34, Cor. 3]), there is a σ-stable A1 subgroup A in H
containing u, by Theorem 4.5. It follows from Lemma 4.3 that u ∈ G2(a1) which contradicts

the hypothesis that u ∈ A
(3)
1 . □

With Theorem 4.6 in hand, we need to deal next with the case when p = 3 is good for G
and H admits a simple component of type G2.

Lemma 4.8. Suppose G is simple and p = 3 is good for G. Let H be a connected reductive
subgroup of G. Let u ∈ H be a unipotent element of order 3. Then H does not admit a
simple component of type G2.

Proof. (cf. [16, p. 387]) Since p is good for G, G is simple of classical type. Let V be the
natural module for G. Since u has order 3, the largest Jordan block size of u on V is at most
3. Since u is distinguished in G, the Jordan block sizes of u are distinct and of the same
parity. Hence dimV ≤ 4. Since a non-trivial representation of a simple algebraic group of
type G2 has dimension at least 5, H does not have a simple component of type G2. □

In summary, we see that if u ∈ G has order p then u is contained in an A1 subgroup of G
unless p = 3 and G has a simple G2 factor such that the projection of u onto this factor lies

in the class A
(3)
1 .
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4.2. Good A1 overgroups. In his seminal work [28], Seitz defines an important class of A1

overgroups of a unipotent element of order p. He establishes the existence and fundamental
properties of these overgroups provided p is good for G.

Definition 4.9. Following [28], we call a subgroup A of G of type A1 a good A1 subgroup
of G if the weights of a maximal torus of A on Lie(G) are at most 2p− 2. Else we call A a
bad A1 subgroup of G. This is of course independent of the choice of a maximal torus of A.
For u a unipotent element of G of order p, we define

A (u) := AG(u) := {A ⊆ G | A is a good A1 subgroup of G containing u}
and analogously, for a connected reductive subgroup M of G we write AM(u) for the set of
all good A1 subgroups of M containing u.

If A ⊆ H ⊆ G are connected reductive groups such that A is a good A1 in G, then A is
obviously also a good A1 in H.

We record parts of the main theorems from [28] for our purposes, using the notation above.

Theorem 4.10 (cf. [28, Thm. 1.1, Thm. 1.2]). Let G be simple. Suppose p is good for G
and u is a unipotent element of G of order p. Then the following hold:

(i) A (u) ̸= ∅.
(ii) Ru(CG(u)) acts transitively on A (u).
(iii) Let A ∈ A (u). Then CG(u) is the semidirect product of CG(A) and Ru(CG(u)) and

CG(A) is reductive.
(iv) Let A ∈ A (u). Then A is G-completely reducible.

The following example is a special instance of Theorem 4.10.

Example 4.11. Let V be an SL2(k)-module such that weights of a maximal torus T of
SL2(k) on V are strictly less than p. Then the weights of T in the induced action on
Lie(GL(V )) ∼= V ⊗V ∗ are at most 2p− 2. Thus the induced subgroup A in GL(V ) is a good
A1. In this situation the highest weights of T on each composition factor of V are restricted,
so V is a semisimple SL2(k)-module; cf. [1, Cor. 3.9].

In the next theorem we recall parts of the analogue of Theorem 4.10 for finite overgroups
of type A1.

Theorem 4.12 (cf. [28, Thm. 1.4]). Let G be simple. Suppose p is good for G. Let σ : G → G
be a Steinberg endomorphism of G. Suppose u ∈ Gσ is unipotent of order p.

(i) A (u)σ ̸= ∅.
(ii) Ru(CG(u))σ acts transitively on A (u)σ.
(iii) Let A ∈ A (u)σ. Suppose that q > 7 if G is of exceptional type. Then Aσ is σ-

completely reducible.

Remark 4.13. Parts (i) and (ii) of Theorem 4.12 follow from parts (i) and (ii) of Theorem
4.10 and the Lang–Steinberg Theorem, see [28, Prop. 9.1].

