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Voronoi Cel ls: Or How to Find the
Nearest Bakery
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Deciding which mall, hospital or school is closest to
us is a problem we face everyday. It even comes
on holidays with us, when we optimize our plans to
make sure that we have enough time to visit all the
attractions we want to see. In this article, we show
how concepts from metric algebraic geometry help us
to rise to this task while planning a weekend trip to
the Black Forest.

A Weekend tr ip to the Black Forest

Planning a vacation is never easy. You want to strike a balance between
sightseeing, new food experiences, and relaxing. Striving for this equilibrium,
however, can add even more stress to your holiday plans. Luckily, there are
some mathematical tools that we can use to help with the planning process. Let
us take a look at those and plan a weekend trip to the Black Forest together!
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Figure 1: Map of the surroundings of our hotel. The origin is fixed at the hotel
H = (0, 0), and each square on the grid corresponds to a unit.

Our base camp is the hotel marked with an H on the map in Figure 1 and
there are two things we absolutely cannot miss on our weekend trip: tasting
the famous Black Forest cake (a classic!) and hiking in the beautiful mountains.
We will plan our trip around these must-do’s.

Day 1: Eucl idean distance and Voronoi cel ls

On our first day, we plan to go for a nice walk, see some of the waterfalls marked
on our map, and have a bite of Black Forest cake. Since we do not want to be
too far away from the hotel at the end of the day, our goal is to finish at the
bakery closest to the hotel.

If we bring a ruler on our vacation, then deciding which is the closest bakery
is an easy task because we can simply measure the distances between the hotel
and the bakeries on the map. In fact, we might even manage to pick the correct
one by sight but, if we want to mathematically verify our guess for the closest
bakery, then we need to explicitly calculate all distances.

Every point X on the map can be described by two coordinates (x1, x2). For
example, our hotel H has coordinates (0, 0), the waterfall W1 has coordinates
(4, 1.2), and the bakery B1 has coordinates (−1.8, 2.7). The distance d(X, Y )
between two points X = (x1, x2), Y = (y1, y2) ∈ R2 can be computed by an
application of the Pythagorean Theorem according to which

d(X, Y ) =
√

(x1 − y1)2 + (x2 − y2)2.

2



Let us use this for selecting the closest bakery to our hotel. We calculate:

d(H, B1) =
√

(0 + 1.8)2 + (0 − 2.7)2 =
√

10.53,

d(H, B2) =
√

(0 − 2.8)2 + (0 − 1.8)2 =
√

11.08,

d(H, B3) =
√

(0 − 3.5)2 + (0 + 1.9)2 =
√

15.86,

d(H, B4) =
√

(0 + 2.5)2 + (0 + 0.9)2 =
√

7.06.

The minimal distance in the above list is d∗ = d(H, B4) =
√

7.06. So, we
should plan our first day in such a way that our tour ends at bakery B4.

To make this decision we solved two mathematical problems:

1. Computation of the distance between two points.
2. Minimization of the distance between a point and a finite set of points.

For solving the first problem, we used the Euclidean distance. This notion
of distance is familiar because it represents the length of the line segment
connecting the two end-points. In our particular example of a 2-dimensional
map, the points only have two coordinates. However, it is possible to generalize
the Euclidean distance to n dimensions by setting distance d(X, Y ) between
two points X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Rn to be

d(X, Y ) :=
√

(x1 − y1)2 + · · · + (xn − yn)2.

For solving the second problem, we minimized the distance between the hotel
H and the finite set S = {B1, B2, B3, B4} of all the bakeries on our map. It is
again possible to generalize this concept to n dimensions. Given a point X ∈ Rn

and a finite set of points S ⊆ Rn, the minimal distance d(X, S) from X to S
is given by the minimum of the individual distances d(X, Y ) for all the points
Y ∈ S. Any Y ∈ S with d(X, Y ) = d(X, S) is said to minimize the distance
between X and S.

Let us now get back to planning our tour for the first day. Having determined
that we would end our excursion at bakery B4, we must now choose a sight to
explore along the way. From looking at our map, it is clear that waterfall W3 is
a good choice since all other attractions are much further away from bakery B4.
If we want to verify our intuition, then we have to show that B4 minimizes
the distance between the waterfall W3 and the set S = {B1, B2, B3, B4} of
all bakeries on the map. However, it can be exhausting to carry out these
computations each time we want to decide on something.

We propose a different strategy. The Voronoi cell VorS(Bi) of the bakery Bi

is the region around Bi on our map for which Bi minimizes the distance between
the set of all bakeries S = {B1, B2, B3, B4} and any point X of that region. In
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Figure 2: Surroundings of our hotel H = (0, 0) with Voronoi Cells of the
bakeries delimited by the purple lines.

other words, Vor(Bi) consists of the points X for which all bakeries are at least
as far away from X as Bi. Mathematically,

VorS(Bi) := {X ∈ R2 | d(X, S) = d(X, Bi)}.

