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PROOF MINING AND THE CONVEX FEASIBILITY PROBLEM:

THE CURIOUS CASE OF DYKSTRA’S ALGORITHM

PEDRO PINTO

Department of Mathematics, Technische Universität Darmstadt,

Schlossgartenstraße 7, 64289 Darmstadt, Germany,

E-mail: pinto@mathematik.tu-darmstadt.de

Abstract. In a recent proof mining application, the proof-theoretical analysis of Dyk-
stra’s cyclic projections algorithm resulted in quantitative information expressed via
primitive recursive functionals in the sense of Gödel. This was surprising as the proof
relies on several compactness principles and its quantitative analysis would require the
functional interpretation of arithmetical comprehension. Therefore, a priori one would
expect the need of Spector’s bar-recursive functionals. In this paper, we explain how
the use of bounded collection principles allows for a modified intermediate proof justi-
fying the finitary results obtained, and discuss the approach in the context of previous
eliminations of weak compactness arguments in proof mining.
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1. Introduction

Famously, Georg Kreisel asked ‘what more [do] we know about a formally derived the-
orem F than if we merely know that F is true?’, [38, p.110]. This question prompted
the development of what is nowadays known as the proof mining research program: the
analysis of mathematical proofs using proof-theoretical techniques as a way to obtain a
deeper understanding of the proof, stripping it to its essential arguments and subsequen-
tially obtaining new effective information. In the last twenty-five years, through the work
of Ulrich Kohlenbach and his collaborators, this line of research has since been greatly
developed (see [28] for a book treatment and [31] for a recent survey). In practice, the
‘proof miner’ begins by selecting a prima facie noneffective proof of a mathematical re-
sult for which one expects finitary information to be of interest. Applying some variant
of Kurt Gödel’s Dialectica (most frequently Kohlenbach’s monotone function interpreta-
tion [25]; in some selected cases, Fernando Ferreira and Paulo Oliva’s bounded functional
interpretation [16, 13]), one is not only guided into the correct quantitative restatement of
the theorem but is also able to reformulate the central arguments of the proof into a new
proof which validates the correctness of the extracted information. The quality of these
results seems to rest on two distinct aspects: first, the chosen result must be of interest
to the community with its finitary information wanted; second, the extracted information
must be of a simple nature if not new. So called logical metatheorems guarantee that, in
certain general situations, we can be sure that the quantitative analysis will yield effective
information (e.g. [17, 26], the recent [43], and also [12]).

With many applications in nonlinear analysis and convergence statements, such quanti-
tative information is frequently in the form of rates of convergence or in the form of rates
for (what in 2008 Terence Tao [47] dubbed) the metastability property, long known to
logicians as Kreisel’s no-counterexample interpretation of the Cauchy property. The com-
plexity of the extracted information is a reflection of the arguments employed in proving
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2 PEDRO PINTO

the mathematical result. In light of the logical metatheorems, one expects that the use
of arithmetical comprehension (lurking in common place mathematical arguments, as for
example whenever one uses compactness principles or considers the infima of positive real
sequences, like in projection arguments) would require the use of Spector’s bar-recursive
functionals [46]. However, that is not an appealing solution, as it goes against the goal
of “simple information” and would not be appreciated by the general mathematician. It
so happens that in most cases the use of such comprehension principles can actually be
avoided. It may happen via an ‘arithmetization’ of the argument, ε-weakening, or by
other simplifications to the proof. This feature is relevant, not only for the quality of
the extracted information, but furthermore because simpler proofs make generalizations
to completely new theorems a stronger possibility. It is natural to then wonder if such
phenomenon of proof-theoretical tameness is due to a selective choice of examples or to
an unconscious restriction from mathematicians. The existence of a broad variety of case
studies tackling many set-theoretically complicated notions, makes a strong heuristic case
for the latter. Be that as it may, it rests on the logician’s shoulders to argue for the
existence of an elementary proof. When it is exists, a simpler proof would entail that
the corresponding extracted information would be immediately expressed by primitive
recursive functionals in the sense of Gödel (first defined in [18], but see also [22]).

As a follow up to the quantitative studies of Browder’s and Wittmann’s fixed point
theorems due to Kohlenbach [30], Ferreira, Leuştean and the author developed in [15] a
general approach for the elimination of sequential weak compactness via certain bounded
collection principles when in the context of proof mining results. In the same paper,
the argument was employed to three simple case studies (an overview of Browder and
Wittmann’s analysis in [30] as well as Bauschke’s generalization of Wittmann’s theorem,
which was itself contained as a particular case of a previous quantitative study of the
Hybrid Steepest Descent Method due to Körnlein [36, 37]), and has since been applied to
many other cases (e.g. [6, 7, 40]). As already mentioned, the existence of an elementary
proof may facilitate the generalization of the original result: an interesting example is [8],
where the elimination of weak compactness allowed for the generalization from Hilbert
spaces to the nonlinear setting of CAT(0) spaces. However, so far all the applications
of the removal technique have a very similar feeling: the algorithm is some variation of
Halpern’s iteration [21] and the proof structure is reminiscent of a prevalent argument due
to Wittmann in [49].

The main goal of this paper is to discuss a novel elimination of compactness argu-
ments crucial in the convergence proof of a different kind of iteration: Dykstra’s cyclic
projection method. A central problem in convex optimization, known as the convex fea-
sibility problem, is that of finding a point in the intersection of a finite number of convex
closed subsets of a Hilbert space. A very useful algorithm to approximate a solution is
the method of alternating projections due to von Neumann [48] and Halperin [20]. This
algorithm is well understood and provides the ‘optimal solution’ (i.e. the closest one to
the initial guess) when in the context of vector subspaces (or more generally, translates
of vector spaces with a nonempty intersection). However, if one just assumes the sets to
be closed convex subsets, then by the work of Bregman [3] and Hundal [24], the method
of alternating projections, in general, will only converge in the weak topology. In finite
dimensional Hilbert spaces, this is not an issue since in that case the weak (inner product)
and the strong (norm) topology coincide. However, already in simple examples, the limit
would not necessarily be the optimal solution but just some point in the intersection. It
is here that Dykstra’s algorithm comes successfully into play. Consider C1, . . . , Cm to be
m ≥ 2 convex subsets of a Hilbert space with nonempty intersection. For each n ≥ 1,
take Cn := Cjn , where jn := [n − 1] + 1 with [r] := r mod m, i.e. we enumerate the
sets cyclically. Let Pn denote the metric projection onto the nonempty convex set Cn.
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Dykstra’s iteration is given by:

(D)

{
x0 ∈ X

q−(m−1) = · · · = q0 = 0
, ∀n ≥ 1

{
xn := Pn(xn−1 + qn−m)

qn := xn−1 + qn−m − xn

It begins by following the alternating projection method, but then starts to incorporate
correction terms which are updated after every m steps. Boyle and Dykstra proved the
following result.

Theorem 1.1 ([2]). Let C1, . . . , Cm be m ≥ 2 closed convex subsets of a Hilbert space
such that

⋂m
j=1Cj ̸= ∅. For x0 ∈ X, let (xn) be the iteration generated by (D). Then,

(xn) converges strongly to the point in
⋂m

j=1Cj closest to x0.

Moreover, Dykstra’s method reduces to von Neumann-Halperin’s alternating projection
method when the Cj ’s are vector subspaces. Thus, Dykstra’s algorithm is a proper gen-
eralization of the method of alternating projections. The convex feasibility problem is of
central relevance for the mathematical community due to its relation to a broad variety
of problems, from statistics to differential equations. Despite its usefulness and contrary
to the alternating method, not much was known regarding the quantitative behavior of
Dykstra’s algorithm. Hence, this was a prime candidate for a proof mining study. The
convergence proof makes a crucial use of certain arguments (sequential weak compact-
ness, Bolzano-Weirstrass compactness, and infinite pigeonhole principle) which a priori
hinder a simple proof-theoretical analysis. We shall discuss how it was possible in [41] to
obtain a finitary version of this result where the quantitative data does not require the
use of bar-recursive functionals. Furthermore we will discuss that, contrary to previous
eliminations of compactness arguments, here there is no connection with Halpern-type
iterations and the convergence proof is significantly different. Nevertheless, we show how
the quantitative argument fits in the context of the macro developed in [15].

2. A false ideal world

We begin by recalling the result allowing the elimination of certain weak compactness
arguments in proof-theoretical studies, essentially following [15]. After a short discussion
on the motivational issue, we introduce the bounded functional interpretation in a formal
setting suitable for the extraction of primitive recursive (in the sense of Gödel) information
from classical proofs in the context of inner product spaces. Finally, we introduce both
the general principle from [15] as well as its corresponding finitary counterpart, in the
particular form that we shall need for the remaining of the paper.

2.1. Wittmann’s convergence theorem. Consider (X, ⟨·, ·⟩) a (real) Hilbert space with
inner product ⟨·, ·⟩ and the induced norm ∥x∥ :=

√
⟨x, x⟩. Let C be a nonempty closed

subset which is assumed to be convex (i.e. closed for taking line segments). In [30], the
quantitative analysis of the proof of Wittmann’s theorem1 resulted in a simple rate of
metastability that is – for (xn) the relevant iteration – a functional Φ : N×NN → N such
that

∀k ∈ N ∀f : N → N ∃n ≤ Φ(k, f) ∀i, j ∈ [n;n+ f(n)]

(
∥xi − xj∥ ≤ 1

k + 1

)
,

which was primitive recursive in the sense of Gödel (actually primitive recursive in the
sense of Kleene on the counterfunction f). This was surprising as the analysed proof relies
crucially on two troublesome arguments: a projection onto the set of fixed points of a

1Actually, the work in [30] also analysed an important convergence result due to Browder. The proof
itself follows similar lines to those of Wittmann, and even predates it. We choose to focus on Wittmann’s
theorem as it regards the convergence of the Halpern iteration which connects with several other results
in our discussion.
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map T : C → C, denoted by Fix(T ) := {x ∈ C : T (x) = x}; together with a sequential
weak compactness argument. These arguments are logically justified by the presence
of arithmetical comprehension, and therefore one would expect the need for functionals
defined by bar-recursion. Let us give an overview of the proof-theoretical study in [30].
Regarding the projection (of a certain point u) onto Fix(T ),

∃x ∈ Fix(T ) ∀y ∈ Fix(T ) ∀k ∈ N
(
∥u− x∥ ≤ ∥u− y∥+ 1

k + 1

)
,

Kohlenbach showed that the weaker version where x is allowed to depend on k

∀k ∈ N ∃x ∈ Fix(T ) ∀y ∈ Fix(T )

(
∥u− x∥ ≤ ∥u− y∥+ 1

k + 1

)
is already sufficient to derive the Cauchy property of the iteration – an instance of what
he called ε-weakening. This insight can be understood by the fact that the Cauchy state-
ment follows from proving that for each ε (i.e. 1

k+1) there exists some point x for which

the terms of the sequence are all eventually ε/2-close. For this, an 1
k+1 -almost projection

point would suffice. Note that this says that the arguments in the proof can be relaxed
to their ‘imperfect’ versions allowing for error terms – an instance of both ‘ideal’ elements
and infinitary arguments removal in the general sense of Hilbert’s program. The relevance
for the discussion is the fact that this weaker version can be proven simply by induction
and so its contribution to the extracted information would be in the form of a functional
recursively defined. On the other hand, the absence of contribution to the final rate from
the weak compactness principle had a more unsatisfying ad hoc explanation. The proof
mining analysis revealed that the use of weak compactness was actually very mild. Es-
sentially, the role of the weak limit could be replaced by that of a point of the iteration.
Overall, the proof-theoretical approach uncovered an elementary proof where arithmeti-
cal comprehension was not need, and so the corresponding quantitative information was
naturally described by primitive recursive functionals in the sense of Gödel.

Following a suggestion of Kohlenbach, in [15] Ferreira, Leuştean and the author looked
again at the proof of Wittmann’s convergence theorem with the goal of providing a more
uniform theoretical understanding of why such uses of arithmetical comprehension don’t
contribute towards the expected complexity of the data obtained. It turned out that this
kind of argument could be bypassed by the use of certain bounded collection principles
which don’t contribute to the final bounding information. In [15], this was explained
through the use of the bounded functional interpretation which incorporates a bounded
collection principle directly into the interpretation. The same result can be obtained via
Kohlenbach’s monotone functional interpretation together with the generalized uniform
boundedness principle ∃-UBX [19, 27]. We shall base our arguments in the framework of
the bounded functional interpretation which, by infusing the bounded collection principles
directly into the interpretation, appears specifically tailored to tackle this kind of issues.

