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Abstract. We generalize the alternating Halpern-Mann iteration to countably
infinite families of nonexpansive maps and prove its strong convergence towards
a common fixed point in the general nonlinear setting of Hadamard spaces. Our
approach is based on a quantitative perspective which allowed to circumvent preva-
lent troublesome arguments and in the end provide a simple convergence proof. In
that sense, discussing both the asymptotic regularity and the strong convergence
of the iteration in quantitative terms, we furthermore provide low complexity
uniform rates of convergence and of metastability (in the sense of T. Tao). In
CAT(0) spaces, we obtain linear and quadratic uniform rates of convergence. Our
results are made possible by proof-theoretical insights of the research program
proof mining and extend several previous theorems in the literature.

Keywords: Hyperbolic spaces; CAT(0) spaces; uniform rates of convergence; metasta-
bility; proof mining
MSC2020 Classification: 47J25; 47H09; 47H10; 03F10; 47H05

1. Introduction

In the general nonlinear context of a hyperbolic space (X, d,W ), the alternating
Halpern-Mann iteration, introduced by Dinis and the second author in [17], can be
formulated as

(HM) x0 ∈ C and

{
yn = (1− αn)T (xn)⊕ αnu

xn+1 = (1− βn)U(yn)⊕ βnyn

where T, U are nonexpansive maps on a nonempty convex set C ⊆ X, u ∈ C and
(αn), (βn) ⊂ [0, 1]. In this paper, we employ the novel finitary approach used in
[17] and extend it in order to establish the strong convergence of a generalized ver-
sion of (HM) allowing for countable families of nonexpansive maps. While usual
convergence proofs in nonlinear spaces of this kind of fixed point iterations rely on
mathematically complicated arguments, like Banach limits and reductions to other
iterative methods, the finitistic perspective considered in [17] manages to avoid those
arguments and the strong convergence result was established via elementary meth-
ods. We show that the same approach can also be used in this broader setting.

Funding: The first author was supported through FCT (2022.12585.BD). The second au-
thor was supported through the program “Oberwolfach Leibniz Fellows” by the Mathematisches
Forschungsinstitut Oberwolfach in 2024 as well as the DFG project PI 2070/1-1.
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2 PAULO FIRMINO AND PEDRO PINTO

The algorithm (HM) provides an unified treatment of several well-known iterative
schemes:

(1) U = Id, then (xn) is the Halpern iteration

xn+1 = yn = (1− αn)T (xn)⊕ αnu.

In Hilbert spaces, Halpern [23] established sufficient and necessary conditions for
the strong convergence of this method towards the projection of the anchor point
u onto the set of fixed points of T , Fix(T ). These conditions however prevented
the natural choice αn = 1

n+1
, which was later overcome in a celebrated result by

Wittmann [48].
(2) If T = Id, then (xn) is the Tikhonov-Mann iteration introduced in [12] by

Cheval and Leuştean, and (yn) is the modified Halpern iteration introduced in
normed linear spaces by Kim and Xu [24]. The work in [24] showed the strong con-
vergence of the modified Halpern iteration (yn) in uniformly smooth Banach spaces.
Under milder conditions, [13] showed the strong convergence of (yn) in the nonlinear
setting of CAT(0) spaces. The quantitative study of the asymptotic behaviour of
(yn) in CAT(0) spaces featured in [42]. In the recent [11], Cheval, Kohlenbach and
Leuştean provide an effective algorithm to translate quantitative data from (yn) to
(xn) and vice-versa, in the general nonlinear setting of hyperbolic spaces.

(3) If T = Id and αn ≡ 0, then (xn) is the well-known Krasnoselski-Mann itera-
tion [29, 36]

xn+1 = (1− βn)U(xn)⊕ βnxn.

(4) In normed linear spaces, if T = Id and u = 0, then it reduces to the it-
eration introduced by Yao, Zho and Liou [50], which featured in recent work by
Boţ, Csetnek and Meier [4] (in connection with strongly convergent versions of the
Douglas-Rachford and the forward-backwards splitting algorithms),

xn+1 = (1− βn)U((1− αn)xn) + βn(1− αn)xn,

and for which a quantitative analysis was carried out in [16]. In [17], Dinis and
the second author prove the strong convergence of the alternating Halpern-Mann
iteration in CAT(0) spaces while providing a quantitative analysis of the iteration.
A generalization to the asymptotic regularity of the sequence was subsequently ob-
tained in [34].

In this paper, motivated by the recent work of Boţ and Meier [5] and Cheval [9],
we consider the following generalization to countably infinite families {Tn} and {Un}
of nonexpansive selfmaps on a nonempty, closed, convex subset C of a hyperbolic
space X,

(HM∞) x0 ∈ C and

{
yn = (1− αn)Tn(xn)⊕ αnu

xn+1 = (1− βn)Un(yn)⊕ βnyn

Our goal is to study the asymptotic behaviour of (HM∞) under general geodesic
settings. We consider the following conditions on the parameters:

(C1) limαn = 0,
(C2)

∑
αn = ∞,

(C3)
∑

|αn+1 − αn| <∞,
(C4)

∑
|βn+1 − βn| <∞,

(C5)
∑
d(Tn+1(xn), Tn(xn)) <∞,
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(C6)
∑
d(Un+1(yn), Un(yn)) <∞,

(C7) 0 < lim βn < 1.

The central result of the paper, which is also new in normed linear spaces, is the
following (the proof of a slightly stronger version is given in section 5).

Theorem 1.1. Let X be a UCW–hyperbolic space, C ⊆ X a nonempty convex
subset, and u ∈ C. Consider {Tn}, {Un} families of nonexpansive maps in C
such that F := Fix({Tn}) ∩ Fix({Un}) ̸= ∅, and sequences (αn), (βn) ⊂ [0, 1] with
(C1)–(C7). For arbitrary x0 ∈ X, let (xn) be the iteration generated by the scheme
(HM∞). Then, (xn) is asymptotically regular and {Tn}– and {Un}–asymptotically
regular, i.e.

lim d(xn, xn+1) = lim d(xn, Tn(xn)) = lim d(xn, Un(xn)) = 0.

Moreover, when X is an Hadamard space, C is closed, and both families satisfy the
NST condition (II) with NST2–moduli, then (xn) converges strongly to a common
fixed point of the maps (the closest one to the anchor point u).

Despite the more convoluted arguments, the overall strategy is the same as in [17].
Indeed, motivated by a proof mining perspective [26], we first establish the metasta-
bility property of the iteration, i.e.

(†) ∀ε > 0 ∀f : N → N ∃n ∈ N ∀i, j ∈ [n; f(n)] (d(xi, xj) ≤ ε) .

The terminology is due to Tao [47] and this property is an equivalent reformulation
of the Cauchy property although computationally weaker. In fact, we are able to
obtain an uniform computable so-called rate of metastability, while it is known
that computable Cauchy rates are in general excluded. Be that as it may, having
the metastability property therefore entails that (xn) is a Cauchy sequence and
strong convergence follows under a Cauchy completeness assumption. The onus
of the argument is thus placed on proving the property (†). We note that in the
particular case where Tn ≡ Id and {Un} satisfies condition (C1) from [32], a rate of
metastability was recently obtained in [10] also in a manner similar to [17].

The paper is organized as follows. In the next section, we recall all the relevant
notions and technical lemmas. In section 3, we show the asymptotic regularity of
(HM∞) in general UCW–hyperbolic spaces. We furthermore obtain linear and qua-
dratic rates of convergence for a particular choice of parameters. A short discussion
of the metric projection and useful quantitative results is carried out in section 4.
Finally, in section 5, we establish the metastability property of (HM∞) which then
entails the strong convergence of the algorithm in complete CAT(0) spaces.