Remark 4.14. (i). Concerning the terminology in Theorem 4.12(iii), following [13], a sub-
group H of G is said to be σ-completely reducible, provided that whenever H lies in a σ-stable
parabolic subgroup P of G, it lies in a σ-stable Levi subgroup of P . This notion is motivated
by certain rationality questions concerning G-complete reducibility; see [13] for details. For

11



a σ-stable subgroup H of G, this property is equivalent to H being G-cr, thanks to [13,
Thm. 1.4]. Thus in turn, by the latter, Theorem 4.12(iii) follows from Theorem 4.10(iv).

(ii). Apart from the special conjugacy class of good A1 subgroups in G asserted in Theorem
4.10, there might be a plethora of conjugacy classes of bad A1 subgroups in G even when
p is good for G. Just take a non-semisimple representation ρ : SL2(k) → SL(V ) = G in
characteristic p > 0. Then the A1 subgroup ρ(SL2(k)) is bad in G, while p is good for G.
For a concrete example, see [15, Rem. 5.12]. This can only happen if p is sufficiently small
compared to the rank of G, thanks to Theorem 3.3.

(iii). The proofs of Theorems 4.10 and 4.12 by Seitz in [28] depend on separate consid-
erations for each Dynkin type and involve in part intricate arguments for the component
groups of centralizers of unipotent elements. In [22], McNinch presents uniform proofs of
Seitz’s theorems which are almost entirely free of any case-by-case checks, utilizing methods
from geometric invariant theory. However, McNinch’s argument (see [22, Thm. 44]) of the
conjugacy result in Theorem 4.10(ii) depends on the fact that for a good A1 subgroup A
of G, the A-module Lie(G) is a tilting module. The latter is established by Seitz in [28,
Thm. 1.1].

We present some alternative short and uniform proofs of parts (i)–(iii) of Theorem 4.10
based on the results on associated cocharacters from §2.8. For part (iii) we require the
following fact.

Lemma 4.15. Suppose the connected reductive group H acts on the affine variety X. Sup-
pose some Borel subgroup B of H fixes a point x ∈ X. Then H fixes x.

Proof. Because B fixes x, there is an induced map H/B → X given by hB 7→ h · x. Since
H/B is projective and irreducible, this map is constant. Hence H fixes x. □

Proof of Theorem 4.10(i)–(iii). According to the Bala–Carter Theorem 2.1, there is a Levi
subgroup L of G such that u is distinguished in L (including the case L = G). Since p is also
good for L (cf. §2.2), there is an A1 subgroup A in DL containing u, owing to Theorem 4.5.
Since p is good for A, there is a cocharacter λ in Ωa

A(u), by Proposition 2.6(i). In particular,
λ(Gm) is a maximal torus in A. Then λ belongs to Ωa

L(u), by Lemma 2.11 and thanks to
Lemma 2.12, it also belongs to Ωa

G(u). It thus follows from Lemma 2.10 that the weights of
λ(Gm) on Lie(G) do not exceed 2p−2. Thus A is a good A1 subgroup of G, and so Theorem
4.10(i) follows.

Next let A, Ã be in A (u). Let λ ∈ Ωa
A(u) and λ̃ ∈ Ωa

Ã
(u). By the arguments above, we

have Ωa
A(u)∪Ωa

Ã
(u) ⊆ Ωa

G(u). Thanks to Proposition 2.6(ii), λ and λ̃ are CG(u)
◦-conjugate.

Further, by Proposition 2.8, we have CG(u)
◦ = CG(λ, u)

◦Ru(CG(u)), so that λ and λ̃ are

Ru(CG(u))-conjugate. There is no harm in assuming that λ = λ̃. But then A and Ã share
the common Borel subgroup B = λ(Gm)U , where U is the unique 1-dimensional subgroup
in A (and Ã) containing u and normalized by λ(Gm). It follows from [19, Lem. 2.4] that
A = Ã. So Theorem 4.10(ii) holds.