2.2. A formal system for inner product spaces. Our underlying framework is that
of Peano arithmetic in all finite type which is extended to a typed system with a new base
type and to include an intensional (i.e. rule-governed) majorizability primitive notion. We
are interested in a suitable formal system for abstract inner product spaces, PAω

⊴[X, ⟨·, ·⟩].
Following, in essence, [28, section 17.3], we treat these spaces via their characterization as
the normed spaces for which the parallelogram law holds.

Definition 2.1. Let TX be the set of all finite types with an new base type X, recursively
defined by

(i) 0, X ∈ TX (the base types);
(ii) if ρ, σ ∈ TX , then ρ→ σ ∈ TX .
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Here X will stand for an abstract inner product space. The idea of considering new
abstract types, first done in [26] for bounded metric spaces, was of great importance to the
proof mining program – undoubtedly a catalyst to all current applications. Indeed, one
was no longer restricted to “computable” or “representable” spaces, and it gave sense to
the extraction of computable bounds in many arbitrary spaces. Furthermore, simple and
natural statements can be formulated if one is unburdened by the need of working with
representatives of mathematical objects and can work directly with the actual objects.

We distinguish the subset of TX of the types where X is absent, writing T. For any
ρ ∈ TX , denote by ρ̂ ∈ T the finite type obtained from ρ by replacing every instance of X
with 0. One frequently denotes the type 0 → 0 simply by 1.

We consider Lω,X
⊴ a typed language in all finite types of TX . For each type ρ ∈ TX ,

we have a countable number of variables xρ, yρ, zρ, . . . . We also have the arithmetical
constants 00 (zero), S1 (successor) and simultaneous recursors Rρ (extended to encom-

pass the new types), together with the constants associated with functional completeness
(i.e. the combinators extended to all the types in TX , which ensure general λ-abstraction).

Terms of Lω,X
⊴ are build up from the constants and variables via suitable term application:

if t is a term of type ρ→ σ and u is a term of type ρ, then t(u) is also a term, in this case
of type σ. It should be clear that by writing tρ we are stating that the term t is of type ρ.

The language Lω,X
⊴ includes predicate symbols ⊴ρ for each ρ ∈ TX as well as equality

at type 0, denoted by =0. The atomic formulae are either of the form t =0 q for terms t, q
of type 0, or of the form t⊴ρ q for t a term of type ρ and q a term of type ρ̂. The general
formulae are build up from the atomic ones using the usual propositional logic symbols
¬,∧,∨,→, by (unbounded) quantifications ∀xρ, ∃xρ, and also by bounded quantifications
∀x ⊴ρ t, ∃x ⊴ρ t, where x is a variable of type ρ and t is a term of type ρ̂ where x does
not occur. A formula without unbounded quantifications is called a bounded formula.
Whenever t ⊴ρ t, where the type ρ of t is necessarily in T, we say that the term t is

monotone. A monotone universal quantification, which we abbreviate by ∀̃xA(x), is a

quantification of the form ∀x (x⊴ρ x→ A(x)), where A is any formula of Lω,X
⊴ and ρ ∈ T.

Analogous for monotone existential quantifiers.
In order to discuss inner product spaces in a formal system suitable for bound extraction

we include further normed space constants

• 0X of type X, standing for the zero vector;
• +X of type X → (X → X), standing for vector addition;
• −X of type X → X, standing for the symmetric of a vector;
• ·X of type X → (1 → X), standing for scalar multiplication.

We shall write simply x−X y for x+X (−Xy). The language also contains a constant ∥ · ∥,
standing for the norm function, with type X → 1. As usual, real numbers are represented
in this system by type 1 terms. There are several ways to achieve a representation of the
real numbers through functions f : N → N. For example, in [28] Kohlenbach uses fast
converging Cauchy sequences of rational numbers (themselves coded by natural numbers);
in [11], Engrácia used the signed-digit representation. In any case, the relevant point
to note is that the relations =R and ≤R between (representations of) real numbers are
defined by Π0

1-formulae, and the strict relation <R by a Σ0
1-formula. Furthermore, there

is a primitive recursive operation f 7→ f̃ which converts any function f : N → N into

function f̃ : N → N encoding a real number and such that f̃ remains f whenever it is
already representation of a real number. This can be carried out in our system and ensures
that one can discuss statements about the real numbers without requiring an additional
type (see [14] for that alternative approach). We assume that for every xX , the term ∥x∥
always represents a real number, which can be stated by a universal formula.
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Let us introduce the theory PAω
⊴[X, ⟨·, ·⟩] with the language Lω,X

⊴ in a classical setting.
Equality at the type 0, =0, is still the unique primitive equality, and is subject to the usual
axioms of equality for terms of type 0. Equality between terms of type X is a defined
relation given by a universal formula, namely

x =X y :≡ ∥x−X y∥ =R 0R,

where 0R is the cannonical representation of the real number zero by a type 1 term.
Equalities at higher types are defined in a pointwise manner. We don’t include the axiom
of extensionality, known to be problematic in functional interpretations, and instead rely
on a bounded extensionality rule, BD-ER

BD-ER:
Abd → t =ρ q

Abd → s[t/x] =σ s[q/x]
,

where Abd is a bounded formula, t, q are terms of type ρ ∈ TX , r is a term of type σ ∈ TX

and x is a variable of type ρ. Contrary to full extensionality, the interpretation of this
weak extensionality rule will follow trivially from the fact that both the premise and the
conclusion are (equivalent to) universal formulae with bounded matrices. Furthermore,
BD-ER suffices in proving

Abd → t =ρ q

Abd ∧B[t/x] → B[q/x]
,

for B an arbitrary formula in Lω,X
⊴ , and tρ, qρ are terms free for xρ in B. This treatment

is similar to the one of the Dialectica functional interpretation where Spector’s quantifier-
free extensionality rule is used (see [28, Chapters 3 and 17]). The axioms pertaining
to the arithmetical constants and the combinators are the usual ones (extended to TX).
The system includes induction for every formula. We also consider the real vector space
(universal) axioms formulated using the equality =X , namely stating: +X is associative
and commutative, 0X is the neutral element for +X , −X gives the +X -inverse, the scalar
multiplication ·X is compatible with respect to the multiplication of (representations of)
real numbers, 1R is the identity for scalar multiplication, and the two distributivity laws
between scalar multiplication and the addition +R and +X . We have suitable axioms for
the norm (following [26]):

(R) ∀xX ∀k0
(
∥x∥(k) =0 ∥̃x∥(k)

)
2

(N1) ∀xX (∥x−X x∥ =R 0R)
(N2) ∀xX ∀yy (∥x−X y∥ =R ∥y −X x∥)
(N3) ∀xX ∀yX ∀zX (∥x−X z∥ ≤R ∥x−X y∥+R ∥y −X z∥)
(N4) ∀α1 ∀xX ∀yX (∥α ·X x−X α ·X y∥ =R |α̃|R ·R ∥x−X y∥)
(N5) ∀α1 ∀β1 ∀xX

(
∥α ·X x−X β ·X x∥ =R |α̃−R β̃|R ·R ∥x∥

)
(N6) ∀xX ∀yX ∀uX ∀vX (∥(x+X y)−X (u+X v)∥ ≤ ∥x−X u∥+R ∥y −X v∥)
(N7) ∀xX ∀yX (∥(−Xx)−X (−Xy)∥ =R ∥x−X y∥)
(N8) ∀xX ∀yX (∥x∥ −R ∥y∥ ≤R ∥x−X y∥).

Easily one is able to show that =X is reflexive, symmetric and transitive. Moreover, this
unfamiliar set of axioms actually ensures that +X , −X , ·X and ∥ · ∥ are extensional with
respect to =X , i.e.

x =X x′ ∧ y =X y′ → x+X y =X x′ +X y′

x =X x′ → −Xx =X −Xx
′

α =R α
′ ∧ x =X x′ → α · x =X α′ ·X x′

x =X x′ → ∥x∥ =R ∥x′∥,

2That is to say: ∥x∥ is always a representation of a real number.
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but note that, since the representation of a real numbers is not unique, x =X x′ does not
entail ∥x∥ =1 ∥x′∥, i.e. it does not imply ∀k0 (∥x∥(k) =0 ∥x′∥(k)). Overall, these axioms
succeed in proving that (X,+X ,−X , 0X) is a real vector space with a pseudo-norm ∥ · ∥
(and becomes a real norm space in the equivalence classes generated by =X). We shall
denote this theory by PAω

⊴[X, ∥ · ∥] and the theory for inner product spaces PAω
⊴[X, ⟨·, ·⟩]

is obtained with the addition of the axiom for the parallelogram law,

(PL) ∀xX ∀yX
(
∥x+X y∥2 +R ∥x−X y∥ =R 2R ·R

(
∥x∥2 +R ∥y∥2

))
,

where (·)2 stands for a functional of type 1 → 1 representing the squaring function on
(the representations of) the real numbers. The inner product functional ⟨·, ·⟩ of type
X → (X → 1) is defined by the polarization identity

⟨x, y⟩ :=
(
1

4

)
R
·R (∥x+X y∥ −R ∥x−X y∥) .

With the above axioms for normed vector spaces, one can see that the inner product has
the usual properties. For the proofs discussed here, we do not require a formal approach
to the completeness of the space. Nevertheless, we point out that it is possible to consider
complete inner product spaces, i.e. Hilbert spaces, by introducing a functional C of type
(0 → X) → X which essentially assigns to each Cauchy sequence (xn) in the pre-Hilbert
space a corresponding limit point. Further details on this functional, in particular on
how it can be described by a universal formula, can be found in [28, Section 17.5]. We,
moreover, direct the reader to Theorem 2.9, where it is shown that, in the presence of
the characteristic principles of the interpretation (i.e. principles under which the original
formula and its interpretation become equivalent), one can prove a weak form of Cauchy
completeness in X.

We also have axioms characterizing bounded quantifications:

(B∀) ∀x⊴ρ t A↔ ∀x (x⊴ρ t→ A)
(B∃) ∃x⊴ρ t A↔ ∃x (x⊴ρ t ∧A)

The majorizability relations are an intensional version of Bezem’s strong majorizability
notion from [1]

(M1) ∀x0 ∀y0 (x⊴0 y ↔ x ≤0 y)
3

(M2) ∀xX ∀y0 (x⊴X y → ∥x∥ ≤R (y)R)

(M3) ∀xρ→σ ∀yρ̂→σ
(
x⊴ρ→σ y → ∀uρ ∀vρ̂, v′ρ̂ (u⊴ρ v ⊴ρ̂ v

′ → xu⊴σ yv ⊴σ̂ yv
′)
)
4

and the reverse implication to (M2) and (M3) are governed by rules of majorizability

(RL1)
Abd → ∥p∥ ≤R (n)R
Abd → p⊴X n

,

(RL2)
Abd ∧ u⊴ρ v → tu⊴σ qv Abd ∧ v ⊴ρ̂ v

′ → qv ⊴σ̂ qv
′

Abd → t⊴ρ→σ q
,

where Abd is a bounded formula, p is a term of type X, n is a term of type 0, t is a term
of type ρ→ σ, q is a term of type ρ̂→ σ, u is of type ρ, v, v′ are of type ρ̂. The variables
u, v, v′ don’t appear free in the conclusion of (RL2). In a similar way to the axiom of
full extensionality, it is essential that we work with the rules RL1 and RL2 as the reverse
implications to (M2) and (M3) don’t have a functional interpretation.

The next lemma follows by induction on the structural complexity of the type.

Lemma 2.2. For every type ρ ∈ TX , the theory PAω
⊴[X, ∥ · ∥] proves:

(i) x⊴ρ y → y ⊴ρ̂ y,
(ii) x⊴ρ y ∧ y ⊴ρ̂ z → x⊴ρ z.

3Here ‘x ≤0 y’ stands as usual for the predicate defined by ‘x .− y =0 0’, where .− is the primitive
recursive truncated subtraction, reflecting the usual inequality between natural numbers.