2. Preliminaries and Lemmas

2.1. Nonlinear Spaces. Let (X, d,W ) be a metric space together with a function
W : X ×X × [0, 1] → X satisfying for all x, y, z, w ∈ X and λ, λ′ ∈ [0, 1],

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y)
(W2) d(W (x, y, λ),W (x, y, λ′)) = |λ− λ′|d(x, y)
(W3) W (x, y, λ) = W (y, x, 1− λ)
(W4) d(W (x, y, λ),W (z, w, λ)) ≤ (1− λ)d(x, z) + λd(y, w).

With these conditions, we say that X is a W–hyperbolic space. The reader can
easily convince himself that these are the basic properties that one expects to have
from a convex combination and so we shall use the friendlier notation (1−λ)x⊕λy
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to denote W (x, y, λ). The idea of considering a function W to study convexity in a
general metric setting is due to Takahashi [45] who introduced the notion of convex
metric space as a triple (X, d,W ) for a function W satisfying (W1). The notion
we consider here was introduce by Kohlenbach [25] and has since become one of
the most used settings to discuss fixed point methods in nonlinear geodesic spaces.
We remark that this class of hyperbolic spaces is slightly more restrictive than that
of Goebel and Kirk [20], but more general than the class of hyperbolic spaces as
introduced by Reich and Shafrir [40].

Using (W1), it is easy to verify that for all x, y ∈ X and λ ∈ [0, 1],

d(x, (1− λ)x⊕ λy) = λd(x, y) and d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y).

Naturally, the notion of convex set still makes sense in this framework. We say
that a subset C ⊆ X is a convex set if for all x, y ∈ C and λ ∈ [0, 1], the point
(1 − λ)x ⊕ λy still lies in C. The space is uniformly convex if for all r > 0 and
ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all x, y, a ∈ X

d(x, a) ≤ r

d(y, a) ≤ r

d(x, y) ≥ εr

 → d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r

We say that (X, η) is a UCW–hyperbolic space (as introduced by Leuştean in [30],
inspired by [21, p.105]), if X is a W–hyperbolic space and η : (0,∞)× (0, 2] → (0, 1]
is a function witnessing δ in the property above which is monotone in r, i.e.

∀ε ∈ (0, 2] ∀r, s > 0 (r ≤ s→ η(s, ε) ≤ η(r, ε)) .

Such a function η is called a monotone modulus of uniform convexity. We shall use
the following property of UCW–hyperbolic spaces.

Lemma 2.1 ([31, Lemma 2.1(iv)]). Let (X, η) be a UCW–hyperbolic space. Then
for all s ≥ r > 0, ε ∈ (0, 2], x, y, a ∈ X and λ ∈ [0, 1]

d(x, a) ≤ r

d(y, a) ≤ r

d(x, y) ≥ εr

 → d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)η(s, ε))r.

An important class of hyperbolic spaces is that of CAT(0) spaces, introduced
by Alexandrov [1] and named as such by Gromov in [22] (for further details see
e.g. [6]). A CAT(0) space is a W–hyperbolic space that satisfies the CN− property
(which, in the presence of the (W1)–(W4) axioms, is equivalent to Bruhat-Tits
CN-inequality [8])

(CN−) ∀x, y, z ∈ X

(
d2

(
z,

1

2
x⊕ 1

2
y

)
≤ 1

2
d2(z, x) +

1

2
d2(z, y)− 1

4
d2(x, y)

)
The CN− property extends to arbitrary convex combinations in the following way
(see [15, Lemma 2.5]): for all x, y, z ∈ X and λ ∈ [0, 1],

(CN+) d2 (z, (1− λ)x⊕ λy) ≤ (1− λ)d2(z, x) + λd2(z, y)− λ(1− λ)d2(x, y)

Leuştean proved that CAT(0) spaces have a monotone modulus of uniform convexity,
and so CAT(0) spaces are in particular UCW–hyperbolic spaces.

Proposition 2.2 ([30, Proposition 8]). Every CAT(0) space is a UCW–hyperbolic
space with monotone modulus of uniform convexity η(ε) = ε2/8.
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Examples ofW–hyperbolic spaces include the linear normed spaces as well as their
convex subsets, and the Hilbert ball [21]. Obviously, UCW–hyperbolic spaces gen-
eralize to a nonlinear setting the notion of uniformly convex normed space. Indeed,
the hyperbolic setting is considered the nonlinear counterpart to normed spaces and,
in that same sense, CAT(0) spaces are the nonlinear counterpart of inner product
spaces. Let us make this parallel clearer.

In a metric space, we have the quasi-linearization function ⟨·, ·⟩ : X2 ×X2 → R
defined by

⟨−→xy,−→uv⟩ := 1

2

(
d2(x, v) + d2(y, u)− d2(x, u)− d2(y, v)

)
,

where −→xy denotes the pair (x, y). Note that ⟨−→xy,−→uv⟩ = ⟨x−y, u−v⟩ in inner product
spaces. In fact, this function exhibits properties akin to the inner product, and it
was shown in [3, Proposition 14] that in metric spaces it is the unique function
satisfying simultaneously:

(i) ⟨−→xy,−→xy⟩ = d2(x, y)
(ii) ⟨−→xy,−→uv⟩ = ⟨−→uv,−→xy⟩
(iii) ⟨−→xy,−→uv⟩ = −⟨−→yx,−→uv⟩
(iv) ⟨−→xy,−→uv⟩+ ⟨−→xy,−→vw⟩ = ⟨−→xy,−→uw⟩

Moreover, [3] proved that CAT(0) spaces are characterized by a corresponding non-
linear version of the Cauchy-Schwarz inequality,

(CS) ⟨−→xy,−→uv⟩ ≤ d(x, y)d(u, v).

Using (CN+), one derives the following useful inequality.

Lemma 2.3. Let X be a CAT(0) space, and consider x, y, z ∈ X and λ ∈ [0, 1].
Then,

d2((1− λ)x⊕ λy, z) ≤ (1− λ)2d2(x, z) + 2λ(1− λ)⟨−→xz,−→yz⟩+ λ2d2(y, z).

2.2. Quantitative notions and useful lemmas. Let (xn) be a sequence in a
metric space (X, d) and x ∈ X. We denote [a; b] for the set of natural numbers
between a and b, i.e. [a; b] := [a, b] ∩ N.

Definition 2.4. We say that

(1) φ : (0,∞) → N is a rate of convergence for (xn) (towards x) if

∀ε > 0 ∀m ≥ φ(ε) (d(xm, x) ≤ ε) ,

(2) φ : (0,∞) → N is a Cauchy rate for (xn) if

∀ε > 0 ∀i, j ≥ φ(ε) (d(xi, xj) ≤ ε) ,

(3) Φ : (0,∞)× NN → N is a rate of metastability for (xn) if

∀ε > 0 ∀f ∈ NN ∃n ≤ Φ(ε, f) ∀i, j ∈ [n; f(n)] (d(xi, xj) ≤ ε) .

The following result is easily argued by contradiction (see e.g. [17, Lemma 2.5]).

Lemma 2.5. Let (X, d) be a metric space and (xn) a sequence in X. Then, (xn)
has the metastability property, i.e.

∀ε > 0 ∀f ∈ NN ∃n ∈ N ∀i, j ∈ [n; f(n)] (d(xi, xj) ≤ ε)

if and only if (xn) is a Cauchy sequence.
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Note that the despite being equivalent, unsurprisingly metastability is computa-
tionally weaker than the Cauchy property, as the proof that metastability implies
the Cauchy property is non-effective. Therefore, the existence of a computable rate
of metastability usually does not entail a computable Cauchy rate. Moreover, con-
siderations from computability theory exclude the existence of general computable
Cauchy rates, while proof-theoretical metatheorems guarantee the availability of
computable uniform rates of metastability in broad circumstances. On the other
hand, a function φ is a Cauchy rate if and only if Φ(ε, f) = φ(ε) is a rate of
metastability (e.g. [28, Proposition 2]).

