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DIAMETER AND CONNECTIVITY OF FINITE SIMPLE
GRAPHS II

TAKAYUKI HIBI AND SARA SAEEDI MADANI

Abstract. Let G be a finite simple non-complete connected graph on [n] =
{1, . . . , n} and κ(G) ≥ 1 its vertex connectivity. Let f(G) denote the number of
free vertices of G and diam(G) the diameter of G. The final goal of this paper is
to determine all sequences of integers (n, f, d, k) with n ≥ 8, f ≥ 0, d ≥ 2 and
k ≥ 1 for which there exists a finite simple non-complete connected graph on [n]
with f = f(G), d = diam(G) and k = κ(G).

Introduction

In this paper, we are interested in the diameter, connectivity and the number
of free vertices of a finite simple non-complete connected graph and how they are
related to each other. Even though the approach of this paper is purely combina-
torial, our initial motivation has arisen from the combinatorial study of binomial
edge ideals [4, 7], where these graphical invariants are closely related to a classical
invariant in commutative algebra.

Let G be a finite simple connected graph on the vertex set [n] = {1, . . . , n} with
n ≥ 3 and the edge set E(G). The distance distG(i, j) of i and j in [n] with i 6= j
is the smallest length, (i.e. the number of edges) of paths connecting i and j in G.
Especially, if {i, j} ∈ E(G), then distG(i, j) = 1. The diameter of G is

diam(G) = max{distG(i, j) : i, j ∈ [n]}.
The induced subgraph of G on T ⊂ [n] is the subgraph GT of G on the vertex

set T whose edges are those {i, j} ∈ E(G) with i ∈ T and j ∈ T . Let κ(G) ≥ 1
denote the vertex connectivity of G. In other words, κ(G) is the smallest cardinality
of T ⊂ [n] for which G[n]\T is disconnected.

A vertex i ∈ [n] is free if {i, j} ∈ E(G) and {i, j′} ∈ E(G) with j 6= j′, yield
{j, j′} ∈ E(G). In particular, a free vertex belongs to exactly one maximal clique
(i.e., complete subgraph) of G. If ∆(G) is the clique complex of G, i.e. the simplicial
complex whose faces are the vertex sets of the cliques of G, then a vertex is a free
vertex of G if and only if it belongs to exactly one facet of ∆(G). Such a vertex is
sometimes called a simplicial vertex. If a free vertex has degree equal to 1, then it
is just the same as a leaf in classical graph theory. Free vertices of graphs play an
important role in the literature of monomial and binomial edge ideals, especially in
the case of chordal graphs, see for example [3]. Let f(G) denote the number of free
vertices of G.

2010 Mathematics Subject Classification. 05C12, 05C40.
Key words and phrases. Vertex connectivity, diameter, free vertices.

1



In the study of binomial edge ideals [4, 7], it was shown in [1, 8] that, when G is
non-complete, one has

f(G) + diam(G) ≤ n+ 2− κ(G).(1)

Our final goal is to determine the possible sequences (n, f, d, k) of integers for
which there is a finite simple non-complete connected graph G on [n] with f =
f(G), d = diam(G) and k = κ(G). Toward our goal, in the previous paper [5],
the possible sequences (n, f, d, k) of integers for which there is a finite simple non-
complete connected graph G on [n] with f = f(G), d = diam(G) and k = κ(G)
satisfying f+d = n+2−k was determined. Furthermore, finite simple non-complete
connected graphs G on [n] satisfying f(G)+diam(G) = n+2−κ(G) were classified.
To simplify the notation, we let

ϕ(G) = f(G) + diam(G) + κ(G)

and

δ(G) = (f(G), diam(G),κ(G)).

The present paper is a continuation of [5]. First, in Section 1, a purely combinatorial
proof of (1) is given and also a classification of graphs G with ϕ(G) = 3, i.e. the
minimum possible value for ϕ(G), is provided. Second, in Section 2, for each integer
4 ≤ i ≤ n+ 1, a finite simple non-complete connected graph G on [n] with ϕ(G) = i
is constructed. Moreover, given an integer n ≥ 8, all possible sequences δ = (f, d, k)
of integers for which there is a finite simple non-complete connected graph G on
[n] with δ = δ(G) and ϕ(G) = 4, 5, 6 are determined. In Section 3, based on
the computations done in the previous sections, we provide the complete list of all
possible tripes δ(G), which is our main goal in this paper. Finally, we reprove the
classifications of δ(G) with ϕ(G) = n+ 1, n+ 2, given in [6] and [5], respectively.

Throughout the present paper, all graphs are finite and simple, and we denote
the vertex set and the edge set of a finite simple graph G by V (G) and E(G),
respectively, unless we mention something else.