4The compact notation x⊴ρ y ⊴ρ̂ z stands for x⊴ρ y ∧ y ⊴ρ̂ z.
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For each formula A of the language Lω,X
⊴ , we associate the formula in which all the in-

tensional predicates ⊴ are replaced by their corresponding extensional version ≤∗, defined
by the equivalences

x0 ≤∗
0 y

0 ↔ x ≤0 y,

xX ≤∗
X y0 ↔ ∥x∥ ≤R (y)R,

xρ→σ ≤∗
ρ→σ y

ρ̂→σ ↔ ∀uρ ∀vρ̂, v′ρ̂
(
u ≤∗

ρ v ≤∗
ρ̂ v

′ → xu ≤∗
σ yv ≤∗

σ̂ yv
′)

We denote such formula by A∗ and say, following [13], that A∗ is the flattening of A. The
flattening of PAω

⊴[X, ∥ · ∥] is the theory PAω
≤∗ [X, ∥ · ∥] which is an extension (by definition)

of PAω together with the normed space constants and axioms. As any formula proved
with a rule can be proved with the corresponding implication via the modus ponens rule,
the following result is clear.

Proposition 2.3 (Flattening). Let A be an arbitrary formula of Lω,X
⊴ . We have,

PAω
⊴[X, ∥ · ∥] (+PL) ⊢ A =⇒ PAω

≤∗ [X, ∥ · ∥] (+PL) ⊢ A∗.

The intended interpretation for PAω
≤∗ [X, ∥ · ∥] is obtained by letting the variables range

over a set-theoretical type structure Sω,X := ⟨Sρ⟩ρ∈TX :

S0 := N, SX := X, and Sρ→σ := S
Sρ
σ ,

where (X, ∥ · ∥) is some (real) normed space. Besides the natural interpretation for the
arithmetical constants, objects of type X are taken as vectors in the normed space X. The
constant 0X is interpreted as the null-vector. The constants +X and −X are interpreted
by the vector addition and vector inversion, respectively. The constant ·X is interpreted
as the operation that given a function α : N → N and a vector x ∈ X, outputs the scalar
multiplication of x by the (unique) real number represented by the function α̃. The con-
stant ∥ · ∥ is interpreted by a function that given any x ∈ X selects some representation of
the real number ∥x∥. The intended interpretation of PAω

≤∗ [X, ⟨·, ·⟩] is described similarly
for X a inner product space.

We define a quantifier-free intensional notion of inequality between (representations of)
real numbers, which will be useful for the sequel. First recall that, as mentioned, there
exists a quantifier-free formula Aqf(k

0, x1, y1) such that

x ≤R y :≡ ∀k0Aqf(k, x, y),

where the specification of Aqf will depend on our choice of representation of the real
numbers via type 1 functions.

Definition 2.4. Consider the inequality ⊴R defined by

x⊴R y :≡ p(x, y)⊴1 0
1,

where 01 := λk . 00 and

p(x, y)k :=

{
00 if Aqf(k, x, y)

10 otherwise
.

Note that the flattening of the intensional inequality x⊴R y is the usual x ≤R y.

Lemma 2.5 ([11]). The theory PAω
⊴[X, ∥ · ∥] proves:

(i) x <R y → x⊴R y and x⊴R y → x ≤R y,
(ii) ⊴R is transitive,
(iii) x⊴X y ↔ ∥x∥⊴R (y)R.
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The usefulness of ⊴R resides in allowing us to explicitly describe the complexity present
in inequalities between real numbers in a natural manner by replacing them with this
intensional version in the appropriate way. Indeed, we have for all x1, y1:

x <R y ↔ ∃k0
(
x⊴R y −

1

k + 1

)
x ≤R y ↔ ∀k0

(
x⊴R y +

1

k + 1

)
x =R y ↔ ∀k0

(
|x− y|⊴R

1

k + 1

)
where we dropped most instances of the subscript R as it is clear by context. After the
interpretation of the statement formalized with ⊴R, we can then without qualms return
to the usual inequalities ≤R using Proposition 2.3 or Lemma 2.5(i).

2.3. The bounded functional interpretation. We now extend the bounded functional
interpretation [13] to our context. Since we are in a classical setting, we can restrict our
language to ¬, ∨, ∀ and universal bounded quantification ∀x ⊴ t. The remaining logical
symbols are defined in the usual way: A ∧ B :≡ ¬(¬A ∨ ¬B), A → B :≡ ¬A ∨ B,
∃xA :≡ ¬∀x¬A and ∃x⊴ tA :≡ ¬∀x⊴ t¬A.

Definition 2.6. To each formula A of the language Lω,X
⊴ , we assign formulae AU and

AU such that AU is of the form ∀̃b ∃̃cAU (b, c) and AU is a bounded formula, according to
the following clauses:

1. AU and AU are simply A, for atomic formulae A.

Suppose that we have already interpretations for formulae A and B in Lω,X
⊴ given, respec-

tively, by ∀̃b ∃̃cAU (b, c) and ∀̃d ∃̃eBU (d, e).

2. (A ∨B)U :≡ ∀̃b, d ∃̃c, e (AU (b, c) ∨BU (d, e)),

3. (¬A)U :≡ ∀̃f ∃̃b
(
∃̃b′ ⊴ b¬AU (b

′, f(b′))
)
,

4. (∀x⊴ t A(x))U :≡ ∀̃b ∃̃c (∀x⊴ t AU (x, b, c)),

5. (∀xA(x))U :≡ ∀̃x̃, b ∃̃c (∀x⊴ x̃ AU (x, b, c)).

Above, the notation x ⊴ y abbreviates x1 ⊴ρ1 y1, . . . , xn ⊴ρn yn for x = x1, . . . , xn and
y = y1, . . . , yn with appropriate types; the notation f(x) abbreviates the tuple of term

applications f1x, . . . , fnx. Note that if Abd is a bounded formula, then (Abd)
U and (Abd)U

are still Abd, i.e. bounded formulae are left invariant under the interpretation. In the
definition of the formula (¬A)U we have the apparently innocuous bounded quantification
“∃b′ ⊴ b”. However, this quantification crucially changes the definition of (¬A)U ensuring
the following monotonicity property on the matrix AU (b, c):

(c′ ⊴ c ∧AU (b, c
′)) → AU (b, c).

Thus, any bound on a witness for AU is itself a witness, which amounts to saying that the
interpretation operates directly with bounds.

The interpretation has the following characteristic principles:

• Monotone Bounded Choice, mACX
bd:

(mACX
bd) : ∀̃x ∃̃y Abd(x, y) → ∃̃f ∀̃x ∃̃y ⊴ f(x)Abd(x, y),

where Abd is a bounded formula of Lω,X
⊴ .

The axiom of monotone choice expresses the existence of a monotone function that, instead
of acting as a choice function, gives a bound on a witnessing element. Notice that all the
quantifications are monotone ones.
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• Bounded Collection Principle, BCX
bd:

(BCX
bd) : ∀x⊴ a ∃y Abd(x, y) → ∃̃b ∀x⊴ a ∃y ⊴ bAbd(x, y),

where Abd is a bounded formula of Lω,X
⊴ .

The bounded collection principle above stands out as a characteristic principle. It states
that if for each x there are elements satisfying a bounded property and x is bounded,
then we can already ‘collect’ all those witnesses bellow a certain bound b. Moreover,
its contrapositive allows for the conclusion of an element x (below some a) such that
∀yAbd(x, y), from the weaker statement that such x’s (below a) only exist ‘locally’. We
may regard such x as an ideal element that works uniformly for each b. In [13], where this
Shoenfield-like version of the bounded functional interpretation was originally introduced,
strong emphasis is placed on the injection of this uniformity aspect into Peano arithmetic
and that is the reason in the use of the letter U for the interpretation. Further note that by
having (BCX

bd) stated with tuples entails that (BCX
Σ ) also holds, i.e. the bounded collection

principle holds for Σ-formulae (even with a bounded matrix).

• Majorizability Axioms, MAJX :

(MAJX) : ∀xρ ∃yρ̂ (x⊴ρ y) ,

for any ρ ∈ TX .

The majorizability axioms state that every element is intensionally majorizable. These
axiom schemas characterize the interpretation in the sense of the following result, which
is established by induction on the complexity of the formula.

Proposition 2.7 (Characterization). For any formula A of Lω,X
⊴ ,

PAω
⊴[X, ∥ · ∥] + mACX

bd + BCX
bd +MAJX ⊢ A↔ AU

As pointed out already for Peano arithmetic in [13], the conjunction of our formal system
with the characteristic principles of the interpretation is not set-theoretically sound, as for
example it refutes the weakest form of extensionality proving the negation of the sentence
∀φ1→0 ∀α1, β1 (α =1 β → φ(α) =0 φ(β)). Nevertheless, we have the following soundness
theorem, akin to the usual metatheorems of proof mining.

Theorem 2.8 (Soundness). For an arbitrary formula A(z) of the language Lω,X
⊴ with

free-variables z, let A(z)U be ∀̃b ∃̃cAU (z, b, c). If

PAω
⊴[X, ∥ · ∥] (+PL) + mACX

bd + BCX
bd +MAJX ⊢ A(z),

then there are closed monotone terms t of T such that

PAω
⊴[X, ∥ · ∥] (+PL) ⊢ ∀̃a, b ∀z ⊴ aAU (z, b, tab).

Moreover, the terms t can be extracted from a proof witnessing the assumption.

The full proof of this soundness result for the normed case was done in Engrácia’s PhD
thesis [11], and the inclusion of the universal axiom of the parallelogram law impacts no
significant change. Since the complete proof is long, we shall only give a brief explanation.
As it is usual in these results, the proof is by induction on the length of a derivation
for the assumption. In a suitable derivation calculus for classical logic, one discuss the
soundness of all the axioms and rules. In these extended systems of arithmetic, one must
in particular verify the interpretation of the new axioms and rules. To this, note that
all the new axioms are given by universal statements, and thus are trivially interpreted
by themselves. Moreover, an essential feature in the proof of soundness for arithmetic
in all finite types is that the underlying system is a majorizability theory, i.e. Howard’s
theorem [23] still holds: any closed term is majorizable. In our case, we require the
version with the intensional predicates ⊴: for arithmetic, first it is a simple observation
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that Howard’s result extends to the stronger notion of majorizability due to Bezem [1];
second, it is easy to see that the result can be establish without the reverse implication in
(M2) and using the rule instead. Therefore, the soundness for extended systems requires
the verification that all the added new constants are still majorizable. This is true in our
case, as shown in [11], and so the soundness theorem holds.

Proofs of soundness theorems are frequently long and their complete discussion is usu-
ally allocated to theses or to a book treatment. For this reason, they are sometimes
considered ‘black-boxes’ in proof mining practice. This issue is worsened by the fact that
the extraction of quantitative data (the closed terms t guaranteed by soundness) is fre-
quently carried out only in a semi-formal way. Nevertheless, just the statement of the
soundness theorem (as is done here) is an incomplete description of the proof-theoretical
technique employed in a proof mining study. The full machinery of the proof interpreta-
tion used is actually contained in the effective way the construction of the terms t is done
in the verification of the soundness theorem. In particular, the construction highlights
that the complexity of the information one obtains is a reflection of the principles required
in deriving the (formalized) mathematical theorem being studied.

As mentioned already, we don’t include any sort of Cauchy completeness operator in
our system. We finish this section with an interesting simple result stating that, in the
presence of BCX

bd, the formal system is nevertheless strong enough to prove a weak version
of Cauchy completeness. For n0 and a tuple m of type 0 variables, the notation ∀m ≥0 nA
abbreviates the following formula ∀m ((n ≤0 m1 ∧ · · · ∧ n ≤0 mr) → A), and in a dual way
for the existential quantifier.

Theorem 2.9. PAω
⊴[X, ∥ · ∥] + BCX

bd proves the convergence of any Cauchy sequence in

X with a Cauchy modulus, namely it proves that for any x0→X
(·) and function f1, if

∀k0 ∀i, j ≥0 f(k)

(
∥xi − xj∥ <R

1

k + 1

)
,

then

∃xX ∀k0 ∀m ≥0 f(k)

(
∥xm − x∥ ≤R

1

k + 1

)
.