We will also require the following notions of asymptotic regularity (cf. [2, 7]) as
well as their corresponding quantitative characterizations.

Definition 2.6. Consider a family of maps {Tn : C → C} and a map T : C → C,
for some nonempty C ⊆ X. We say that a sequence (xn) ⊆ C is

(1) asymptotically regular if lim d(xn, xn+1) = 0. A rate of asymptotic regularity
for (xn) is a rate of convergence for (d(xn, xn+1)) towards 0.

(2) (Tn)–asymptotically regular if lim d(xn, Tn(xn)) = 0. A rate of (Tn)–asymptotic
regularity for (xn) is a rate of convergence for (d(xn, Tn(xn)) towards 0.

(3) T–asymptotically regular if lim d(xn, T (xn)) = 0. A rate of T–asymptotic
regularity for (xn) is a rate of convergence for (d(xn, T (xn))) towards 0.

We recall a well-known lemma by Xu [49] which is particularly useful in the study
of fixed point iterative methods.

Lemma 2.7. Let (sn) be a sequence of nonnegative real numbers such that

for all n ∈ N, sn+1 ≤ (1− an)sn + anbn + cn,

with sequences (an) ⊆ [0, 1], (bn) ⊆ R, and (cn) ⊆ [0,+∞) satisfying

(i)
∑

an = +∞, (ii) lim sup bn ≤ 0, (iii)
∑

cn < +∞.

Then lim sn = 0.

We say that θ : N → N is a rate of divergence for a sequence of real numbers (rn)
satisfying lim rn = +∞, whenever

∀K ∈ N ∀m ≥ θ(K) (rm ≥ K) .

Quantitative versions of Lemma 2.7 were given before, for example in [27] for the
case cn ≡ 0, and for the general case in [33, Section 3]. We shall require first a
quantitative version of this lemma in the particular case when bn ≡ 0, which we give
below and whose proof can be found for example in [17, Lemma 2.9(1)].

Proposition 2.8. Let (sn), (cn) ⊆ [0,+∞) and (an) ⊆ [0, 1] be such that

for all n ∈ N, sn+1 ≤ (1− an)sn + cn.

Assume that L ∈ N is an upper bound on (sn), that
∑
an = +∞ with rate of

divergence θ, and that
∑
cn converges with a Cauchy rate χ. Then lim sn = 0 with

rate of convergence

Σ(ε) := θ

(
χ
(ε
2

)
+ 1 +

⌈
ln

(
2L

ε

)⌉)
+ 1.
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Sabach and Shtern [41, Lemma 3] proved an interesting version of Xu’s lemma
that, with a particular choice of the sequence (an), allowed them to obtain linear
rates of asymptotic regularity for the sequential averaging method (SAM), itself a
generalization of the Halpern iteration. The following version is from [34].

Lemma 2.9. Let L > 0, J ≥ N ≥ 2, and γ ∈ (0, 1]. Assume that an = N
γ(n+J)

and cn ≤ L for all n ∈ N. Consider a sequence of nonnegative real numbers (sn)
satisfying s0 ≤ L and sn+1 ≤ (1− γan+1)sn + (an − an+1)cn, for all n ∈ N. Then,

sn ≤ JL

γ(n+ J)
, for all n ∈ N.

A slightly more complicate version of Lemma 2.8 will be needed in establishing
the metastability property of (HM∞). A proof can be found in [17, Lemma 2.11]
(see also similar quantitative versions in the previous [27]).

Lemma 2.10. Let (sn) be a bounded sequence of non-negative real numbers and
L ∈ N\{0} an upper bound on (sn). Consider sequences of real numbers (an) ⊆ [0, 1],
(bn) ⊆ R and assume that

∑
an = ∞ with rate of divergence θ. Let ε > 0, K,P ∈ N

be given. If for all m ∈ [K;P ]

(i) sm+1 ≤ (1− am)sm + ambm +
ε

3(P + 1)
and (ii) bm ≤ ε

3
,

then ∀m ∈ [σ;P ] (sm ≤ ε), where

σ := θ

(
K +

⌈
ln

(
3L

ε

)⌉)
+ 1.

3. Rates of convergence and asymptotic regularity

In this section we study the asymptotic behaviour of the sequence with regards to
the family of nonexpansive maps. We obtain uniform rates of asymptotic regularity
of low complexity in general nonlinear geodesic settings.

3.1. Initial considerations and the NST conditions. A frequent first step in
proving the convergence of sequences approximating a fixed point is to establish the
asymptotic regularity of the sequence. When stating that a sequence (un) is asymp-
totically regular with respect to a map T , i.e. lim d(un, T (un)) = 0, what one means is
that such sequence behaves asymptotically as a fixed point of T . When generalizing
some iterative scheme to families of maps, it is not hard to find simple conditions in
order to extend the original arguments and in the end prove lim d(un, Tn(un)) = 0.
However, in this case, the corresponding ‘asymptotic meaning’ is no longer fully
clear. Indeed, the asymptotic regularity result for a sequence wanting to approxi-
mate a common fixed point of a family of maps {Tn} should entails that the sequence
behaves asymptotically as a common fixed point. In this perspective, what one would
like to have is that the sequence is asymptotically regular with respect to each of
the individual maps, i.e. lim d(un, Tj(un)) = 0, for all j ∈ N. In order to bridge the
gap between this “diagonal-type” of asymptotic regularity and the desired result,
several notions have been introduced in the literature. A pair of conditions which
have played a crucial role in discussing the asymptotic regularity in the context of
families of maps are the so-called NST conditions (originally considered by Nakajo,
Shimoji and Takahashi in Banach spaces, cf. [37, 46]):
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Let T be a map and {Tn} be a countable family of maps, all defined on a set
C ⊆ X and such that Fix({Tn}) ̸= ∅1. Then, {Tn} satisfies the NST condition (I)
with respect to the map T if Fix(T ) ⊆ Fix({Tn}) and for any bounded sequence
(un) ⊆ C,

lim d(un, Tn(un)) = 0 ⇒ lim d(un, T (un)) = 0.

{Tn} is also said to satisfy the NST-condition (II) if for each bounded sequence
(un) ⊆ C

if lim d(un, Tn(un)) = 0, then ∀j ∈ N (lim d(un, Tj(un)) = 0) .

For the sequel, consider a reference point p ∈ X fixed. A quantitative perspective
on the NST condition (I) gives rise to the following definition.

Definition 3.1. We say that (γ,Γ) is an NST1–modulus for the pair ({Tn}, T ) if

∀ε > 0 ∀b, J ∈ N ∀u ∈ Bb(p)∩C (d(u, T (u)) ≤ γ(b, J, ε) → ∀j ≤ J (d(u, Tj(u)) ≤ ε))

and, for any b ∈ N, φ : (0,∞)× NN → N, and sequence (un) ⊆ Bb(p) ∩ C,

if d(un, Tn(un)) → 0 with rate φ, then d(un, T (un)) → 0 with rate Γ(b, φ)

When we write ‘rate’, it is intended in its general form of ‘rate of metastability’.
Thus, in the case above, we have that if

∀ε > 0 ∀f ∈ NN ∃n ≤ φ(ε, f) ∀m ∈ [n; f(n)] (d(um, Tm(um)) ≤ ε) ,

then

∀ε > 0 ∀f ∈ NN ∃n ≤ Γ(b, φ)(ε, f) ∀m ∈ [n; f(n)] (d(um, T (um)) ≤ ε) .