Now let A be in A (u) and let λ ∈ Ωa
A(u). Then by the argument above, λ ∈ Ωa

G(u).
Clearly, CG(A) ⊆ CG(λ, u). Let g ∈ CG(λ, u). Then gAg−1 and A share the common Borel
subgroup B = λ(Gm)U , as above. Once again, thanks to [19, Lem. 2.4], we conclude that
gAg−1 = A, and so g ∈ NG(A). Let A act on G by conjugation. Since CG(B) = CG(λ, u)
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(cf. (2.7)), B is contained in CA(g). It follows from Lemma 4.15 that g ∈ CG(A). Conse-
quently, CG(λ, u) ⊆ CG(A). Thus we have CG(λ, u) = CG(A). Finally, using Proposition
2.8, we get that CG(u) = CG(A)Ru(CG(u)) is a semidirect product and CG(A) is reductive.
Theorem 4.10(iii) follows. □

For a short and uniform proof of Theorem 4.10(iv), see [22, Thm. 52].
The following relates the set of cocharacters of G which are associated to a unipotent

element u of G of order p to those stemming from good A1 overgroups of u in G.

Corollary 4.16. Let G be simple. Suppose p is good for G and u ∈ G is unipotent of order p.

(i) Suppose u is distinguished in the Levi subgroup L of G (cf. Theorem 2.1). Then any
A1 subgroup of L containing u belongs to A (u). In particular, any A1 subgroup of
L containing u belongs to AL(u).

(ii) A (u) coincides with the set of all CG(u)
◦-conjugates of an A1 subgroup from part (i).

(iii) We have a disjoint union

Ωa
G(u) =

⋃̇
A∈A (u)

Ωa
A(u).

(iv) Let A ∈ A (u) and let λ ∈ Ωa
A(u). Then CG(A) = CG(λ, u).

(v) Let λ ∈ Ωa
G(u). Then CG(λ, u) is G-completely reducible.

(vi) Let A ∈ A (u) and let λ ∈ Ωa
A(u). Then we have

CG(u)/CG(u)
◦ ∼= CG(λ, u)/CG(λ, u)

◦ = CG(A)/CG(A)
◦.

Proof. Part (i) is immediate from the previous proof.
(ii). Let u, L, and A ∈ AL(u) be as in part (i). Then for any g ∈ CG(u)

◦, the conjugate
gAg−1 of A is a good A1 subgroup of gLg−1 and thus of G, as u is also distinguished in
gLg−1. Thus any CG(u)

◦-conjugate of A is again a good A1 subgroup of G. Now let Ã be in
A (u). Theorem 4.10(ii) asserts that there is a g ∈ CG(u)

◦ such that Ã = gAg−1.
(iii). We first prove that the union in (iii) is disjoint. The argument is more less identical

to the proof of Theorem 4.10(ii) above. Let A, Ã ∈ A (u) and let λ ∈ Ωa
A(u) ∩ Ωa

Ã
(u). Then

A and Ã share the common Borel subgroup λ(Gm)U , where U is the unique 1-dimensional
subgroup in A and Ã containing u. It follows from [19, Lem. 2.4] that A = Ã.

Thanks to parts (i) and (ii) and the proof of Theorem 4.10(i) above, we get
⋃̇

A∈A (u)Ω
a
A(u) ⊆

Ωa
G(u). Conversely, let λ ∈ Ωa

G(u). By Proposition 2.6(ii), λ is CG(u)
◦-conjugate to a member

of this union.
(iv). This equality is derived in our proof of Theorem 4.10(iii) above.
(v). By part (iii), there is an A ∈ A (u) such that λ ∈ Ωa

A(u). Owing to Theorem 4.10(iv),
A is G-cr, thus so is CG(A), by [6, Cor. 3.17]. The result now follows from part (iv).

(vi). This follows from Proposition 2.8 and (iv). □

We note that Corollary 4.16(i) is implicit in [28] and Corollary 4.16(iii) is stated in [22,
p. 393].

In [28, §9], Seitz exhibits instances when there is no good A1 overgroup of an element of
order p when p is bad for G. As we explain next, Example 4.2 gives a counterexample to
Theorem 4.10(iv) in case p is bad for G: that is, it gives a good A1 subgroup A containing a
unipotent element of order p of G such that A is not G-cr. Specifically, we show that some
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of the A1 subgroups in that example are good A1 subgroups of G, but thanks to Example
4.2, they are not G-cr.