Proof. From the assumption and Lemma 2.5(i), we have

∀k0 ∀i0, j0
(
(f(k) ≤0 i ∧ f(k) ≤0 j) → ∥xi − xj∥⊴R

1

k + 1

)
.

Let r0 be arbitrary Then,

∀k ≤0 r ∀m ≤0 r

(
f(k) ≤0 m→ ∥xm − xfmax(r)∥⊴R

1

k + 1

)
,

since f(k) ≤ fmax(r), for fmax(r) := max0{f(s) : s ≤0 r}5. Consider N0 to be such that
1 + ∥xf(0)∥ <R (N)R. Then, as f(0) ≤0 f

max(r), we have

∥xfmax(r)∥ ≤R ∥xfmax(r) − xf(0)∥+ ∥xf(0)∥ ≤R 1 + ∥xf(0)∥ <R N.

By Lemma 2.5(i) and (iii), we have xfmax(r) ⊴X N for all r0. Thus,

∀r0 ∃xX ⊴X N ∀k ≤0 r ∀m ≤0 r

(
f(k) ≤0 m→ ∥xm − x∥⊴R

1

k + 1

)
.

By (the contrapositive of) BCX
bd and Lemma 2.5(i), we conclude

∃xX ⊴X N ∀k0 ∀m0

(
f(k) ≤0 m→ ∥xm − x∥ ≤R

1

k + 1

)
. □

5The function λr.(max0{f(s) : s ≤0 r}) is recursively defined in our system.
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2.4. A general principle. The elimination of sequential weak compactness relies on the
following result (see [15] for the discussion in metric spaces).

Theorem 2.10. PAω
⊴[X, ∥ · ∥] + BCX

bd proves that for any TX→X , u0→X
(·) and N0 such

that ∀n0 (un ⊴X N) and lim ∥un − T (un)∥ = 0, i.e.

∀k0 ∃n0 ∀m ≥0 n

(
∥um − T (um)∥ <R

1

k + 1

)
,

and for all k0, λ1 and θX→1, if

∀yX ⊴X N

(
T (y) =X y → λ⊴R θ(y) +

1

k + 1

)
then

∃n0 ∀m ≥0 n

(
λ⊴R θ(um) +

1

k + 1

)
.

Proof. Let k0, λ1 and θX→1 be arbitrary. From the assumption, we have

∀y ⊴X N

(
∀m0

(
∥y − T (y)∥⊴R

1

m+ 1

)
→ λ⊴R θ(y) +

1

k + 1

)
and hence

∀y ⊴X N ∃m0

(
∥y − T (y)∥⊴R

1

m+ 1
→ λ⊴R θ(y) +

1

k + 1

)
.

By BCX
bd, there is M0 such that

∀y ⊴X N ∃m ≤0 M

(
∥y − T (y)∥⊴R

1

m+ 1
→ λ⊴R θ(y) +

1

k + 1

)
.

Since m ≤0 M entails 1
M+1 ⊴R

1
m+1 and ⊴R is transitive, we get

∀y ⊴X N

(
∥y − T (y)∥⊴R

1

M + 1
→ λ⊴R θ(y) +

1

k + 1

)
.

From the assumption that lim ∥un − T (un)∥ = 0, there is n0 such that for m ≥0 n

∥um − T (um)∥⊴R
1

M + 1
∧ um ⊴X N.

We thus conclude, ∃n0 ∀m0
(
n ≤0 m→ λ⊴R θ(um) + 1

k+1

)
, as desired. □

The result above can be made more general. Indeed, one may consider a finite, or even
infinite, number of maps. Actually, in a more abstract way, the predicate T (y) =X y can
be replaced by a predicate of the form ∀nΩ(y, n) in the sense of section 3, provided that the
premise ‘lim ∥un−T (un)∥ = 0’ is also replaced with ‘∀k0 ∃n0 ∀m ≥0 nΩ(um,m)’. Further,
note that, besides BCX

bd, the argument is of a very simple logical (modus ponens-like) form.
In particular, if we weaken the premise to a ‘lim inf’, i.e. ∀k0 ∀n0 ∃m ≥0 nΩ(um,m), then

we obtain the weaker conclusion ∀n0 ∃m ≥0 n
(
λ⊴R θ(um) + 1

k+1

)
.

Theorem 2.10 is usually employed in a more specialized form.

Theorem 2.11. PAω
⊴[X, ∥ · ∥] + BCX

bd proves that for any TX→X , u0→X
(·) , and N0 such

that ∀n0 (un ⊴X N) and lim ∥un − T (un)∥ = 0, and for all φX→(X→1), if

∀k0 ∃x⊴X N

(
T (x) =X x ∧ ∀y ⊴X N

(
T (y) =X y → φ(x, x) <R φ(x, y) +

1

k + 1

))
,

then

∀k0 ∃x⊴X N

(
T (x) =X x ∧ ∃n0 ∀m ≥0 n

(
φ(x, x) ≤R φ(x, um) +

1

k + 1

))
.
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Proof. Given arbitrary k0, consider xX ⊴X N such that T (x) =X x and

∀y ⊴X N

(
T (y) =X y → φ(x, x) <R φ(x, y) +

1

k + 1

)
.

Apply Theorem 2.10 with λ := φ(x, x) and θ(y) := φ(x, y). □

We give a quantitative version of Theorem 2.11. In the following, we use the notation
BN (0) for the closed ball in X of radius N centred at 0, and [n;m] for the interval of
natural numbers [n,m] ∩ N.

Theorem 2.12. Let (X, ∥ · ∥) be a normed space and consider N ∈ N, a map T : X → X,
a sequence (un) ⊆ BN (0), and a function φ : X × X → R. Assume that there exist
monotone functionals α, β : N× NN → N satisfying

(i) ∀k ∈ N ∀̃f : N → N ∃n ≤ α(k, f) ∀m ∈ [n; f(n)]
(
∥um − T (um)∥ ≤ 1

k+1

)
(ii) ∀k ∈ N ∀̃f : N → N ∃n ≤ β(k, f) ∃x ∈ BN (0)

(
∥x− T (x)∥ ≤ 1

f(n)+1

∧∀y ∈ BN (0)
(
∥y − T (y)∥ ≤ 1

n+1 → φ(x, x) ≤ φ(x, y) + 1
k+1

))
.

Then,

∀k ∈ N ∀̃f : N → N ∃n ≤ ψ(k, f) ∃x ∈ BN (0)(
∥x− T (x)∥ ≤ 1

f(n) + 1
∧ ∀m ∈ [n; f(n)]

(
φ(x, x) ≤ φ(x, um) +

1

k + 1

))
,

where ψ(k, f) := α (β(k, fα), f), where fα(r) := f(α(r, f)).

Proof. The argument is essentially as in [15, Proposition 4.3]. Let k ∈ N and monotone
f : N → N be given. By (ii), applied to k and the function fα (which is monotone as α is
monotone), there is x ∈ BN (0) and n0 ≤ β(k, fα) such that ∥x− T (x)∥ ≤ 1

fα(n0)+1 and

∀y ∈ BN (0)

(
∥y − T (y)∥ ≤ 1

n0 + 1
→ φ(x, x) ≤ φ(x, y) +

1

k + 1

)
.

Applying (i), we obtain n1 ≤ α(n0, f) such that

∀m ∈ [n1; f(n1)]

(
∥um − T (um)∥ ≤ 1

n0 + 1

)
.

Since α is monotone, we have n1 ≤ α(n0, f) ≤ α(β(k, fα), f) =: ψ(k, f). By the mono-
tonicity of f , we have ∥x− T (x)∥ ≤ 1

f(n1)+1 . Since (un) ⊆ BN (0), the result follows. □

In several proof mining studies, this argument has underlined the bypass weak compact-
ness arguments which would otherwise require the interpretation of arithmetical compre-
hension and thus the use of bar-recursive functionals BR0,1. On each instance, one relies
on a specific function φ tailored for the combinatorial argument at hand.

Lastly, we go on a small tangent to discuss some quantitative results regarding switching
from lim-statements to the corresponding weaker lim inf-statement. Note that a rate of
metastability α for lim ∥un − T (un)∥ = 0 (as in Theorem 2.12(i)), entails a so-called
lim inf-rate, i.e. a functional Φ : N× N → N satisfying

∀k, n ∈ N ∃m ∈ [n; Φ(k, n)]

(
∥um − T (um)∥ ≤ 1

k + 1

)
,

given by Φ(k, n) := max {α (k, λr.max {r, n}) , n}. In a similar but slightly more convo-
luted way, we also have the following result.
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Lemma 2.13. Let ψ : N× NN → N be a monotone functional such that

∀k ∈ N ∀̃f : N → N ∃n ≤ ψ(k, f) ∃x ∈ BN (0)(
∥x− T (x)∥ ≤ 1

f(n) + 1
∧ ∀m ∈ [n; f(n)]

(
φ(x, x) ≤ φ(x, um) +

1

k + 1

))
,

then

∀k ∈ N ∀̃G : NN → N ∃̃h ≤1 ξ(k,G) ∃x ∈ BN (0)(
∥x− T (x)∥ ≤ 1

G(h) + 1
∧ ∀n ≤ G(h) ∃m ∈ [n;h(n)]

(
φ(x, x) ≤ φ(x, um) +

1

k + 1

))
with ξ(k,G) := λr.max{r, ψ(k, fG)} where fG := λn.max{G(λr.max{r, n}), n}.

Proof. Let k ∈ N and a monotone G be given. As fG is monotone, by the assumption,
there exist n0 ≤ ψ(k, fG) and x̃ ∈ BN (0) such that

(◦) ∥x̃− T (x̃)∥ ≤ 1

fG(n0) + 1
∧ ∀m ∈ [n0; fG(n0)]

(
φ(x̃, x̃) ≤ φ(x̃, um) +

1

k + 1

)
.

Define h := λr.max{r, n0} which is ≤1 ξ(k,G). Then, fG(n0) ≥ G(λr.max{r, n0}) = G(h),
and so

∥x̃− T (x̃)∥ ≤ 1

G(h) + 1
.

Consider now n ≤ G(h), and take m = max{n, n0} = h(n). Then, on the one hand,
m ∈ [n;h(n)], and on the other m ∈ [n0, fG(n0)], since

m = max{n, n0} ≤ max{G(h), n0} = fG(n0).

The result follows from the second conjunct of (◦). □

The next result gives a quantitative version of Theorem 2.11 when lim ∥un−T (un)∥ = 0
is replaced with lim inf ∥un − T (un)∥ = 0.

Theorem 2.14. Assume that there exist monotone functionals Φ : N × N → N and
β : N× NN → N satisfying

(i) ∀k, n ∈ N ∃m ∈ [n; Φ(k, n)]
(
∥um − T (um)∥ ≤ 1

k+1

)
(ii) ∀k ∈ N ∀̃f : N → N ∃n ≤ β(k, f) ∃x ∈ BN (0)

(
∥x− T (x)∥ ≤ 1

f(n)+1

∧∀y ∈ BN (0)
(
∥y − T (y)∥ ≤ 1

n+1 → φ(x, x) ≤ φ(x, y) + 1
k+1

))
.

Then,

∀k ∈ N ∀̃G : NN → N ∃̃h ≤1 ξ(k,G) ∃x ∈ BN (0)(
∥x− T (x)∥ ≤ 1

G(h) + 1
∧ ∀n ∈ N ∃m ∈ [n;h(n)]

(
φ(x, x) ≤ φ(x, um) +

1

k + 1

))
,

where ξ(k, f) := λr.Φ(β(k, fΦ), r), where fΦ := λn.G(λr.Φ(n, r)).

Proof. Let k ∈ N and a monotone functional G be given. Since fΦ is monotone, by (ii)
there exist n0 ≤ β(k, fΦ) and x̃ ∈ BN (0) such that

(1) ∥x̃− T (x̃)∥ ≤ 1

fΦ(n0) + 1
=

1

G(λr.Φ(n0, r)) + 1
,

and

(2) ∀y ∈ BN (0)

(
∥y − T (y)∥ ≤ 1

n0 + 1
→ φ(x̃, x̃) ≤ φ(x̃, y) +

1

k + 1

)
.
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By (i) with k = n0, we have ∀n ∈ N ∃m ∈ [n; Φ(n0, n)]
(
∥um − T (um)∥ ≤ 1

n0+1

)
. Since

(un) ⊆ BN (0), by (2) we get

∀n ∈ N ∃m ∈ [n; Φ(n0, n)]

(
φ(x̃, x̃) ≤ φ(x̃, um) +

1

k + 1

)
.