Remark 3.2. Note that, in finite dimensional metric spaces the existence of an
NST1–modulus is guaranteed for any family {Tn} satisfying the NST condition (I)
with respect to some map T . In general however, the existence of such a modulus is
a stronger requirement (due to the uniformization of the property) but a necessary
one for the proof-theoretical techniques underlying these quantitative studies.

Example 3.3. Let (cn) ⊆ (0,∞) be a sequence of positive real numbers such that
inf cn ≥ ĉ > 0. Let X be a Banach space and consider Tn to be the single-valued
resolvent function JA

cn = (Id+ cnA)
−1 of an accretive operator A subject to the range

condition,

D(A) ⊆ C ⊆ R(Id + cA), for all c > 0,

where D(A) is the closure of the domain of A, and C is a nonempty closed subset of
X. One moreover assumes that zer(A) ̸= ∅. From the well-known resolvent identity,
it easily follows that

∀n,m ∈ N ∀x ∈ C

(
∥x− JA

cn(x)∥ ≤
(
2 +

cn
cm

)
∥x− JA

cm(x)∥
)
.

Therefore, the families of maps {JA
cn} satisfies the NST condition (I) with respect to

the map JA
1 with an NST1–modulus given by

γ(b, J, ε) :=
ε

2 + max{cj | j ≤ J}
and Γ(b, φ)(ε, f) := φ

(
ε

2 + 1/ĉ
, f

)
.

1We denote Fix({Tn}) :=
⋂

n∈N Fix(Tn).
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Example 3.4. In a metric space, a resolvent-like family of nonexpansive maps [38]
is a family of nonexpansive maps {Tn : C → C} satisfying Fix(Tn) ̸= ∅ for some
n ∈ N, and

(1) There exists a function µ : N → [1,∞) satisfying

∀n,m ∈ N ∀x ∈ C
(
d(x, Tn(x)) ≤ µ(n) · d(x, Tm(x))

)
;

(2) There exists a function ∆ : N× (0,∞) → (0,∞) satisfying

∀ε > 0 ∀r ∀n ∈ N ∀p ∈ C ∀x ∈ C ∩Br(p)((
d(p, Tn(p)) ≤ ∆(r, ε) ∧ d(x, p)− d(Tn(x), p) ≤ ∆(r, ε)

)
→ d(x, Tn(x)) ≤ ε

)
.

This notion was introduced in [38] by the second author as an abstraction of central
properties of both resolvent functions of accretive operators in Banach spaces as well
as families of maps that are jointly (P2) in the nonlinear setting of CAT(0) spaces
– see e.g. [32, 44]. Furthermore, [38] shows that this general notion already entails
crucial properties useful in the study of Halpern-type iterative methods. Similar to
the previous example, the condition (1) above entails that {Tn} satisfies the NST
condition (I) with respect to the map T1 with an NST1–modulus given by

γ(b, J, ε) :=
ε

max{µ(j) | j ≤ J}
and Γ(b, φ)(ε, f) := φ

(
ε

µ(1)
, f

)
.

A quantitative perspective on the NST conditon (II) gives rise to the following
definition.

Definition 3.5. We say that ζ is an NST2–modulus for {Tn} if for any function
φ : (0,∞)× NN → N, natural numbers b, J ∈ N and sequence (un) ⊆ Bb(p) ∩ C,

if d(un, Tn(un)) → 0 with rate φ,

then max
j≤J

{d(un, Tj(un))} → 0 with rate ζ(b, φ, J).

Proposition 3.6. If a pair ({Tn}, T ) has an NST1–modulus (γ,Γ), then

ζ(b, φ, J)(ε, f) := Γ(b, φ)(γ(b, J, ε), f)

is an NST2–modulus for {Tn}.

Proof. Let (un) be a sequence in Bb(p) ∩ C such that d(un, Tn(un)) → 0 with rate
of metastability φ. Since (γ,Γ) is an NST1-modulus for the pair ({Tn}, T ), we have
that Γ(b, φ) is a rate of metastability for d(un, T (un)) → 0. Therefore, for any J ∈ N

∀ε > 0 ∀f ∈ NN ∃n ≤ ζ(b, φ, J)(ε, f) ∀m ∈ [n; f(n)] (d(um, T (um)) ≤ γ(b, J, ε)) ,

and, again by the fact that (γ,Γ) is an NST1-modulus, the result follows. □

In Theorem 1.1, we state that the families {Tn} and {Un} must come equipped
with NST2–moduli. However, as we shall see in section 5, a weaker requirement
suffices where we only ask for a function outputting a rate of metastability for the
conclusion, from the stronger input of a convergence rate for the premise.
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3.2. Conditions on the parameters. We now consider a nonempty convex subset
C of X, two families of nonexpansive maps {Tn : C → C} and {Un : C → C}. For
x0 ∈ X, u ∈ C and sequences (αn), (βn) ⊆ [0, 1], let (xn) be the iteration generated
by (HM∞). We work with the following conditions:

(Q1) limαn = 0 with rate of convergence σ1 : (0,∞) → N.
(Q2)

∑
αn = ∞ with rate of divergence σ2 : N → N.

(Q3)
∑

|αn+1 − αn| <∞ with Cauchy rate σ3 : (0,∞) → N.
(Q4)

∑
|βn+1 − βn| <∞ with Cauchy rate σ4 : (0,∞) → N.

(Q5)
∑
d(Tn+1(xn), Tn(xn)) <∞ with a Cauchy rate σ5 : (0,∞) → N.

(Q6)
∑
d(Un+1(yn), Un(yn)) <∞ with a Cauchy rate σ6 : (0,∞) → N.

(Q7) β ∈ (0, 1/2] is such that β ≤ βn ≤ 1− β, for all n ∈ N.
We further assume the feasibility of finding a common fixed point to the families
of maps {Tn} and {Un}, i.e. we assume that F := Fix({Tn}) ∩ Fix({Un}) ̸= ∅ and
consider a natural number b ≥ 1 such that b ≥ max{d(u, p), d(x0, p)}, for some point
p ∈ F.

Lemma 3.7. The sequence (xn) is bounded, and for all n ∈ N
d(xn, p), d(yn, p) ≤ b.

Proof. The result is established by an easy induction. We have d(x0, p) ≤ b by
hypothesis, and

d(y0, p) ≤ (1− α0)d(T0(x0), p) + α0d(u, p) ≤ b

For the induction step,

d(xn+1, p) ≤ (1− βn)d(Un(yn), p) + βnd(yn, p) ≤ d(yn, p)
IH

≤ b,

and

d(yn+1, p) ≤ (1− αn+1)d(Tn+1(xn+1), p) + αn+1d(u, p)
IH

≤ b. □

3.3. Rates in UCW–hyperbolic spaces. We begin with the following easy result.

Proposition 3.8. We have the following,

(i) lim d(xn, xn+1) = 0, and (xn) has a rate of asymptotic regularity defined by

ψ1(ε) := σ2

(
χ
(ε
2

)
+ 2 +

⌈
ln

(
4b

ε

)⌉)
,

where χ(ε) := max
{
σ3

( ε

8b

)
, σ4

( ε

8b

)
, σ5

(ε
4

)
, σ6

(ε
4

)}
.

(ii) lim d(yn, yn+1) = 0, and (yn) has a rate of asymptotic regularity defined by

ψ2(ε) := max
{
ψ1

(ε
3

)
, σ3

( ε

6b

)
+ 1, σ5

(ε
3

)
+ 1

}
.