1. Bounds on ϕ(G) and its minimum possible value

In this section, first we give an independent and totally combinatorial proof for
the inequality (1). We need to recall some notation and terminologies from graph
theory.

Recall that a connected graph G with n vertices is called k-connected for an integer
k with 1 ≤ k < n, if for each T ⊆ V (G) with |T | < k, the induced subgraph G[n]\T
of G is connected. In particular, any connected graph G is κ(G)-connected, but not
(κ(G) + 1)-connected.

Let P : u1, u2, . . . , u` be a path of length ` − 1 in a graph. Then we say that
P is a (u1, u`)-path and u2, . . . , u`−1 are internal vertices of P . Then, two paths
P : u1, u2, . . . , u` and Q : v1, v2, . . . , vs are called internally disjoint if they do not
have any common internal vertex. It is a well known fact in graph theory that a
connected graph G is k-connected if and only if for any two distinct vertices u and
v there exist at least k internally disjoint (u, v)-paths in G.
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Theorem 1.1. Let G be a finite simple non-complete connected graph on [n]. Then

f(G) + diam(G) ≤ n+ 2− κ(G).

In particular,
3 ≤ ϕ(G) ≤ n+ 2.

Proof. For simplicity, let f = f(G), d = diam(G) and k = κ(G). Since G is
connected, we have k ≥ 1, and hence d− 2 ≤ k(d− 2). Therefore, we have

(2) d− 2 + k ≤ k(d− 2) + k = k(d− 1).

Now, let u and v be two vertices of G such that distG(u, v) = d. Since G is k-
connected, there exist at least k induced internally disjoint paths between u and v
of length at least d. In particular, all internal vertices of these paths are not free.
Thus, the number of non-free vertices of G is at least k(d− 1). Therefore, we have

n ≥ f + k(d− 1) ≥ f + d− 2 + k

where the last inequality follows from (2). Hence we get the desired inequality. The
lower bound 3 is also achieved by f(G) = 0, diam(G) = 2 and κ(G) = 1, where the
last two follow since G is non-complete and connected, respectively. �

In [5] all graphs G on n vertices for which ϕ(G) = n + 2 were characterized.
Namely, the case in which ϕ(G) is maximized has been characterized. It is now
interesting to characterize the case in which ϕ(G) is minimized, i.e. ϕ(G) = 3.

First we recall the join product of two vertex disjoint graphs G1 and G2 which is
denoted by G1 ∗ G2. The vertex set of G1 ∗ G2 is just V (G1) ∪ V (G2) and its edge
set is

E(G1 ∗G2) = E(G1) ∪ E(G2) ∪ {{i, j} : i ∈ V (G1), j ∈ V (G2)}.
Also recall that a vertex v of a connected graph G is called a cut vertex if the

graph G − v is disconnected. In this paper, we denote the complete graph with n
vertices by Kn.

Theorem 1.2. Let G be a finite simple non-complete connected graph on [n]. Then
the following hold:

(1) Let n < 9. Then there is no graph G with ϕ(G) = 3.
(2) Let n ≥ 9. Then ϕ(G) = 3 if and only if G = K1 ∗ H where H is a

disconnected graph with no free vertex.

Proof. Let G be a finite simple non-complete connected graph with ϕ(G) = 3, which
implies that f(G) = 0, κ(G) = 1 and diam(G) = 2. Since κ(G) = 1, G has a cut
vertex v. Then G − v is a disconnected graph with the connected components
H1, . . . , Hs with s ≥ 2. Since diam(G) = 2, it follows that any vertex in Hi for
i = 1, . . . , s is adjacent to the vertex v in G. This implies that G = v ∗ (G− v). If
Hi for some i = 1, . . . , s has a free vertex, then according to the construction of the
join product, this vertex is a free vertex in G as well, which is a contradiction to the
assumption f(G) = 0. Thus, none of Hi’s has a free vertex, and hence |V (Hi)| ≥ 4
for each i = 1, . . . , s. This argument in particular implies that for n < 9, there is no
desired graph and for n ≥ 9 the statement (2) of the theorem holds. �
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Figure 1. The graph G on [n] with δ(G) = (1, n− 3, 1)

2. Possible values of ϕ(G)

After considering the minimum and maximum possible values for ϕ(G), it natural
to ask if any possible number between 3 and n+ 2 can be achieved by the invariant
ϕ(G) for some graph G. Motivated by a conjecture on Cohen-Macaulay property of
binomial edge ideals of graphs posed by Bolognini et al. in [2], and the fact that any
connected graph with Cohen-Macaulay binomial edge ideal has connectivity equal
to 1, we provide the desired graphs G to answer the aforementioned question with
κ(G) = 1.

LetG andH be two graphs on disjoint sets of vertices. Then we denote the disjoint
union of G and H by G∪H which is the graph on the vertex set V (G)∪ V (H) and
the edge set E(G) ∪ E(H).