Therefore, the result holds with h := λr.Φ(n0, r), for which we have

h = λr.Φ(n0, r) ≤1 λr.Φ(β(k, fΦ), r) = ξ(k,G). □

As a consequence of a rule-type treatment regarding assumption (i), observe that the
conclusion of Theorem 2.14 above is stronger, than if we were to merely apply Lemma 2.13
to the conclusion of Theorem 2.12 – see the ‘∀n ∈ N’ in the former and only the ‘∀n ≤ G(h)’
in the latter.

3. Interpretation of the ε-weak metric projection

The first proof mining studies on the metric projection are due to Kohlenbach in [29] and
[30]. The simple formulation that we discuss here first appeared in [15] and resulted from
the study on the application of the bounded functional interpretation to proof mining in
the context of the author’s doctoral studies [39]. Since then, this formulation has appeared
in several proof mining studies by the author, e.g. [6, 7, 9]. Recently, it was also used in
[45] in the context of a study extending the quantitative analysis in [32] (see also [7]).

3.1. Interpretation. Let S be a nonempty subset of a normed space (X, ∥·∥). We assume
that S is described via a sequence of subsets (Sn) by

S =
⋂
n∈N

Sn.

Without loss of generality, we moreover assume that (Sn) is nonincreasing, i.e. Sn+1 ⊆ Sn
for all n ∈ N, otherwise we can redefine S′

n :=
⋂

n′≤n Sn′ . The idea is that the sets Sn
approximate S, and that the membership relation x ∈ Sn is deemed computationally
simple. We are interest in studying the projection argument of an arbitrary point u ∈ X
onto the set S. Formally, we describe the approximation sets Sn via some bounded formula

Ω(xX , n0) from Lω,X
⊴ , possible with additional parameters, which similarly, without loss

of generality, we can assume to be monotone in the sense that

∀xX ∀n0
(
Ω(x, n) → ∀n′ ≤0 nΩ(x, n

′)
)
,

replacing Ω(x, n) with ∀n′ ≤0 nΩ(x, n
′), if that is not the case. We will also use the

informal notation ‘x ∈ Sn’ for the predicate Ω(x, n). In this sense, ‘x ∈ S’ corresponds to
the predicate ∀n0Ω(x, n). Note that one indeed have a description of a nonempty subset
of X whenever in our formal system,

(1) ∀xX , yX (x =X y ∧ x ∈ S → y ∈ S) (extensionality),
(2) ∃xX (x ∈ S) (nonempty).

For any uX , the projection of uX onto S is stated by

(−) ∃xX
(
x ∈ S ∧ ∀yX (y ∈ S → ∥x− u∥ ≤R ∥y − u∥)

)
.

Moreover, one may discuss the projection of u onto S by assuming that there is some N0

such that x ∈ S → x ⊴X N . Indeed, we can expand on the argument in [40]. Consider
p0 ∈ S and let N0 be such that ∥p0 − u∥+ ∥u∥ <R (N)R, then (−) is equivalent to

(+) ∃x⊴X N (x ∈ S ∧ ∀y ⊴X N (y ∈ S → ∥x− u∥ ≤R ∥y − u∥)) .
Clearly, to see that (−) entails (+) it suffices to verify that we have x ⊴X N , for xX

witnessing (−). We have,

∥x∥ ≤R ∥x− u∥+ ∥u∥ ≤R ∥p0 − u∥+ ∥u∥ <R (N)R,
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which entails x⊴XN by Lemma 2.5(i) and (iii). For the reverse implication, we just need
to argue the second conjunct still holds for any yX not satisfying y⊴X N . By Lemma 2.5,
it follows that ∥p0 − u∥+ ∥u∥ <R ∥y∥ and, as clearly p0 ⊴X N , we have

∥x− u∥ ≤R ∥p0 − u∥ =R ∥p0 − u∥+ ∥u∥ − ∥u∥ <R ∥y∥ − ∥u∥ ≤R ∥y − u∥.

Hence, we can replace x ∈ S by its conjunction with x⊴X N . The proof of this projection
argument requires countable choice, and therefore escapes the strength of the systems
discussed here. From the observation by Kohlenbach in [30], we know that the weaker
statement

∀k0 ∃xX
(
x ∈ S ∧ ∀yX

(
y ∈ S → ∥x− u∥ <R ∥y − u∥+ 1

k + 1

))
,

stating only the existence of 1
k+1 -almost projection points of u onto S, which can be proved

inductively in our formal system, already suffices for most situations.
Let us discuss the interpretation of

(++) ∀k0 ∃x⊴X N
(
∀m0Ω(x,m) ∧ ∀y ⊴X N

(
∀n0Ω(y, n) → Θ(x, y, k)

))
where Θ(x, y, k) denotes some bounded formula – for the case at hand, we will consider
Θ(x, y, k) ≡ ∥x−u∥2⊴R ∥y−u∥2+ 1

k+1 , using the squared norms for an easier connection

with the inner product latter on. By classical logic, (++) is equivalent to

∀k0 ∃x⊴X N
(
∀m0Ω(x,m) ∧ ∀y ⊴X N ∃n0 (Ω(y, n) → Θ(x, y, k))

)
and so, using (the contrapositive of) BCX

bd, is also equivalent to

∀k0 ∃x⊴X N
(
∀m0Ω(x,m) ∧ ∃n0 ∀y ⊴X N ∃n′ ≤0 n

(
Ω(y, n′) → Θ(x, y, k)

))
.

By the monotonicity assumption on Ω, the statement is equivalent to

∀k0 ∃x⊴X N
(
∀m0Ω(x,m) ∧ ∃n0 ∀y ⊴X N (Ω(y, n) → Θ(x, y, k))

)
.

Hence, we equivalently have

∀k0 ∃n0 ∃x⊴X N ∀m0 (Ω(x,m) ∧ ∀y ⊴X N (Ω(y, n) → Θ(x, y, k))) ,

which, by (the contrapositive of) BCX
bd and the monotonicity of Ω, is equivalent to

∀k0 ∃n0 ∀m0 ∃x⊴X N (Ω(x,m) ∧ ∀y ⊴X N (Ω(y, n) → Θ(x, y, k))) .

Now by mACX
bd, we have equivalently

∀k0 ∀̃f1 ∃n0 ∀m ≤0 f(n) ∃x⊴X N (Ω(x,m) ∧ ∀y ⊴X N (Ω(y, n) → Θ(x, y, k))) ,

which by the monotonicity of Ω is equivalent to the formula

∀k0 ∀̃f1 ∃n0 ∃x⊴X N (Ω(x, f(n)) ∧ ∀y ⊴X N (Ω(y, n) → Θ(x, y, k))) .

The steps above naturally also hold with tuples. The soundness theorem therefore ensures
that we can compute a primitive recursive bound on n. The next result is a quantitative
version of the (ε-weak) projection argument.

Proposition 3.1. Consider u ∈ X and N ≥ ∥p0 − u∥+ ∥u∥ for some p0 ∈ S. Then, for
all k ∈ N and monotone function f : N → N,

∃n ≤ f (r−1)(0) ∃x ∈ BN (0)(
x ∈ Sf(n) ∧ ∀y ∈ BN (0)

(
y ∈ Sn → ∥x− u∥2 ≤ ∥y − u∥2 + 1

k + 1

))
,

where r := N2(k + 1).
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Proof. Assuming that the result does not hold, we can define {x0, · · · , xr} with x0 = p0
and for all i < r, xi ∈ Sf (r−i)(0) ∩BN (0) and

∥xi+1 − u∥2 < ∥xi − u∥2 − 1

k + 1
.

We then obtain the contradiction

∥xr − u∥2 < ∥x0 − u∥2 − r

k + 1
≤ N2 − N2(k + 1)

k + 1
= 0.

□

3.2. Variational inequality characterization. In Hilbert spaces (or more generally in
uniformly convex geodesic spaces), the metric projection of u onto a nonempty set S, say
PS(u), has useful a characterization a via variational inequality,

∀y ∈ S (⟨PS(u)− u,PS(u)− y⟩ ≤ 0) .

The characterization above relies essentially on two facts:

(1) the set S is convex,

(2) ∀x, y ∈ S (∀t ∈ [0, 1] (∥x− u∥ ≤ ∥wt(x, y)− u∥) → ⟨x− u, x− y⟩ ≤ 0) ,

where wt(x, y) stands for (1− t)x+ ty. Let us discuss the interpretation of (1) and (2).
The convexity property of a set S ⊆ X corresponds to the following statement

(†) ∀xX ∀yX (x, y ∈ S → ∀t ∈ [0, 1] (wt(x, y) ∈ S)) ,

which (viewing ‘∀t ∈ [0, 1]’ as a bounded quantification) in the presence of MAJX and
BCX

bd is equivalent to

(‡) ∀n0 ∀N0 ∃m0 ∀x⊴X N ∀y ⊴X N (x, y ∈ Sm → ∀t ∈ [0, 1] (wt(x, y) ∈ Sn)) .

When a proof of the convexity of S formalizes in (some suitable extension of) the system
described for normed spaces, the soundness theorem will entail the existence of a bound for
m given by a monotone closed term on inputs n and N and hence, by the monotonicity
assumption on the formula Ω (i.e. on the sets Sm), a precise witness. Naturally, the
existence of such proof amenable for bound extraction is centered on the specifics of the
set S.

If we want to discuss a mathematical proof in which a set S (universally described via
some formula Ω as above) is assumed to be convex, then we can’t simply add the statement
(†) to our system, since its interpretation (‡) asks for computational information that we
a priori do not have. We can however study such a proof modulo the missing information
regarding the convexity of the set. Namely, we can assume that the set S satisfies

(⋆) ∀n ∈ N ∀N ∈ N ∃m ∈ N ∀x, y ∈ BN (0) (x, y ∈ Sm → ∀t ∈ [0, 1] (wt(x, y) ∈ Sn)) ,

and provide the underlying formal system with a monotone constant γ0→(0→0), i.e.

∀n01, n02 ∀N0
1 , N

0
2 ((n1 ≤0 n2 ∧N1 ≤0 N2) → γN1(n1) ≤0 γN2(n2)) ,

governed by the axiom

∀n0 ∀N0 ∀x⊴X N ∀y ⊴X N
(
x, y ∈ SγN (n) → ∀t ∈ [0, 1]wt(x, y) ∈ Sn

)
.

The condition (⋆) is an uniformization of the convexity property and, in general, more
restrictive than just asking for the set to be convex – note however that the two notions
coincide in the finite dimensional case. This is a consequence of the uniformity injected
by the use of the BCX

bd principle (see [13]).
In frequent applications, S is the fixed point set of some map T , or more generally the

set of common fixed points of a (even countably in)finite number of maps, and in that
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case a function γ is indeed available. The next result, essentially due to [30], corresponds
to a quantitative version of fact (1), in the case where

S :=
⋂
n∈N

{
x ∈ X : ∥x− T (x)∥ ≤ 1

n+ 1

}
is the set of fixed points of a nonexpansive map T , which will suffice for our discussion.

Lemma 3.2. For all n,N ∈ N and x, y ∈ BN (0), if

max {∥x− T (x)∥, ∥y − T (y)∥} ≤ 1

12(2N + 1)(n+ 1)2
, 6

then ∀t ∈ [0, 1]

(
∥wt(x, y)− T (wt(x, y))∥ ≤ 1

n+ 1

)
.

We can discuss the proof of fact (2) in the setting of PAω
⊴[X, ⟨·, ·⟩] as it only depends

on simple properties of the norm and the inner-product. We have the following finitary
version.

Lemma 3.3. For all k,N ∈ N, u ∈ X and x, y ∈ BN (0), if

∀t ∈ [0, 1]

(
∥x− u∥2 ≤ ∥wt(x, y)− u∥2 + 1

4N2(k + 1)2

)
,

then ⟨x− u, x− y⟩ ≤ 1

k + 1
.