Figure 2 shows the Voronoi cells of the bakeries delimited by purple line
segments. From this, we see that the hotel H, the waterfall W3, and the bakery
B4 all belong to VorS(B4), while all other sights lie in different Voronoi cells.
Our intuition was indeed correct: the best plan is to explore waterfall W3 during
the first day in order to stay in VorS(B4).

As was the case with the definition of the Euclidean distance, the definition
of a Voronoi cell can also be generalized to n dimensions and any finite set. For
a fixed finite set S = {S1, . . . , Sm} of points in Rn, the Voronoi cells are defined
as

VorS(Si) := {X ∈ Rn | d(X, S) = d(X, Si)}.

In general, the number of Voronoi cells is the same as the number of elements
in S. In our map, we have 4 Voronoi cells, one for each bakery. The Voronoi cells
also have a number of useful mathematical properties. For instance, Voronoi
cells are convex sets, which means that the line segment between any two points
from the set lies entirely in that set. Hence, in our example, this means that
if we walk in a straight line between any two points in VorS(B4), then we are
guaranteed to stay in VorS(B4). That is, B4 remains the bakery closest to us
during our hike.

Moreover, Voronoi cells are delimited by linear spaces (In our example, the
linear spaces are straight lines that contain the purple line segments). This
allows us to geometrically construct Voronoi cells in the way indicated in
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(a) Drawing the bisec-
tor perpendicular to
the connection line
of B4 and B1.

(b) Repetition for pair-
ings with B2 and
B3.

(c) Determination of
the region VorS(B4)
around B4 cut out
by all bisectors.

Figure 3: Construction of VorS(B4).

Figure 3. There VorS(B4) is delimited by the three lines highlighted in red, blue
and green. The other Voronoi cells can be similarly constructed and together
they split our map in four regions (see Figure 2). The partition of the maps
into its Voronoi cells is known as the Voronoi diagram of S.

Voronoi cells are extensively studied in algebraic geometry and, as mathe-
matical as their definition is, they appear often in nature, as can be seen in
Figure 4.

(a) Garlic loafs. (b) Giraffe. (c) Desert.

Figure 4: Voronoi diagrams in nature.

Turning our attention back to the planning of our weekend trip, we now
understand that the Voronoi diagram of S = {B1, B2, B3, B4} allows us to list
all the attractions contained in each Voronoi cell:

We see that the museum belongs to VorS(B2) and VorS(B3), due to the fact
that M lies in the boundary of the two Voronoi cells. In other words, M is
as close to B2 as it is to B3. Indeed, all the points equidistant to at least two
bakeries together form the purple line segments in Figure 2. These segments
are called the medial axis and their properties are studied in the area of metric
algebraic geometry [2].
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Voronoi Cell Contained Attractions
VorS(B1) B1, W2
VorS(B2) B2, C, W1, M
VorS(B3) B3, M
VorS(B4) B4, H, W3

Table 1: Attractions contained in the four Voronoi cells.

Day 2: Voronoi cel ls for algebraic plane curves

On our second day, we plan to go for a more challenging hike through the
beautiful hills and woods. We wish to visit the cuckoo clock C, some waterfalls
Wi and, maybe, even the museum M . Although we can pack some snacks,
bringing a full lunch simply adds too much weight to our backpacks. So, we
have to find a way to organize lunch to meet us while we are out. Fortunately,
our hotel offers a service called the Express Lunch Lane where they deliver lunch
to any point along the main road R, which is the thick brown curve running
from east to west through the hotel H on the map. This is a great option for us.
For example, if we expect to be at the cuckoo clock around lunch time, then
this allows us to go to the closest point on the main road to pick up our lunch
there. This saves us lots of time and energy compared to walking all the way
back to our hotel.

The problem now is that we don’t know in advance if we will really be at
the cuckoo clock around noon. The tour might unexpectedly take longer. For
this reason, we will use a strategy that always allows us to determine the closet
point on the main read from our current position. Although we know how
to calculate distance from planning the first day of our trip, we face an even
greater challenge: we are no longer minimizing the distance between a point
and a finite set (of bakeries), but rather the distance between a point and the
infinite set of points (forming the main road). So, our simple computations
from before are no longer applicable. Fortunately, we are not out of options.
Metric algebraic geometry also provides us with a way to compute the Voronoi
diagram of the curve that represents the main road.