Proof. (i): We have

d(yn+1, yn) ≤ d(yn+1, (1− αn+1)Tn(xn)⊕ αn+1u)

+ d((1− αn+1)Tn(xn)⊕ αn+1u, yn)

≤ (1− αn+1)d(Tn+1(xn+1), Tn(xn)) + |αn+1 − αn|d(Tn(xn), u)
≤ (1− αn+1)d(xn+1, xn) + 2b · |αn+1 − αn|+ d(Tn+1(xn), Tn(xn))
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and so

d(xn+2, xn+1) ≤ d(xn+2, (1− βn+1)Un(yn)⊕ βn+1yn)

+ d((1− βn+1)Un(yn)⊕ βn+1yn, xn+1)

≤ (1− βn+1)d(Un+1(yn+1), Un(yn)) + βn+1d(yn+1, yn)

+ |βn+1 − βn|d(Un(yn), yn)

≤ d(yn+1, yn) + 2b · |βn+1 − βn|+ d(Un+1(yn), Un(yn))

≤ (1− αn+1)d(xn+1, xn) + 2b (|αn+1 − αn|+ |βn+1 − βn|)
+ d(Tn+1(xn), Tn(xn)) + d(Un+1(yn), Un(yn)).

With sn := d(xn+1, xn), an := αn+1, and

cn := 2b (|αn+1 − αn|+ |βn+1 − βn|) + d(Tn+1(xn), Tn(xn)) + d(Un+1(yn), Un(yn)),

we can rewrite the inequality in the compact form

sn+1 ≤ (1− an)sn + cn

From the conditions (Q3)–(Q6), we have for all m ∈ N,
m∑

k=χ(ε)+1

ck ≤ 2b
( ε

8b
+

ε

8b

)
+
ε

4
+
ε

4
= ε

thus χ is a Cauchy rate for (
∑n

0 ck).
Writing θ(K) := max{σ2(K + 1)− 1, 0}, for any L ∈ N, using (Q2) and the fact

that α0 ≤ 1, we have

θ(K)∑
k=0

ak =

θ(K)∑
k=0

αk+1 =

θ(K)+1∑
k=0

αk − α0 ≥
σ2(K+1)∑

k=0

αk − α0 ≥ K + 1− α0 ≥ K.

Thus, θ is a rate of divergence for

(
n∑
0

ak

)
. Since d(xn+1, xn) ≤ 2b for all n ∈ N, by

Lemma 2.8 we conclude that ψ1 is a rate of asymptotic regularity for (xn).
(ii): For n ≥ ψ2(ε), we have

d(yn+1, yn) ≤ d(xn+1, xn) + 2b|αn+1 − αn|+ d(Tn+1(xn), Tn(xn))

≤ ε

3
+ 2b

ε

6b
+
ε

3
= ε,

and thus, ψ2 is a rate of asymptotic regularity for (yn). □

Assume now that X is a UCW–hyperbolic space with a monotone modulus of
uniform convexity η : (0,∞)× (0, 2] → (0, 1]. The next result establishes the central
result on the asymptotic regularity of the iterative schema (HM∞).2

Proposition 3.9. We have the following

(i) lim d(yn, Un(yn)) = 0, and (yn) has a rate of (Un)–asymptotic regularity de-
fined by

ψ3(ε) := max
{
ψ1

( ε

2P

)
, σ1

( ε

2Pb

)}
, with P :=

1

β2η
(
b, ε

b

) .
2See Remark 5.2.
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(ii) If η(r, ε) = ε · η̃(r, ε) for some η̃ that increases with ε, then we can replace P
by

P̃ :=
1

β2η̃
(
b, ε

b

) .
Proof. (i): For a given ε > 0, consider n ≥ ψ3(ε). Assume towards a contradiction
that d(yn, Un(yn)) > ε. Since d(yn, Un(yn)) ≤ d(yn, p) + d(p, Un(yn)) ≤ 2d(yn, p), we
get that

(1)
ε

2
< d(yn, p)

Furthermore, we have that d(yn, p) ≤ b, thus d(Un(yn), p) ≤ b and

d(yn, Un(yn)) >
ε

b
d(yn, p).

We also deduce that
ε

b
< 2. We can thus apply Lemma 2.1 with ε =

ε

b
and

x := Un(yn), y := yn, a := p, r := d(yn, p), λ := βn, s := b

to conclude that

d(xn+1, p) = d(βnyn + (1− βn)Un(yn), p)

≤
(
1− 2βn(1− βn)η

(
b,
ε

b

))
d(yn, p)

= d(yn, p)− 2d(yn, p)βn(1− βn)η
(
b,
ε

b

)
≤ d(yn, p)− 2d(yn, p)β

2η
(
b,
ε

b

)
by (Q7)

< d(yn, p)− εβ2η
(
b,
ε

b

)
by (1)

Since, by (W1), d(yn, p) ≤ (1− αn)d(T (xn), p) + αnd(u, p) ≤ d(xn, p) + αnb, we get
that

d(xn+1, p) < d(xn, p) + αnb− εβ2η
(
b,
ε

b

)
Thus,

ε

P
= εβ2η

(
b,
ε

b

)
< d(xn, p)− d(xn+1, p) + αnb

≤ d(xn+1, xn) + αnb

≤ ε

2P
+

ε

2Pb
b =

ε

P
as n ≥ ψ3(ε)

which is a contradiction. Thus ψ3 is a rate of (Un)-asymptotic regularity of (yn).
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(ii): For a given ε > 0, consider n ≥ ψ3(ε) (with P replaced by P̃ ). We follow

the proof of (i), but apply Lemma 2.1 with ε =
ε

d(yn, p)
instead of ε =

ε

b
. Then,

d(xn+1, p) ≤
(
1− 2β2η

(
b,

ε

d(yn, p)

))
· d(yn, p)

= d(yn, p)− 2εβ2η̃

(
b,

ε

d(yn, p)

)
< d(yn, p)− εβ2η̃

(
b,

ε

d(yn, p)

)
Since d(yn, p) ≤ b and η̃ increases with ε, we have

η̃

(
b,

ε

d(yn, p)

)
≥ η̃

(
b,
ε

b

)
,

and it follows that

d(xn+1, p) < d(yn, p)− εβ2η̃
(
b,
ε

b

)
.

The argument now continues as in (i) with P and η replaced by P̃ and η̃, respectively.
□

We can now easily compute the remaining rates of asymptotic regularity.

Proposition 3.10. We have the following

(i) lim d(xn+1, yn) = 0 with rate of convergence ψ3.
(ii) lim d(xn, yn) = 0 with rate of convergence

ψ4(ε) := max
{
ψ1

(ε
2

)
, ψ3

(ε
2

)}
.

(iii) lim d(xn, Un(xn)) = 0, and (xn) has a rate of (Un)–asymptotic regularity
given by

ψ5(ε) := max
{
ψ3

(ε
3

)
, ψ4

(ε
3

)}
.

(iv) lim d(yn, Tn(yn)) = 0, and (yn) has a rate of (Tn)–asymptotic regularity given
by

ψ6(ε) := max
{
σ1

( ε

4b

)
, ψ4

(ε
2

)}
.

(v) lim d(xn, Tn(xn)) = 0, and (xn) has a rate of (Tn)–asymptotic regularity given
by

ψ7(ε) := max
{
ψ4

(ε
3

)
, ψ6

(ε
3

)}
.

Proof. (i): Follows from d(xn+1, yn) = (1− βn)d(yn, Un(yn)) ≤ d(yn, Un(yn)).
(ii): Follows easily by triangle inequality, from (i) and Proposition 3.8(i).
(iii): For a given ε > 0, if n ≥ ψ5(ε) then, using the nonexpansivity of Un, we get

d(xn, Un(xn)) ≤ d(xn, yn) + d(yn, Un(yn)) + d(Un(yn), Un(xn))

≤ 2d(xn, yn) + d(yn, Un(yn)) ≤
2ε

3
+
ε

3
= ε.
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(iv): With n ≥ ψ6(ε), using (W1) and the definition of yn, we have

d(yn, Tn(yn)) ≤ (1− αn)d(Tn(xn), Tn(yn)) + αnd(u, Tn(yn))

≤ d(xn, yn) + 2b · αn ≤ 2b
ε

4b
+
ε

2
= ε.