Proof. Considering the assumption, we have for all t ∈ [0, 1],

∥wt(x, y)− u∥2 = ⟨wt(x, y)− u,wt(x, y)− u⟩
= ∥x− u∥2 − 2t⟨x− u, x− y⟩+ t2∥x− y∥2

≤ ∥wt(x, y)− u∥2 + 1

4N2(k + 1)2
− 2t⟨x− u, x− y⟩+ 4N2t2.

Hence, for all t ∈ (0, 1]

⟨x− u, x− y⟩ ≤ 1

8N2(k + 1)2t
+ 2N2t,

and, in particular, for t = 1
4N2(k+1)

we conclude

⟨x− u, x− y⟩ ≤ 4N2(k + 1)

8N2(k + 1)2
+

2N2

4N2(k + 1)
=

1

k + 1
. □

By combining Lemma 3.3 and Proposition 3.1, in the case where S is convex in the
strong sense of (⋆), and we have a monotone function γ : N2 → N providing computa-
tional information on its convexity, we obtain the following result corresponding to the
quantitative analysis of the ε-weak version of the variational inequality characterization.

Proposition 3.4. Let u ∈ X and consider a sequence (Sn) such that Sn+1 ⊆ Sn, for all
n ∈ N. Assume that S :=

⋂
n∈N Sn ̸= ∅ is convex and there exists a monotone function

γ : N2 → N satisfying

∀n,N ∈ N ∀x, y ∈ BN (0)
(
x, y ∈ SγN (n) → ∀t ∈ [0, 1] (wt(x, y) ∈ Sn)

)
.

6That is, γN (n) := 12(2N + 1)(n+ 1)2 − 1, for all n,N ∈ N. The same function holds also for when S
is the set of common fixed points of a finite or an infinite number of nonexpansive maps.
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Consider N ∈ N such that N ≥ ∥p0 − u∥+ ∥u∥, for some p0 ∈ S. Then, for all k ∈ N and
monotone function f : N → N,

∃n ≤ γN

(
h
(R−1)
γ,f (0)

)
∃x ∈ BN (0)(

x ∈ Sf(n) ∧ ∀y ∈ BN (0)

(
y ∈ Sn → ⟨x− u, x− y⟩ ≤ 1

k + 1

))
,

where R := 4N4(k + 1)2 and hγ,f (m) := max{f(γ(m)), γ(m)}.

Proof. Apply Proposition 3.1 with the natural number 4N2(k+1)2−1, and the monotone

function hγ,f , to conclude the existence of n0 ≤ h
(R−1)
γ,f (0) and x ∈ BN (0) such that

x ∈ Shγ,f (n0) and for all y ∈ BN (0),

y ∈ Sn0 → ∥x− u∥2 ≤ ∥y − u∥+ 1

4N2(k + 1)2
.

Take n := γN (n0) – which is bounded by γN

(
h
(R−1)
γ,f (0)

)
, since γ is monotone. Since

hγ,f (n0) ≥ f(n) and by the monotonicity assumption on (Sn), we have x ∈ Sf(n), as

desired. For the second conjunct, take y ∈ BN (0) such that y ∈ Sn, i.e. y ∈ SγN (n0).
Note that, since hγ,f (n0) ≥ n and using again the monotonicity of (Sn), we also have
x ∈ SγN (n0). Hence, the assumption on the function γ entails

∀t ∈ [0, 1] (wt(x, y) ∈ Sn0) .

Since wt(x, y) ∈ BN (0), we conclude

∀t ∈ [0, 1]

(
∥x− u∥2 ≤ ∥wt(x, y)− u∥2 + 1

4N2(k + 1)2

)
.

The result now follows from Lemma 3.3. □

We can now instantiate the function γ with the output from Lemma 3.2 to immediately
obtain the following two results. In a Hilbert space X, consider (Tn)n∈N a countable family
of nonexpansive maps and let S :=

⋂
Fix(Tn) be the set of common fixed points which we

assume to be nonempty. Then,

S :=
⋂
n∈N

Sn, where Sn :=

{
x ∈ X : ∀n′ ≤ n

(
∥x− Tn′(x)∥ ≤ 1

n+ 1

)}
.

Corollary 3.5. Let u ∈ X and consider N ∈ N such that N ≥ ∥p0 − u∥+ ∥u∥, for some
p0 ∈ S. Then, for all k ∈ N and monotone function f : N → N,

∃n ≤ 12(2N + 1)
(
h
(R−1)
f (0) + 1

)2
∃x ∈ BN (0)(

∀n′ ≤ f(n)

(
∥x− Tn′(x)∥ ≤ 1

f(n) + 1

)
∧∀y ∈ BN (0)

(
∀n′ ≤ n

(
∥y − Tn′(y)∥ ≤ 1

n+ 1

)
→ ⟨x− u, x− y⟩ ≤ 1

k + 1

))
,

where R := 4N4(k+1)2 and hf (m) := max{f(12(2N +1)(m+1)2), 12(2N +1)(m+1)2}.
The argument also holds for a finite number of nonexpansive maps, T1, . . . , Tm, which

is the version needed in the sequel, cf. [41, Proposition 2.5]7, by considering instead

Sn :=

x ∈ X :
m∧
j=1

(
∥x− Tj(x)∥ ≤ 1

n+ 1

) .

7Besides the ε-δ formulation, [41, Proposition 2.5] also includes some small optimizations related to the
majorizability of the initial data irrelevant for our discussion.
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Corollary 3.6. Let u ∈ X and consider N ∈ N such that N ≥ ∥p0 − u∥+ ∥u∥, for some
p0 ∈

⋂m
j=1 Fix(Tj). Then, for all k ∈ N and monotone function f : N → N,

∃n ≤ 12(2N + 1)
(
h
(R−1)
f (0) + 1

)2
∃x ∈ BN (0) m∧

j=1

(
∥x− Tj(x)∥ ≤ 1

f(n) + 1

)

∧∀y ∈ BN (0)

 m∧
j=1

(
∥y − Tj(y)∥ ≤ 1

n+ 1

)
→ ⟨x− u, x− y⟩ ≤ 1

k + 1

 ,

where R and hf are as before.

4. Previous applications

To make it clear why we identify Dykstra’s algorithm as ‘curious’, we recall here how the
sequential weak compactness argument was eliminated in the case of Wittmann’s conver-
gence proof as an application of the main result from [15], enabling an easier comparison
with the study of Dykstra’s algorithm discussed in section 5.

4.1. The proof of Wittmann’s theorem. In 1967, Halpern [21] introduced the fol-
lowing iterative procedure to approximate fixed points of a given nonexpansive map
T : C → C, with C a nonempty, bounded, closed and convex subset of a Hilbert space

(H) x0 ∈ C, xn+1 := (1− αn)T (xn) + αnu

where u is some point in the set C, anchoring the construction of the iteration via a convex
combination using the parameter sequence (αn) ⊆ [0, 1]. Under some conditions on the
sequence (αn), [21] shows the strong convergence of (H) to a fixed point of T . However,
Halpern’s conditions prevented the canonical choice αn = 1

n+1 , which was overcome in 1992

by Wittmann in a celebrated result (considered an important nonlinear generalization of
von Neumann Mean Ergodic Theorem).

Theorem 4.1 (Wittmann [49]). If (αn) ⊆ [0, 1] satisfies

(i) limαn = 0, (ii)
∑

αn = ∞, (iii)
∑

|αn+1 − αn| <∞

then (H) converges strongly to a fixed point of T , the closest to the anchor point u.

Wittmann’s argument has the following structure:

(1) (xn) is bounded;
(2) (xn) is asymptotically regular, i.e. lim ∥xn − xn+1∥ = 0;
(3) (xn) is T -asymptotically regular, i.e. lim ∥xn − T (xn)∥ = 0;
(4) Since Fix(T ) is a convex nonempty subset, let P be the projection of u onto Fix(T ),

that is P := PFix(T )(u);
(5) We have the following inequality,

∀n ∈ N
(
∥xn+1 − P∥2 ≤ (1− αn)∥xn − P∥2 + αnBn

)
where Bn := 2⟨u− P, T (xn)− P ⟩+ αnb for some real number b ∈ R.

(6) By sequential weak compactness, there is some Q ∈ C and a subsequence (xρn)
such that xρn ⇀ Q;

(7) If necessary passing to a further subsequence, we have w.l.o.g.

xρn ⇀ Q and simultaneously lim supBn = limBρn ;

(8) By the demiclosedness principle (see [4]), we have Q ∈ Fix(T );
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(9) From the variational inequality characterizing of the metric projection, we have,

lim supBn = lim2⟨u− P, T (xρn)− P ⟩ = 2⟨u− P, T (Q)− P ⟩ = 2⟨u− P,Q− P ⟩ ≤ 0;

(10) Using a combinatorial argument, later distilled into the following technical lemma
about sequences of real numbers by Xu [50]:

Lemma 4.2. Let (αn) ⊆ [0, 1] and (rn) ⊆ R be real sequences such that∑
αn = ∞ and lim sup rn ≤ 0.

If (sn) is a sequence of non-negative real numbers satisfying

∀n ∈ N (sn+1 ≤ (1− αn)sn + αnrn) ,

then lim sn = 0.

it follows that lim ∥xn − P∥2 = 0.

Hence, (xn) converges in norm to PFix(T )(u). □

As discussed in section 2.1, from a proof-theoretical point of view, the only troublesome
arguments are in the use of the projection in step (4), and in the use of a sequential
weak compactness argument in step (6), which require arithmetical comprehension. The
finitary study in [30] showed that one can bypass (4) by using instead instead the simpler
ε-weakening of the projection argument. Regarding step (6), it uncovered that the role
of the weak limit Q could already be replaced by some term of the iteration and thus
the quantitative version did not require the interpretation of the full weak compactness
argument. This entails in particular that no bar-recursive functionals were needed in the
construction of the metastability rate. We remark that the resulting simpler proof was not
an automatic output of the proof interpretation: while employing the functional interpre-
tation highlighted the potential for simplification, it ultimately relied on a discernment to
recognize the opportunity for a more straightforward argument.

In [15], this was understood under the perspective that Wittmann’s argument could be
modified into a proof formalized in a system (an extension of PAω

⊴[X, ⟨·, ·⟩] with some ad
hoc constants tailored to the discussion of Wittmann’s result) with bound extraction and
where the use of weak compactness was sidestepped by an application of BCX

bd. Concretely,
weak compactness is replaced by Theorem 2.11 with the function φ(x, y) := ⟨x−u, T (y)⟩, as
explained in [15, section 5.2]. It is this modified proof that can be analysed knowing a priori
that no bar-recursive functionals will feature in the extracted quantitative information.

4.2. Further proofs with false principles. In [15] the removal of sequential weak com-
pactness was applied to three case studies: Browder’s fixed point theorem, Wittmann’s
convergence theorem as well as to its generalization due to Bauschke. Since then the
usefulness of this approach has been substantiated with several further applications in the
literature, e.g. [5, 6, 7, 9, 40]. Recently [8], in the general nonlinear setting of CAT(0)
spaces, this quantitative perspective allowed for a convergence proof of a new iterative
method: the alternating Halpern-Mann iteration, (HM). As explained, in Hilbert spaces,
we can recursively approximate fixed points of nonexpansive maps via Halpern’s proce-
dure. Extensions to a nonlinear setting usually reduce the convergence proof to that of a
Browder-like iteration and require the use of Banach limits – see the discussion by Kohlen-
bach and Leuştean in [34, 33] regarding a possible tame proof-theoretical treatment of the
latter. The method introduced in [8] is more general than (H) and strongly approximates
a common fixed point of two nonexpansive maps. The convergence proof crucially relies
on a finitary formulation, and does not reduce to a Browder-like iteration nor it requires
the use of Banach limits. Instead it follows from the observation that the argument by-
passing sequential compactness, using the set-theoretically false principle BCX

bd, further
holds in a geodesic setting (while it is not even clear how a sequential weak compactness
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argument would go through in a nonlinear setting) and thus it was possible to establish
the metastable property of the iteration. A posteriori one derives the full infinitary con-
vergence result of this general method in the broad geodesic setting of Hadamard spaces.
This example further strengthens the usefulness of the metastability formulation and of
proof-theoretical base arguments in applications to standard mathematics.