Example 4.17 (Example 4.2 continued). Let G be simple of type C2 and p = 2. Let σ
be idG or a q-Frobenius endomorphism of G. Let C denote the subregular unipotent class
of G. Suppose u ∈ C ∩ Gσ. Then the σ-stable subgroup A of G of type A1 containing u,
guaranteed by Lemma 4.1, is not G-cr, by Example 4.2. Let E be the natural module for
SL2(k). Then there are two conjugacy classes of embeddings of SL2(k) into G = Sp(V ):
we can take either V ∼= E ⊕ E or V ∼= E ⊗ E, as an SL2(k)-module. The images of both
embeddings meet the class C non-trivially. One checks that the highest weight of a maximal
torus of SL2(k) on Lie(G) is 4 in the second instance. So in this case the image of SL2(k) in
G is not a good A1. In contrast, in the first instance the highest weight of a maximal torus
of SL2(k) on Lie(G) is 2 = 2p− 2, by Example 4.11. So the image of SL2(k) in G is a good
A1 in SL(V ), and so it is a good A1 in G as well.

5. Proofs of Theorems 1.1 and 1.3–1.5

Armed with the results on associated cocharacters from above, we prove Theorems 1.1
and 1.4 simultaneously.

Proof of Theorems 1.1 and 1.4. First we reduce to the case when G is simple. In view of
Lemma 3.2, it suffices to show that H (resp. Hσ) is G-cr. Thus we need to show that G-
complete reducibility and the property of being distinguished behave well with respect to the
steps in this reduction process. This is achieved by [6, Lem. 2.12] and [15, §4.3], respectively.
For, let π : G → G/Z(G)◦ be the canonical projection. Owing to [6, Lem. 2.12(ii)(b)] and [15,
§4.3], we can replace G with G/Z(G)◦, so without loss we can assume that G is semisimple.
Let G1, . . . , Gr be the simple factors of G. Multiplication gives an isogeny from G1×· · ·×Gr

to G. Thus, again by [6, Lem. 2.12(ii)(b)] and [15, §4.3], we can replace G with G1×· · ·×Gr,
so we can assume G is the product of its simple factors. Finally, thanks to [6, Lem. 2.12(i)]
and [15, §4.3], it is thus enough to prove the result when G is simple. We may also assume
that H is connected and semisimple, since any unipotent element of H◦ is contained in the
derived subgroup DH◦, and H is G-ir if DH◦ is.
Since u has order p also in H, there is an overgroup A of u of type A1 inside H (resp. σ-

stable A1 subgroup of H), thanks to Theorem 4.5 in case p is good for H, and else by
Theorem 4.6 and Lemma 4.8. Since p is good for A, there is a cocharacter λ in Ωa

A(u),
by Proposition 2.6(i). Since u is distinguished in G, λ belongs to Ωa

G(u), by Lemma 2.11.
It follows from Lemma 2.10 that A is a good A1 subgroup of G (resp. a good σ-stable A1

subgroup of G). Thus, by Theorem 4.10(iv), A is G-cr (resp. by Theorem 4.12(iii), Aσ is
σ-completely reducible and so, thanks to Remark 4.14(i), Aσ is G-cr). Finally, by Lemma
3.2, A (resp. Aσ) is G-ir and so is H (resp. Hσ). □

As a consequence of Theorems 1.1 and 1.4 we obtain the following.

Corollary 5.1. Let G be a connected reductive group. Suppose p is good for G. Let σ be
idG or a q-Frobenius endomorphism of G. Let u ∈ Gσ be unipotent of order p. Suppose u is
distinguished in the σ-stable Levi subgroup L of G (cf. Remark 2.2(ii)). Let H be a σ-stable
connected reductive subgroup of L containing u, then Hσ is G-completely reducible.
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Proof. As p is also good for L (cf. §2.2), it follows from Theorem 1.1 (resp. 1.4) applied to
L that Hσ is L-ir and so is L-cr. Thus, Hσ is G-cr, by [30, Prop. 3.2]. □

Finally, we address Theorems 1.3 and 1.5.

Proof of Theorems 1.3 and 1.5. By Theorems 1.1 and 1.4, the only cases we need to consider
are when p is bad for G. If G is classical, then we are in the situation of Lemma 4.1 and
Example 4.2.