(v): Similarly to (iii), for n ≥ ψ7(ε), we have

d(xn, Tn(xn)) ≤ d(xn, yn) + d(yn, Tn(yn)) + d(Tn(yn), Tn(xn))

≤ 2d(xn, yn) + d(yn, Tn(yn)) ≤
2ε

3
+
ε

3
= ε. □

3.4. Rates in CAT(0) spaces. Here we briefly discuss rates of asymptotic regu-
larity in the particular case when X is a CAT(0) space. As per Lemma 2.2, CAT(0)
spaces are UCW–hyperbolic spaces and η(ε) = ε2/8 is a monotone modulus of uni-
form convexity. Therefore, η(ε) = ε · η̃(ε) and we can use Proposition 3.9(ii) to
immediately obtain a rate of (Un)–asymptotic regularity for (yn),

ψ3(ε) := max

{
ψ1

(
ε2β2

16b

)
, σ1

(
ε2β2

16b2

)}
.

A small improvement on the constants is possible by a short argument (similar to
the one used in [17]), which we include for completeness.

Proposition 3.11. If X is a CAT(0) space, then (yn) has a rate of (Un)-asymptotic
regularity

ψ3(ε) := max

{
ψ1

(
ε2β2

4b

)
, σ1

(
ε2β2

2b2

)}
.

Proof. Using the CN+-inequality, we have for any n ∈ N

d2(yn, p) ≤ d2(xn, p) + αnd
2(u, p),

and also

d2(xn+1, p) ≤ (1− βn)d
2(Un(yn), p) + βnd

2(yn, p)− βn(1− βn)d
2(yn, Un(yn))

≤ d2(yn, p)− β2d2(yn, Un(yn))

≤ d2(xn, p) + αnd
2(u, p)− β2d2(yn, Un(yn)).

For a given ε > 0 and n ≥ ψ3(ε), the result follows from

d2(yn, Un(yn)) ≤
1

β2

(
d2(xn, p)− d2(xn+1, p) + αnd

2(u, p)
)

≤ 1

β2
d(xn+1, xn) (d(xn, p) + d(xn+1, p)) +

αn

β2
d2(u, p)

≤ 2b

β2
· ε

2β2

4b
+
b2

β2
· ε

2β2

2b2
= ε2.

□
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3.5. Linear and quadratic rates. Take βn :≡ β ∈ (0, 1/2] and αn :=
2

n+ 2
.

Consider families of nonexpansive maps {Tn} and {Un} subject to the condition

d(Un+1(yn), Un(yn)) + d(Tn+1(xn), Tn(xn)) ≤
2c

(n+ 2)(n+ 3)

for some nonnegative constant c ∈ R, in particular {Tn} and {Un} satisfy the con-
ditions (Q5) and (Q6).

Proposition 3.12. The sequence (xn) has a linear rate of asymptotic regularity

ξc(ε) :=

⌊
2(2b+ c)

ε

⌋
.

Proof. For all n ∈ N, as in the proof of Proposition 3.8(i), we have

d(xn+2, xn+1) ≤ (1− αn+1)d(xn+1, xn) + 2b|αn+1 − αn|
+ d(Tn+1(xn), Tn(xn)) + d(Un+1(yn), Un(yn))

Hence, we can apply Lemma 2.9 with N = J = 2, γ = 1, L = 2b+ c, and sequences

sn := d(xn+1, xn), an := αn =
2

n+ 2
,

and cn := 2b+
(n+ 2)(n+ 3)

2
(d(Un+1(yn), Un(yn)) + d(Tn+1(xn), Tn(xn))).

Since s0 ≤ 2b ≤ L and cn ≤ 2b + c = L, we conclude d(xn+1, xn) ≤
2(2b+ c)

n+ 2
, from

which the result immediately follows. □

When X is a CAT(0) space, by Propositions 3.11 and 3.10 with ξc in place of ψ1,
noting that we can use σ1(ε) := ⌊2/ε⌋, we immediately obtain the following result.

Proposition 3.13. We have the following quadratic rates of convergence:3

(i) (yn) has a rate of (Un)-asymptotic regularity

ψ3(ε) :=

⌊
8b(2b+ c)

ε2β2

⌋
.

(ii) lim d(xn, yn) = 0 with rate of convergence

ψ4(ε) :=

⌊
25b(2b+ c)

ε2β2

⌋
.

(iii) (xn) has a rate of (Un)–asymptotic regularity

ψ5(ε) :=

⌊
9 · 25b(2b+ c)

ε2β2

⌋
.

(iv) (yn) has a rate of (Tn)–asymptotic regularity

ψ6(ε) :=

⌊
27b(2b+ c)

ε2β2

⌋
.

(v) (xn) has a rate of (Tn)–asymptotic regularity

ψ7(ε) :=

⌊
9 · 27b(2b+ c)

ε2β2

⌋
.

3For simplicity, we assume here that ε ∈ (0, 1].
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4. Metric projection

In this section we discuss our treatment of the metric projection in a geodesic
setting. Consider a nonempty closed convex subset S of a complete CAT(0) space
X. The metric projection onto S is the mapping PS : X → S defined for each u ∈ X
as the unique point PS(u) ∈ S satisfying d(u,PS(u)) = minx∈S d(u, x) (see e.g. [6]).
As the desired conclusion is the Cauchy property of the iteration, it will suffice to
work with an ε-weakening of the metric projection, namely

(⋆) ∀ε > 0 ∃x ∈ S ∀y ∈ S (d(u, x) ≤ d(u, y) + ε) .

Notation 4.1. Consider families of nonexpansive maps {Tn} and {Un} as before.
For N, r ∈ N and a ∈ X, we write

FN(a, r) :=

{
x ∈ X : ∀n ≤ r

(
d(x, Tn(x), d(x, Un(x)) ≤

1

r + 1

)}
∩BN(a),

for the set of “almost”-common fixed points intersected with the closed ball centered
at the point a with radius N .

The next result corresponds to a quantitative version of the statement (⋆) when
S is the set of common fixed points F := Fix({Tn}) ∩ Fix({Un}) which is assumed
to be nonempty.

Proposition 4.2. Given u ∈ C, let N ∈ N be such that N ≥ d(u, p), for some
p ∈ F. Then, for every ε > 0 and f : N → N, there exist n ≤ ϕ(N, ε, f) and
x ∈ FN(p, f(n)) such that

∀y ∈ FN(p, n)
(
d2(u, x) ≤ d2(u, y) + ε

)
,

where ϕ(N, ε, f) := max{f (i)(0) : i ≤ r} with r := r(N, ε) := ⌈N2

ε
⌉.

Proof. If the result does not hold, than there exists a sequence x0, . . . , xr such that
that x0 = p and d2(u, xi+1) < d2(u, xi)− ε, entailing the contradiction

d2(u, xr) < d2(u, p)− rε ≤ N2 − N2

ε
ε = 0. □

We have the following useful characterization of the metric projection in terms of
the quasi-linearization function.

Lemma 4.3 ([14]). Let S be a nonempty convex closed subset of a complete CAT(0)
space X. For any u ∈ X, it holds

∀y ∈ S
(
⟨
−−−−→
PS(u)u,

−−−−→
PS(u)y⟩ ≤ 0

)
.

We have a quantitative version corresponding to this characterization (this is
similar to [17]; see also the discussion in section 3 of the recent [39]).