(HM) is a Cauchy sequence

via seq. weak compactness

(HM) is a Cauchy sequence

via bounded collection

(HM) is strongly convergent

via seq. weak compactness

(HM) is strongly convergent

via elementary arguments

(HM) is a metastable sequence

via elementary arguments

(HM) is a Cauchy sequence

via bounded collection
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Inner product spaces CAT(0) spaces

nonlinear generalization

Yet, a concern lingers in the applicability of this approach to the removal of weak
compactness arguments: all applications share a common theme, namely that the recursive
method is some variant of the Halpern iteration and that the proof is always structurally
similar to Wittmann’s argument. The study of Dykstra’s algorithm breaks away from
such paradigm.

5. The study of Dykstra’s algorithm

5.1. The proof of Dykstra’s convergence. Here we discuss the proof of Theorem 1.1
regarding the strong convergence of Dykstra’s algorithm. We denote C :=

⋂m
j=1Cj and

assume it to be nonempty, as entailed by the ‘feasibility’ requirement. As before, the list
of closed convex sets {C1, . . . , Cm} is extended cyclically to a countable family (Cn)n≥1

and, for each n ≥ 1, Pn denotes the projection onto Cn. For n ∈ N and z ∈ X, we write

s(n, z) := 2
n∑

k=n−m+1

⟨xk − z, qk⟩,

where x−(m−1), . . . , x−1 are arbitrary elements of X.

The convergence proof of Dykstra’s algorithm has the following structure:

(1) Inductively, one proves that for all n ∈ N,
n∑

k=n−m+1

qk = x0 − xn.

(2) By the characterization of the projections via the variational inequality and the
definition of qk, we immediately see that

∀z ∈ X ∀n ∈ N (z ∈ C → s(n, z) ≥ 0) .
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(3) The main combinatorial part of the proof essentially establishes:

∀z ∈ X ∀n ∈ N ∀i ≥ n
(
∥xi − z∥2 ≤ ∥xn − z∥2 + s(n, z)− s(i, z)

)
.

(4) From (3), it follows that (xn) is bounded, and we take B ≥ 0 such that for all
n ∈ N, it holds ∥x0 − xn∥ ≤ B.

(5) At the same time, it is established that (xn) is asymptotically regular, i.e. that
lim ∥xn − xn+1∥ = 0.

(6) Underlying the remainder of the proof, one can infer the following implicit lemma:

Lemma 5.1. For all k ∈ N, there exists r ∈ N such that

∀z ∈ C ∀n ∈ N
(
max{∥xn − z∥, s(n, xn)} ≤ 1

r + 1
→ ∀i ≥ n

(
∥xi − z∥ ≤ 1

k + 1

))
Proof. We have,

s(n, z) = 2

n∑
k=n−m+1

⟨xk − xn, qk⟩+ 2

n∑
k=n−m+1

⟨xn − z, qk⟩

≤ s(n, xn) + 2∥xn − z∥ · ∥x0 − xn∥

≤ 1 + 2B

r + 1
.

The result follows using (2) and (3). □

Therefore, in order to conclude the proof, it suffices to find a pair (z, n) ∈ C × N
satisfying the premise of Lemma 5.1. Indeed, that would entail that (xn) is a Cauchy
sequence and hence, by completeness of the space, a convergent sequence. We moreover
remark at this point that the argument does not work if the point z is taken simply as
some xn0 for some large n0, and requires a more delicate approach. Let us continue.

(7) Making use of a technical lemma regarding square-summable sequences (which
goes back to the original work of Dykstra [10]), one establishes

lim inf
n∑

k=n−m+1

|⟨xk − xn, qk⟩| = 0.

(8) Consider a subsequence (xρn) and z ∈ X such that
(i) lim

∑ρn
k=ρn−m+1 |⟨xk − xρn , qk⟩| = 0 (which entails that lim s(ρn, xρn) = 0),

(ii) xρn ⇀ z,
(iii) ∃j ∈ [1;m] ∀n ∈ N (jρn = j), entailing that (xρn) ⊆ Cj ,
(iv) (∥xρn∥) converges.

(9) Since lim ∥xn − xn+1∥ = 0, and the sets Cj are weakly closed, we get that z ∈ C.
(10) Lastly, one shows that ∥xρn∥ → ∥z∥ which, together with (8)(ii), entails that

xρn → z. Moreover, in this step it is also established that z = PC(x0).

At this point, the proof is concluded since

xρn → z ∈ C and s(ρn, xρn) → 0,

provides us with a pair (z, n) is the required conditions, for each given k ∈ N. Note that
since, for each k, the point z considered is always PC(x0), one can further conclude that
the limit of the sequence is indeed the optimal solution to the convex feasibility problem.

The steps (1)–(7) are proof-theoretically very simple, making use of combinatorial and
inductive arguments only. It is at step (8) that a priori a primitive recursive (in the sense
of Gödel) bound becomes out of reach, due to the use of sequential weak compactness (ii),
of the infinite pigeonhole principle (iii), and of Bolzano-Weirstrass compactness (iv). In
the next section, we show that via a modified proof, a pair (z, n) in the required conditions
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can be obtained using the principle BCX
bd and sidestepping the compactness arguments in

the final steps of the proof.
It is clear that the convergence proof described above is significantly different than

Wittmann’s general approach. On the one hand, it doesn’t require verifying the asymp-
totic regularity of the sequence with regards to the nonexpansive maps involved in the
iteration, i.e. it does not prove Pj-asymptotic regularity for all j ∈ [1;m]. It also does not
employ Xu’s technical lemma (Lemma 4.2) central to all Wittmann-like proofs. Moreover,
the use of compactness arguments in step (8) goes beyond sequential weak compactness
and is much more convoluted. For these reasons, it was not expected that bar-recursive
functionals could be absent from a proof-theoretical study of Dykstra’s convergence proof.

5.2. A tailored formal system. Here we will extend the system PAω
⊴[X, ⟨·, ·⟩] with some

ad hoc constants tailored to the treatment of the convergence proof of Dykstra’s algorithm
and later show that, leveraging on the presence of the BCX

bd principle, we can prove that the
algorithm is a Cauchy sequence bypassing the use of the compactness principles needed in
the original proof. Naturally, one can shift all the indexes so as to start from zero. Namely,
we formally consider the translated sequences (C̃n), (P̃n), (q̃n) and (x̃n) according to

C̃n := Cn+1, P̃n := Pn+1, q̃n := qn−(m−1)

x̃n := x̂n−(m−1), with x̂n :=

{
x0 if n ∈ [−(m− 1); 0]

xn otherwise
,

where in (x̂n) we just set all the terms x−(m−1), . . . , x−1, originally taken arbitrarily from
X, equal to the initial point x0. In this way, we can rewrite Dykstra’s algorithm as{

x̃0 = · · · = x̃m−1 ∈ X

q̃0 = · · · = q̃m−1 = 0
and ∀n ∈ N

{
x̃n+m = P̃n (x̃n+m−1 + q̃n)

q̃n+m = x̃n+m−1 + q̃n − x̃n+m
.

It is with this observation that we discuss the formal aspects of the convergence proof,
while at the same time we dispense with writing the tildes.

To the language Lω,X
⊴ we add the following constants

• m and b of type 0
• x0 and p of type X
• x(·) and q(·) of type 0 → X 8

• χ(·) of type 0 → (X → 0)
• P(·) of type 0 → (X → X)

where m will stand for the number of convex sets, b will provide the necessary informa-
tion regarding the majorizability requirement of the novel constants, χ(·) will stand for
characteristic functions for the convex sets, i.e. informally

χj(x) =0 1⇝ x ∈ C̃j = Cj+1,

and the P(·) for the projection maps necessary for the definition of the algorithm. We
extend the system PAω

⊴[X, ⟨·, ·⟩] to this language and add the following (computationally
complete) axioms

(D1) 2 ≤0 m
(D2) ∥x0∥, ∥p∥⊴R (b)R

9

(D3) ∀j0 ∀xX (χj(x) ≤0 1)
(D4) ∀j0 ∀xX ∀yX ((χj(x) =0 1 ∧ χj(y) =0 1) → ∀t ∈ [0, 1](χj(wt(x, y)) =0 1))
(D5) ∀j0 ∀xX (χj(x) =0 χj+m(x))

8Note the innocuous double use of the notation x0.
9One may change the reference point used in the majorizability notion from 0X to x0 (or p) allowing

to work simply with a numerical bound on ∥x0 − p∥, cf. [41]. We do not care to do this here.
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(D6) ∀j0 (χj(p) =0 1)
(D7) ∀j0 ∀xX (χj(Pj(x)) =0 1)
(D8) ∀j0 ∀xX ∀yX (χj(y) =0 1 → ∥x− Pj(x)∥⊴R ∥x− y∥)

and regarding Dykstra’s algorithm

(D9) ∀n0 (n ≤0 m− 1 → (xn =X x0 ∧ qn =X 0X))
(D10) ∀n0 (xn+m =X Pn(xn+m−1 + qn))
(D11) ∀n0 (qn+m =X xn+m−1 + qn − xn+m)

We denote the resulting system by Dω
⊴. From (D4), (D7) and (D8), using the arguments

in Lemma 3.3, one shows that

Dω
⊴ ⊢ ∀j0 ∀xX ∀yX (χj(y) =0 1 → ⟨Pj(x)− x, Pj(x)− y⟩ ≤R 0R) ,

which, moreover, entails that the term Pj(x) is provably the unique zX satisfying

χj(z) =0 1 ∧ ∀yX (χj(y) =0 1 → ∥x− z∥ ≤R ∥x− y∥) .

This also implies that

Dω
⊴ ⊢ ∀j0 ∀xX (χj(x) =0 1 → Pj(x) =X x)

and in particular, by (D6), ∀j0 (Pj(p) =X p). Furthermore, we have that for all j0 and
xX , yX

∥Pj(x)− Pj(y)∥2 =R ⟨Pj(x)− Pj(y), Pj(x)− Pj(y)⟩
=R ⟨Pj(x)− x, Pj(x)− Pj(y)⟩+ ⟨x− y, Pj(x)− Pj(y)⟩

+ ⟨y − Pj(y), Pj(x)− Pj(y)⟩
≤R ⟨x− y, Pj(x), Pj(y)⟩

which entails that ∥Pj(x) − Pj(y)∥ ≤R ∥x − y∥, i.e. Pj is provably nonexpansive in Dω
⊴.

This, in turn, implies the extensionality of Pj .

Adapting the Theorem 2.8 to this setting, we have the following result stating that the
formal system Dω

⊴ is suitable for bound extractions.

Theorem 5.2 (Extraction in Dω
⊴). For an arbitrary formula A(z) of the language L(Dω

⊴)

with free-variables z, let A(z)U be ∀̃b ∃̃cAU (z, b, c). If

Dω
⊴ + mACX

bd + BCX
bd +MAJX ⊢ A(z),

then there are closed monotone terms t of L(Dω
⊴) such that

Dω
⊴ ⊢ ∀̃a, b ∀z ⊴ aAU (z, b, tab).

Moreover, the terms t can be extracted from a proof witnessing the assumption.

Proof. We just need to verify the interpretation of the new axioms, and that we still have
a majorizability theory, i.e. that all the introduced constants are majorizable. For the
first part, note that the axioms (D1)–(D11) are given by universal sentences (possibly
with bounded matrices) or even quantifier-free formulas. Therefore, they are trivially
interpreted by themselves. The second requirement is equally easy. It is clear for m and
b as they are of type 0 and so self-majorizable. The majorizability of x0 and p follows
from (D2) using Lemma 2.5(iii). By the axiom (D3), the constant χ(·) is majorizable by

the constant λj, n. (10). From (D9)–(D11), the majorizability of x(·) and q(·) follows from
the majorizability of x0, 0X and P(·) (as well as from the majorizability of +X and −X).
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Hence, we just need to see that P(·) is majorizable. Indeed, since for any j0 and xX , we
have

∥Pj(x)∥ ≤R ∥Pj(x)− p∥+ ∥p∥
=R ∥Pj(x)− Pj(p)∥+ ∥p∥
≤R ∥x− p∥+ ∥p∥
≤R ∥x∥+ ∥p∥+ ∥p∥

it follows from Lemma 2.5 that P(·) is majorized by the constant λj, n. (n+ 2b+ 1). □

5.3. On the intensional perspective. One may wonder that, if the set Cj are apparently

given by the universal property ∀k0
(
∥x− Pj(x)∥⊴R

(
1

k+1

)
R

)
, then why is it that we can

formalize the projection principle

Pj(x) ∈ Cj ∧ ∀yX (y ∈ Cj → ∥x− Pj(x)∥ ≤R ∥x− y∥) ,

without any concern for the issues discussed in section 3. It turns out that χj(x) =0 1 is
an imperfect description of the set Cj , and subsequently this projection is formally also
weaker. We have shown that χj(x) =0 1 → Pj(x) =X x is provable in Dω

⊴. However, our
system crucially does not encompass the reverse direction. This is a required feature. In
fact, we even have that

Dω
⊴ + mACX

bd + BCX
bd +MAJX ̸⊢ Pj(x) =X x→ χj(x) =0 1.