Formally, in algebraic geometry, an algebraic plane curve is a set of points in
the plane that solve the equation f(x1, x2) = 0 for a given polynomial f . For
example, the main road R in our particular case is the algebraic plane curve
defined by the polynomial

f(x1, x2) = 155x5
1 − 1145x4

1 − 207x3
1 + 12464x2

1 − 28840x1 − 100000x2. (1)

(see the right plot in Figure 5). So, mathematically, R corresponds to the set{
(x1, x2) ∈ R2 | 155x5

1 − 1145x4
1 − 207x3

1 + 12464x2
1 − 28840x1 − 100000x2 = 0

}
.
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Figure 5: (Left) The map with subsets of the Voronoi cells of W ′
1, C ′, W ′

3 and
W ′

2. (right) A plot of the curve f(x1, x2) = 0 for f as in (1), and
the boundary of the region of the plane with distance to the curve
smaller than the reach.

The definition of a Voronoi cell of a point Si in a finite set S = {S1, . . . , Sm} can
now be generalized to a point K over an algebraic plane curve K. The Voronoi cell of
the point K consist of all the points in the plane that are closer to K than to all the
other points on the curve. That is,

VorK(K) :=
{

X ∈ R2 | d(X, K) := min
Y ∈K

d(X, Y ) = d(X, K)
}

. (2)

Metric algebraic geometry now tells us that VorK(K) is generally a 1-dimensional set
contained in the normal space of K through K. That is, a line through K perpendicular
to the tangent of K in K.

Keeping this in mind, we interpret the magenta lines in Figure 5. The point W ′
1

belongs to the main road R and its tangent line is visualized by the magenta dashed
segment. The corresponding normal space is thus the depicted perpendicular solid
magenta line which can be shown to be contained in VorR(W ′

1). So, the point on the
road closest to any point on that solid magenta line is W ′

1. We conclude that W1
belongs to VorR(W ′

1). This means that if we are at the waterfall W1 around noon,
then it is best for us to let our lunch be delivered to W ′

1. Now, what about the cuckoo
clock C? Can you determine where our lunch should be delivered to, if our hike goes
according to plan and we are in C at noon?

We now generalize the notion of the medial axis over a finite set of points to the
case of an algebraic plane curve. Just as before, there might be points in the plane
that are equally close to more than one point on the curve, so they belong to more
then one Voronoi cell. We call the collection of all points that belong to at least
two distinct Voronoi cells of K the medial axis of K. Thus, if we find ourselves on
the medial axis of R, then we need to decide which point on R the food should be
delivered to. Else we might run into quite a pickle with the hotel and end up in the
wrong place without any lunch.

Of course, we can avoid all of this trouble, if we simply stay clear off the medial
axis. Indeed, in the right hand side of Figure 5, we see the main road in purple, and

7



Figure 6: On the left, a Clebsch cubic. On the right, the variety defined by the
polynomial 4x2

1(x2
1 + x2

2 + x2
3 + x3) + x2

2(x2
2 + x2

3 − 1).

two curves in teal that define a region surrounding the main road. This is a region that
can be defined for algebraic plane curves K in general and it has the property that all
the points inside it have a unique closest point. The distance between any point in the
green curves and the main road is the minimal distance between K and its medial axis
called the reach of K. Thus, if we want to avoid confusion at all cost, we should order
lunch only when we are closer to the main road R than its reach ε. This admissible
area is the region between the teal curves. In particular, we are guaranteed to always
find an unique closest point on the main road R as long as we stay in the gray area.
Here, we do not run into any trouble whatsoever and always get our well-deserved
lunch. With this in mind we can get our lunch in the main road and then head to the
Museum to finish our second day of the trip.

A Final note

What we have done mathematically during our weekend trip planning, was to investi-
gate the properties of the Voronoi diagram of a zero dimensional variety (the finite set
S of bakeries from the first day) and of a 1-dimensional variety (the algebraic plane
curve of the main road R from the second day). Mathematicians do not stop here.
Quite the contrary, they study the Voronoi diagrams of varieties of any dimension,
for example varieties as in Figure 6 in a 3-dimensional space. The above introduced
concepts of Voronoi cells, medial axis, reaches and offset hypersurface can be general-
ized in all these instances. For the interested reader, we recommend the book Voronoi
Diagrams and Delauney Triangulations [1] for the theoretical framework of Voronoi
diagrams, and the book Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams [4] for an introduction on the use of Voronoi diagrams in other areas. For a
lighter reading, we recommend the Quanta article How Geometry, Data and Neighbors
Predict Your Favorite Movies [3]. The latter is a science communication article which
gives a friendly introduction to the topic.
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To finish this journey, we highlight that our plan was done using the Euclidean
distance. This was an adequate choice in our setting because it was possible to walk
directly between any two places on the map. However, what would happen if we plan
a trip to a city where we could only walk along the streets? There is plenty more to
discover!
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