Proposition 4.4. Let u ∈ X and consider N ∈ N such that N ≥ d(u, p) for some
p ∈ F. For every ε > 0 and function f : N → N, there exist n ≤ Φ(N, ε, f) and
x ∈ FN(p, f(n)) such that

∀y ∈ FN(p, n) (⟨−→xu,−→xy⟩ ≤ ε) ,

where Φ(N, ε, f) := 24N(ϕ(N, ε0, hf ) + 1)2, with ε0 :=
ε2

4N2
and

hf (m) := max{f(24N(m+ 1)2), 24N(m+ 1)2}.
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5. Metastability and Convergence

This section pertains to the study of the metastable behaviour of the (HM∞)
iteration in the setting of CAT(0) spaces, and we establish its strong convergence.

In the setting of the previous conditions (Q1)–(Q7), assume that the families {Tn}
and {Un} satisfy the NST condition (II) with an NST2-modulus. It is then easy to

argue that there exists a function ζ̂ such that for any function φ : (0,∞) → N,
natural numbers b, J ∈ N and bounded sequence (un) ⊆ Bb(p) ∩ C,

(+)


if ∀ε > 0 ∀m ≥ φ(ε) (d(um, Tm(um)), d(um, Um(um)) ≤ ε) ,

then ∀ε > 0 ∀f ∈ NN ∃n ≤ ζ̂(b, J, φ)(ε, f)

∀m ∈ [n; f(n)] ∀j ≤ J (d(um, Tj(um)), d(um, Uj(um)) ≤ ε) .

Indeed, since a rate of convergence is in particular a rate of metastability, having
NST2–moduli for the families entails that we have rates of metastability for both
maxj≤J{d(un, Tj(un))} → 0 and maxj≤J{d(un, Uj(un))} → 0, whenever (un) is a
bounded sequence in C. The conjugation of metastability statements is slightly
more convoluted than the conjugation of convergence statements but is nevertheless
possible (see e.g. [18, Proposition 2.10]), and gives rise to the statement (+).

In a setting where the asymptotic behaviour of the families of maps entails the

existence of such a function ζ̂, we can use Proposition 4.4 to obtain the following
result. We remark that, this quantitative result provides a different avenue to the
sequential weak compactness argument used by Boţ and Meier [5] in Hilbert spaces
– the proof-theoretical justification is akin to [19]; see also the recent overview [39].

Proposition 5.1. Consider a function ζ̂ satisfying (+). For every ε > 0 and
function f : N → N, there exist n ≤ β(ε, f) and x ∈ Fb(p, f(n)) such that

∀m ∈ [n; f(n)] (⟨−→xu,−−→xxm⟩ ≤ ε) ,

where

β(ε, f) := max

{
ζ̂(b, n, φ0)

(
1

n+ 1
, f

) ∣∣∣n ≤ Φ(b, ε, f0)

}
with φ0(ε) := max{ψ5(ε), ψ7(ε)} and

f0(n) := max

{
f (n′)

∣∣∣n′ ≤ ζ̂(b, n, φ0)

(
1

n+ 1
, f

)}
.

Proof. Let ε > 0 and a function f : N → N be given. Applying Proposition 4.4 we
conclude the existence of n0 ≤ Φ(b, ε, f0) and x ∈ Fb(p, f0(n0)) such that

∀y ∈ Fb(p, n0) (⟨−→xu,−→xy⟩ ≤ ε) .

By Proposition 3.10, we know that

∀ε > 0 ∀m ≥ φ0(ε) (d(xm, Tm(xm)), d(xm, Um(xm)) ≤ ε) ,

and since (xn) ⊆ Bb(p) ∩ C, by the assumption (+) on ζ̂ it follows that

∃n1 ≤ ζ̂(b, n0, φ0)

(
1

n0 + 1
, f

)
∀m ∈ [n1; f(n1)] ∀j ≤ n0

(
d(xm, Tj(xm)), d(xm, Uj(xm)) ≤

1

n0 + 1

)
,
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i.e. ∀m ∈ [n1; f(n1)] (xm ∈ Fb(p, n0)). Therefore, a fortiori n1 ≤ β(ε, f), and

∀m ∈ [n1; f(n1)] (⟨−→xu,−−→xxm⟩ ≤ ε) .

Moreover, by the definition of f0 implies that f(n1) ≤ f0(n0) and so x ∈ Fb(p, f(n1)),
concluding the proof. □

Remark 5.2. Suppose that σ1 in (Q1) is monotone in the sense that

0 < ε ≤ ε′ → σ1(ε
′) ≤ σ1(ε),

i.e. that σ1 is decreasing in ε. Similarly assume that ψ1 is monotone (which itself
follows from natural monotonicity assumptions on the remaining input functions
σi) and also that η is increasing in ε. Then, ψ3 from Proposition 3.9 (and even
the optimized version for CAT(0) spaces in Proposition 3.11) is also monotone and,
under the restriction to ε ∈ (0, 1], the following simplifications to Proposition 3.10
hold

ψ4(ε) = ψ3

(ε
2

)
, ψ5(ε) = ψ3

(ε
6

)
, ψ6(ε) = ψ3

(ε
4

)
, ψ7(ε) = ψ3

( ε

12

)
.

In particular, in Theorem 5.1 we can take φ0(ε) := ψ3

( ε

12

)
. This reflects the

essential role that the rate ψ3 has in our argument and why it was singled out in
Propositions 3.9 and 3.11.

We are now ready to establish the metastability property of (HM∞).

Theorem 5.3. Let u ∈ C, x0 ∈ X, and consider a natural number b ∈ N \ {0}
such that b ≥ max{d(u, p), d(x0, p)}, for some p ∈ F. Let (xn) be the iteration
generated by (HM∞) with u, x0, sequences (αn), (βn) ⊆ [0, 1], and families {Tn},
{Un} satisfying the NST condition (II) with a function ζ̂ satisfying (+). Further
assume that the conditions (Q1)–(Q7) hold. Then,

∀ε ∈ (0, 1] ∀f ∈ NN ∃n ≤ Ω(ε, f) ∀i, j ∈ [n;n+ f(n)] (d(xi, xj) ≤ ε) ,

where

Ω(ε, f) := max
{
σ(n)

∣∣n ≤ max{β(ε1, f1), φ1(ε)}
}

with

ε1 :=
ε2

72
, f1(n) :=

⌊
144b (f2 (max{n, φ1(ε)}) + 1)

ε2

⌋
φ1(ε) := max

{
σ1

(
ε2

144b2

)
, ψ7

(
ε2

144b

)}
, f2(n) := f(σ(n))

and σ(n) := σ2

(
n+

⌈
ln

(
48b2

ε2

)⌉)
+ 1.

Proof. Let ε ∈ (0, 1] and f : N → N be given. By Proposition 5.1, we may consider
n1 ≤ β(ε1, f1) and x ∈ Bb(p) such that

(2) ∀m ≤ f1(n1)

(
d(x, Tm(x)), d(x, Um(x)) ≤

1

f1(n1) + 1

)
and

(3) ∀m ∈ [n1; f1(n1)] (⟨−→xu,−−→xxm⟩ ≤ ε1) .
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Consider n2 := max{n1, φ1(ε)}. Then,

f1(n1) =

⌊
144b (f2 (n2) + 1)

ε2

⌋
,

which, since ε ∈ (0, 1], entails

f1(n1) + 1 ≥ 144b (f2 (n2) + 1)

ε2
and f1(n1) ≥ f2(n2).

Therefore, from (2) and (3), it follows that

(4) ∀m ≤ f2(n2)

(
d(x, Tm(x)), d(x, Um(x)) ≤

ε2

144b (f2(n2) + 1)

)
and

(5) ∀m ∈ [n2; f2(n2)]

(
⟨−→xu,−−→xxm⟩ ≤

ε2

72

)
.

Note also that, for m ≥ φ1(ε), by (Q1) and Proposition 3.10(v) we have

(6) αm ≤ ε2

144b2
and d(xm, Tm(xm)) ≤

ε2

144b
.