Otherwise, by Theorem 5.2, in any suitable structure for the (flattened version of) our
system there would exist k ∈ N such that

∥Pj(x)− x∥ ≤ 1

k + 1
→ x ∈ Cj ,

which is in general false unless the Cj are taken to be the full space X. This distinction
between the universal predicate Pj(x) =X x and the quantifier-free χj(x) =0 1, is actual
connected with the absence of a prominent feature in the constant χj : its extensionality,

(Eχ) ∀j0 ∀xX ∀yX ((x =X y ∧ χj(x) =0 1) → χj(y) =0 1) .

Indeed, using (D7), we trivially have

Dω
⊴ ⊢ (Eχ) → ∀j0 ∀xX (Pj(x) =X→ χj(x) =0 1) .

For the reverse direction, observe that since Pj is provably extensional one derives the
implication (x =X y ∧ χj(x) =0 1) → Pj(y) =X y. We conclude that

Dω
⊴ ⊢ ∀j0 ∀xX (Pj(x) =X→ χj(x) =0 1) → (Eχ).

This kind of intensional perspective have been used in proof mining before, but its tremen-
dous usefulness was only recently shown through the work of Nicholas Pischke (see [43, 44]).

5.4. A modified proof of Dykstra’s convergence. We now discuss how one can prove
that Dykstra’s algorithm is a Cauchy sequence in our formal system Dω

⊴ avoiding the

compactness arguments central to the original proof by using instead BCX
bd. We first

remark that the steps (1)–(6) immediately formalize in our system. From the proof that
(xn) is bounded, we have ∀n0 (xn ⊴X 3b). Moreover, the system proves that

∀n0 ∀zX
m−1∧

j=0

z =X Pj(z) → s(n, z) ≥R 0

 ,
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where s(n, z) is as before (but now with shifted indexes):

s(n, z) := 2
n+m−1∑
k=n

⟨xk − z, qk⟩.

Consider the ε-weak projection associated with the universal formula ∀n0Ω(x, n), where

Ω(x, n) ≡
m−1∧
j=0

∥x− Pj(x)∥⊴R
1

n+ 1
.

With arguments as in Lemmas 3.2 and 3.3, one can prove an ε-weak version of the vari-
ational inequality characterization, and so for any k0 there exists a point zX such that∧m−1

j=0 z =X Pj(z) and

∀y ⊴X 3b

m−1∧
j=0

y =X Pj(y) → ⟨z − x0, z − y⟩⊴R
1

k + 1

 ,

i.e.

∀y ⊴X 3b

∀r0
m−1∧
j=0

∥y − Pj(y)∥⊴R
1

r + 1
→ ⟨z − x0, z − y⟩⊴R

1

k + 1

 .

Using BCX
bd, it follows that there exists R0 such that

∀y ⊴X 3b

m−1∧
j=0

∥y − Pj(y)∥⊴R
1

R+ 1
→ ⟨z − x0, z − y⟩⊴R

1

k + 1

 .

While the original proof only needed to prove that the sequence (xn) was asymptotically
regular, in our modified proof we further need to argue that it is Pj-asymptotically regular
for all j ≤ m− 1, i.e. ∀j ≤0 m− 1 (lim ∥xn − Pj(xn)∥ = 0), which means that

∀R0 ∃N0 ∀n ≥0 N

m−1∧
j=0

∥xn − Pj(xn)∥⊴R
1

R+ 1

 .

This property can be derived from the usual asymptotic regularity by leveraging the
properties of Pj and using some simple combinatorial arguments (cf. [41, Proposition 3.7]).
Therefore, the Pj-asymptotic regularity of (xn) is provable in Dω

⊴. We overall have shown
that

(⋆) ∀k0 ∃zX ∃N0

m−1∧
j=0

z =X Pj(z) ∧ ∀n ≥0 N

(
⟨z − x0, z − xn⟩⊴R

1

k + 1

) .

Remark 5.3. We take this moment to point out that this result can be view as an instance
of Theorem 2.11 with φ(x, y) = ⟨x − x0, y⟩ and the functional T defined for each xX by
T (x) := Pi0(x), where i0 := min{j ≤ m−1 : ∀j′ ≤0 m−1

(
∥x− Pj′(x)∥ ≤R ∥x− Pj(x)∥

)
}.

Alternatively, look at the similar result but immediately stated for a finite number of maps
in [15, Proposition 6.1].

We return to our modified proof, now arguing that (⋆) is sufficient for the main com-
binatorial argument to go through, concluding the proof. Corresponding to the technical
lemma in step (7), we have that provably in Dω

⊴,

lim inf
n+m−1∑
k=n

|⟨xk − xn−m+1, qk⟩| =R 0R,
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and from (⋆), we derive

(⋆⋆) ∀k0∃zX∃n0
m−1∧

j=0

z =X Pj(z) ∧ ⟨z − x0, z − xn⟩⊴R
1

k + 1
∧ s(n, xn−m+1)⊴R

1

k + 1

.
We can consider the arguments used in Lemma 5.1 from step (6) in the original proof, and
obtain

∀k0 ∃r0 ∀zX ∀n0
(

m−1∧
j=0

z =X Pj(z) ∧ ∥xn+m−1 − z∥, s(n, xn+m−1)⊴R
1

r + 1

→ ∀i ≥ n

(
∥xi+m−1 − z∥⊴R

1

k + 1

))
.

The proof concludes using the following result.

Lemma 5.4. The following statement holds in Dω
⊴

∀r0 ∃ℓ0 ∀zX ∀n0m−1∧
j=0

z =X Pj(z) ∧ ⟨x0 − z, xn+m−1 − z⟩, s(n, xn+m−1) ≤R
1

ℓ+ 1


→ ∥xn+m−1 − z∥ ≤ 1

r + 1
.

Proof. We have,

∥xn+m−1 − z∥2 =R ⟨x0 − z, xn+m−1 − z⟩+ ⟨xn+m−1 − x0, xn+m−1 − z⟩

≤R ⟨x0 − z, xn+m−1 − z⟩+
n+m−1∑
k=n

⟨z − xn+m−1, qk⟩

=R ⟨x0 − z, xn+m−1 − z⟩+ 1

2
(s(n, xn+m−1)− s(n, z))

≤R ⟨x0 − z, xn+m−1 − z⟩+ 1

2
s(n, xn+m−1),

which entails the result. □

We have therefore obtained overall

∀k0 ∃zX ∃n0 ∀i ≥0 n

(
∥xi+m−1 − z∥ ≤R

1

k + 1

)
,

and so, by triangle inequality, we conclude that (xn) is a Cauchy sequence.
It is this modified proof in the system Dω

⊴ that was analysed in [41] and resulted in
quantitative data in the form of a primitive recursive functional ∆ providing an uniform
rates of metastability for Dykstra’s algorithm.

Theorem 5.5 ([41, Theorem 3.11]). Let C1, . . . , Cm be m ≥ 2 convex subsets of a Hilbert
space X such that

⋂m
j=1Cj ̸= ∅. Let x0 ∈ X and b ∈ N\{0} be given such that b ≥ ∥x0−p∥,

for some p ∈
⋂m

j=1Cj. Then, the sequence (xn) generated by (D) is metastable and

∀ε ∈ (0, 1] ∀f : N → N ∃n ≤ ∆(m, b, ε, f) ∀i, j ∈ [n;n+ f(n)] (∥xi − xj∥ ≤ ε) .

Finally, note that a pair (z, n) for the premise of Lemma 5.1 can also be obtained under
a metric regularity result, i.e. under the assumption that

(⊛) ∀ε > 0 ∀R ∈ N ∃δ > 0 ∀x ∈ BR(0)

 m∧
j=1

∥x− Pj(x)∥ ≤ δ → ∃z ∈ C (∥x− z∥ ≤ ε)

 ,
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together with the fact that (xn) is Pj-asymptotically regular for each j ∈ [1;m]. Indeed,

let k ∈ N be given and consider r ∈ N as in Lemma 5.1. For ε =
1

r + 1
and with R a

bound on the Dykstra’s iteration, take δ > 0 as guaranteed to exist in the assumption
of metric regularity. By the Pj-asymptotic regularity, we have N ∈ N such that xn
satisfies the premise of (⊛), for any n ≥ N . By step (7), we can find n0 ≥ N such

that s(n0, xn0) ≤ 1

r + 1
. Now, by the assumption on δ, we have some z ∈ C such that

∥xn0 − z∥ ≤ 1

r + 1
. By Lemma 5.1, we conclude that

∀i ≥ n0

(
∥xi − z∥ ≤ 1

k + 1

)
.

It is known that the assumption of metric regularity is very strong and, in the case of Fejér
monotone sequences, it will entail the existence of uniform rates of convergence. However,
Dykstra’s algorithm is not Fejér monotone and still rates of convergence were possible
via the argument above. Motivated by this result (see [41, Section 4]), a localized and
relativized generalization of the usual concept of Fejér monotonicity was introduced and
studied in the recent [35]. In particular, [35] provides a much simpler convergence proof of
Dykstra’s algorithm in the finite dimensional case. Moreover, note that despite the final
output of a rate of convergence for the iteration, the study of asymptotic regularity for the
sequence up to that point was only in the form of a rate for the metastable formulation.
Naturally, a posteriori, the metastable rates for asymptotic regularity get upgraded into
full rates of convergence, but this too strengthens the usefulness of metastablity. In fact,
one should not avoid it in preference of rates of convergence at the risk of missing out on
subtle hidden quantitative information.

6. Epilogue

This paper provides a proof-theoretical justification to the recent proof mining study in
[41]. There, the asymptotic behaviour of Dykstra’s algorithm was analysed and metasta-
bility rates were obtained which are primitive recursive in the sense of Gödel. However, a
naive interpretation of the original convergence proof would require quantitative data given
by Spector’s bar-recursive functionals and their absence was unexpected. We discuss the
proof-theoretical arguments underlying the analysis in [41] by explaining that, in the pres-
ence of tame bounded collection principles, one can sidestep the compactness arguments
crucial in the original proof which would otherwise require the functional interpretation
of arithmetical comprehension.

There were previous proof mining case studies in which simplifications allow to avoid the
use of certain compactness arguments (e.g. [30]), and recent applications which featured
such phenomenon were supported by the theoretical justification given in [15]. However,
all previous such examples were of a similar nature: they always regard an iterative method
akin to the Halpern schema and the arguments are always similar to the Wittmann’s proof
strategy. One could therefore question the generality in practice of the approach from [15].
This paper also answers this issue. On one hand, we discuss how the convergence proof for
the case of Dykstra’s algorithm is significantly different than Wittmann’s argument. On
the other, we are still able to bypass the troublesome arguments relying on the technique
from [15]. Naturally, this does not settle the issue and further study is needed to fully
understand the reach of this approach using bounded collection principles.

The ability to provide a simplified convergence proof reliant on a metastable formula-
tion gives a strong argument for the usefulness of metastability and of proof-theoretical
methods in mathematics. Like in the example discussed in section 4.2, mathematical
proofs that are not reliant on strong analytical principles but instead mostly consist on
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combinatorial arguments are easier to generalize. For the case at hand, the availability of
a simpler proof, allowed to establish in [42] the strong convergence of Dykstra’s algorithm
with Bregman projection maps in the context of general reflexive Banach spaces.
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