We are left to consider the case when G is of exceptional type. Then owing to Lemma
4.3, G is of type G2 and p = 3. There is no harm in assuming that H is semisimple. It
follows from Example 4.4 that H is G-ir. Thus Theorem 1.3 follows. So consider the setting
of Theorem 1.5 when σ|H is a q-Frobenius endomorphism of H in this case. By Corollary
4.7, u belongs to the subregular class of G2. It follows from the proof of Lemma 4.3 in [26]
that u is contained in a σ-stable maximal rank subgroup of G of type A1Ã1 and this type
is unique. Since H is proper and semisimple, H ⊆ M , where M is a σ-stable maximal rank
subgroup of G of type A1Ã1. Since p is good for H, there is a σ-stable subgroup A of H
of type A1 containing u, by Theorem 4.5. Thus A ⊆ H ⊆ M . Since u is also distinguished
in M and p = 3 is good for M , Theorem 1.4 shows that Aσ is M -ir. Note that M is the
centralizer of a semisimple element of G of order 2 (by Deriziotis’ Criterion, cf. [10, 2.3]).
Since Aσ is M -cr, it is G-cr, owing to [6, Cor. 3.21]. Once again, by Lemma 3.2, Aσ is G-ir
and so is Hσ. Theorem 1.5 follows. □

Remark 5.2. In [16, §7], Korhonen gives counterexamples to Theorem 1.1 when the order of
the distinguished unipotent element of G is greater than p (even when p is good for G [16,
Prop. 7.1]). Theorem 3.1 implies that this can only happen when p < a(G). For instances
of overgroups of distinguished unipotent elements of G of order greater than p for p ≥ a(G)
(and p good for G), so that Theorem 3.1 applies, see Examples 5.4 and 5.5.

Remark 5.3. In view of Remark 5.2, it is natural to ask for instances of G, u and H when the
conclusion of Theorem 3.1 holds even when p < a(G) but p is still good for G. If p is good
for G and G is simple classical, non-regular distinguished unipotent elements always belong
to a maximal rank semisimple subgroup H of G, by [36, Prop. 3.1, Prop. 3.2]. For G simple
of exceptional type this is also the case in almost all instances of non-regular distinguished
unipotent elements, cf. [36, Lem. 2.1]. Each such H is obviously G-irreducible. This is
independent of p of course and thus applies in particular when p < a(G). For instance, let G
be of type E7, p = 5, and suppose u belongs to the distinguished class E7(a3) (resp. E7(a4),
E7(a5)). Then htJ(ρ) = 9 (resp. 7, 5), so u has order 52, by Lemma 2.3 in each case. Since
u does not have order 5, Theorem 1.1 does not apply, and since 5 < 8 = a(G) neither does
Theorem 3.1. Nevertheless, in each case u is contained in a maximal rank subgroup H of
type A1D6, cf. [36, p. 52], and each such H is G-ir.

We close with several additional higher order examples in good characteristic when The-
orem 1.1 does not apply but Theorem 3.1 does.

Example 5.4. Let G be of type E6. Suppose p is good for G. In [36, Lem. 2.7], Testerman
exhibits the existence of a simple subgroup H of G of type C4 whose regular unipotent class
belongs to the subregular class E6(a1) of G. Let u be regular unipotent in H. For p = 7, the
order of u is 72, by Lemma 2.3, so Theorem 1.1 can’t be invoked to say anything about H.
However, for p = 7 = a(G), we infer from Theorem 3.1 that H is G-ir.
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Example 5.5. Let G be of type E8. Suppose p = 11. Let u be in the distinguished class
E8(a3) (resp. E8(a4), E8(b4), E8(a5), or E8(b5)). From the corresponding weighted Dynkin
diagram corresponding to u we get htJ(ρ) = 17 (resp. 14, 13, 11, or 11), cf. [9, p. 177]. It
follows from Lemma 2.3 that in each of these instances u has order 112. So we can’t appeal to
Theorem 1.1 to deduce anything about reductive overgroups of u. But as 11 = p ≥ a(G) = 9,
Theorem 3.1 applies and allows us to conclude that each such overgroup is G-ir. For example,
in each instance, u is contained in a maximal rank subgroup H of G of type A1E7 or D8,
cf. [36, p. 52].
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[23] K. Pommerening, Über die unipotenten Klassen reduktiver Gruppen. J. Algebra 49 (1977), no. 2, 525–
536.
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