Since d(xm+1, x) ≤ d(ym, x) + d(x, Um(x)), using Lemma 2.3, we have

d2(xm+1, x) ≤ d2(ym, x) + d(x, Um(x)) (d(x, Um(x)) + 2d(ym, x))

≤ (1− αm)
2d2(Tm(xm), x) + 2αm(1− αm)⟨−→xu,

−−−−−−→
xTm(xm)⟩

+ α2
md

2(u, x) + 6b · d(x, Um(x))

≤ (1− αm)d
2(xm, x) + αm

(
2⟨−→xu,

−−−−−−→
xTm(xm)⟩+ 4b2αm

)
+ 6b (d(x, Tm(x)) + d(x, Um(x))) ,

which can be written in a more compact way as

d2(xm+1, x) ≤ (1− αm)d
2(xm, x) + αmrm + E ,

where
rm := 2⟨−→xu,−−→xxm⟩+ 4bd(xm, Tm(xm)) + 4b2αm

and E := 6b (d(x, Tm(x)) + d(x, Um(x))) .

By (4), for all m ≤ f2(n2),

E ≤ 12bε2

144b(f2(n2) + 1)
≤ ε2

12(f2(n2) + 1)
,

and by (5) and (6), for m ∈ [n2; f2(n2)],

rm ≤ 2ε2

72
+

4bε2

144b
+

4b2ε2

144b2
=
ε2

12
.

We can therefore apply Lemma 2.10 to conclude that

∀m ∈ [σ(n2); f2(n2)]

(
d2(xm, x̃) ≤

ε2

4

)
.

By triangle inequality, we get

∀i, j ∈ [σ(n2); f2(n2)] (d(xi, xj) ≤ ε) ,
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and since f2(n2) = f(σ(n2)), the result follows with

n := σ(n2) ≤ max
{
σ(n′)

∣∣n′ ≤ max{β(ε1, f1), φ1(ε)}
}
=: Ω(ε, f).

□

We can now establish our main convergence result.

Theorem 5.4. Let X be UCW–hyperbolic space, C ⊆ X a nonempty convex subset,
and u ∈ C. Consider {Tn}, {Un} families of nonexpansive maps in C such that
F := Fix({Tn}) ∩ Fix({Un}) ̸= ∅, and sequences (αn), (βn) ⊂ [0, 1] with (C1)–(C6).
For arbitrary x0 ∈ X, let (xn) be the iteration generated by the scheme (HM∞).
Then, (xn) is asymptotically regular and {Tn}– and {Un}–asymptotically regular,
i.e.

lim d(xn, xn+1) = lim d(xn, Tn(xn)) = lim d(xn, Un(xn)) = 0.

Moreover, if X is a Hadamard space, C is closed and both families satisfy the NST
condition (II) with a function satisfying (+), then (xn) converges strongly to PF(u).

Proof. The first part was established in Section 3, and we only need to discuss the
second part of the theorem. Assume X to be a complete CAT(0) space and C to be
closed. By Theorem 5.3, we conclude in particular that (xn) is metastable, i.e.

∀ε > 0 ∀f ∈ NN ∃n ∈ N ∀i, j ∈ [n; f(n)] (d(xi, xj) ≤ ε) .

This entails that (xn) is a Cauchy sequence and, since the space is complete, it
converges to some point z ∈ X. Since the two families of nonexpansive maps satisfy
the NST condition (II), we conclude that z ∈ F. It remains to verify that z is indeed
PF(u), the projection point of u onto the set F. For all n ∈ N, we have

d2(xn+1,PF(u)) ≤ d2(yn,PF(u))

≤ (1− αn)
2d2(xn,PF(u)) + 2αn(1− αn)⟨

−−−−→
PF(u)u,

−−−−−−−−→
PF(u)Tn(xn)⟩

+ α2
nd

2(u,PF(u))

≤ (1− αn)d
2(xn,PF(u)) + αn

(
2⟨
−−−−→
PF(u)u,

−−−−−−−−→
PF(u)Tn(xn)⟩+ b2αn

)
.

Since αn → 0, xn → z, and z ∈ F, using the characterization of the projection in
Lemma 4.3 we see that

lim sup
(
2⟨
−−−−→
PF(u)u,

−−−−−−−−→
PF(u)Tn(xn)⟩+ b2αn

)
= 2⟨

−−−−→
PF(u)u,

−−−−→
PF(u)z⟩ ≤ 0.

Thus, we can apply Lemma 2.7 and conclude that indeed xn → PF(u). □

The following result gives a sufficient condition on the maps {Tn} so that condition
(Q5) is satisfied (and similarly for {Un} with regards to (Q6)).

Proposition 5.5 ([9]). Let (γn) be a sequence of positive real numbers satisfying

(i)
∑

|γn+1 − γn| <∞ with Cauchy rate χ,
(ii) inf γn ≥ γ > 0 for some positive real number γ.

Assume that the family of maps {Tn} satisfies

(7) ∀x ∈ X ∀n,m ∈ N
(
d(Tm(x), Tn(x)) ≤

|γm − γn|
γn

d(x, Tn(x))

)
.

Then,
∑
d(Tn+1(xn), Tn(xn)) <∞ with Cauchy rate σ5 defined by

σ5(ε) := χ
(εγ
2b

)
.
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In [32], the authors discuss a generalization to CAT(0) spaces of the proximal point
algorithm with resolvent functions associated with monotone operators in Hilbert
spaces. They show that the condition (7) is satisfied by any family of maps which is
jointly (P2) with respect to (γn). As explained in [38] (see also [43]), these families of
maps are particular instances of ‘resolvent-like’ families of nonexpansive maps and
so, by Example 3.4 and Proposition 3.6, they satisfy the NST condition (II) with an
NST2-modulus. Therefore, as a particular instance of Theorem 5.4, it follows that
the iteration (HM∞) is strongly convergent when {Tn}, {Un} are jointly (P2) with
respect to sequences (γn) and (γ′n) satisfying (i) and (ii) in Proposition 5.5 (which
extends [10] for Tn ̸≡ Id). In particular, we can take families of maps which are
jointly (P2) with respect to parameter sequences defined by

γ0 := 1, γn+1 :=
1

(n+ 2)(n+ 3)
+ γn, and γ

′
n := γn

and, using the results in section 3.5, obtain a strongly convergent (HM∞) iteration
with linear and quadratic rates of asymptotic regularity.

6. Final Remarks

In this work, we extended the strong convergence of the alternating Halpern-
Mann iteration (established in [17]) to countable families of nonexpansive maps in
the nonlinear setting of complete CAT(0) spaces. The result is centered in a finitary
formulation of the Cauchy property (metastability), following and extending the
argument used in [17], and we incidently also obtained rates of metastability which
are uniform in the parameters of the problem. Indeed, the rate does not depend on
the specific space X, the set C, the families {Tn} and {Un}, neither on the precise
parameter sequences (αn) and (βn), and instead only depends on quantitative in-

formation on the conditions (the functions σi and ζ̂) and on bounding information
on the distance of the points x0 and u to the target set F. Moreover, even in the
broader setting of UCW–hyperbolic spaces, several uniform rates of convergence
were obtained regarding the asymptotic regularity of the iteration, extending the
quantitative study on asymptotic regularity in [9]. Our argument is reliant on the
notion that the iteration is a sequence of almost common fixed points, which doesn’t
follow immediately from the usual asymptotic regularity result. We bridge the gap
between an available ‘diagonal-like’ asymptotic regularity and the required notion
using the so-called NST conditions, namely on a weaker version of (the uniformiza-
tion of) condition (II). This provides a different condition to strong convergence
than the demiclosedness-like condition [35] required on the family of maps in [5] for
the Tikhonov-Mann iteration with u = 0 generalized to a countable family of maps
(which is a particular instance of our schema (HM∞)) in the setting of Hilbert spaces.
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