Let G be a graph on [n]. Then we say that a graph G′ is obtained by duplicating
a vertex, say n, if V (G′) = V (G) ∪ {n′} where n′ /∈ V (G) and

E(G′) = E(G) ∪ {{j, n′} : j ∈ NG(n)}

where NG(n) is the set of all neighbors, i.e. the adjacent vertices, of n in G.

Theorem 2.1. Given any integer n ≥ 8, for any integer i with 4 ≤ i ≤ n+ 1, there
exists a finite simple non-complete connected graph G on [n] such that κ(G) = 1
and ϕ(G) = i.

Proof. First assume that i = 4. Let Cn−2 be the (n − 2)-cycle. Then, let G =
K1 ∗ (Cn−2 ∪K1). Then f(G) = 1, diam(G) = 2, κ(G) = 1 and ϕ(G) = 4.

Next, suppose that i = 5. Let Cn−3 be the (n − 3)-cycle. Then, let G = K1 ∗
(Cn−3 ∪K2). Then f(G) = 2, diam(G) = 2, κ(G) = 1 and ϕ(G) = 5.

Now, assume that 6 ≤ i ≤ n − 2. Let Pi : 1 . . . , i be the path graph. Let G be
the graph on [n] obtained from Pi by duplicating the vertex 2 and n − i − 1 times
duplicating the vertex i− 1 in Pi. Then f(G) = 0, diam(G) = i− 1, κ(G) = 1 and
ϕ(G) = i.

Next assume that i = n−1. Then, let G be the graph depicted in Figure 1. Then
f(G) = 1, diam(G) = n− 3, κ(G) = 1 and ϕ(G) = n− 1.

Now suppose that i = n. Then, let G be the graph depicted in Figure 2. Then
f(G) = 1, diam(G) = n− 2, κ(G) = 1 and ϕ(G) = n.

Finally, assume that i = n + 1. Then, let G be the graph depicted in Figure 3.
Then f(G) = 2, diam(G) = n− 2, κ(G) = 1 and ϕ(G) = n+ 1. �
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Figure 2. The graph G on [n] with δ(G) = (1, n− 2, 1)

Figure 3. The graph G on [n] with δ(G) = (2, n− 1, 1)

In the proof of Theorem 2.1, in the case of i = 4, we provided a graph G with
n ≥ 8 vertices with δ(G) = (1, 2, 1). In the next example, we also provide graphs G
with all other possible triples δ(G) = (f(G), diam(G),κ(G)) which yield ϕ(G) = 4.

Example 2.2. (1) Let n ≥ 8 and let Cn−4 be the (n − 4)-cycle on [n − 4] and
P3 : n− 3, n− 2, n− 1 be the path graph. Then, let H = n ∗ (Cn−4 ∪ P3) and
let G be the graph on [n] obtained from H by removing the edge {n − 2, n}.
Then δ(G) = (0, 3, 1) and ϕ(G) = 4.

(2) Let n ≥ 4 and let G = K2,n−2 be the complete bipartite graph. Then δ(G) =
(0, 2, 2) and ϕ(G) = 4.

In the proof of Theorem 2.1, in the case of i = 5, we provided a graph G on n ≥ 8
vertices with δ(G) = (2, 2, 1). In the next example, we also provide graphs G with
all other possible triples δ(G) which yield ϕ(G) = 5.

Example 2.3. (1) Let n ≥ 6 and let K2,n−4 be the complete bipartite graph on
the bipartition of its vertex set {1, 2}∪{3, 4, . . . , n−2}. Then we set G to be
the graph on [n] obtained by adding the edges {1, n − 1}, {1, n}, {2, n} and
{n− 1, n} to K2,n−4. Then δ(G) = (1, 2, 2) and ϕ(G) = 5.

(2) Let n ≥ 5 and let K2,n−4 be the complete bipartite graph on the bipartition of
its vertex set {1, 2} ∪ {3, 4, . . . , n− 2}. Then we set G to be the graph on [n]
obtained by adding the edges {1, n}, {2, n} and {n − 1, n} to K2,n−4. Then
δ(G) = (1, 3, 1) and ϕ(G) = 5.

(3) Let n ≥ 6 and let G = K3,n−3 be the complete bipartite graph. Then δ(G) =
(0, 2, 3) and ϕ(G) = 5.

(4) Let n ≥ 7 and let K2,n−6 be the complete bipartite graph on the bipartition
of its vertex set {1, 2} ∪ {3, 4, . . . , n − 4}. Then we set G to be the graph
on [n] obtained by adding the edges {1, n − 2}, {2, n − 2}, {n − 3, n − 2},
{n − 2, n − 1}, {n − 1, n} and {n − 3, n} to K2,n−6. Then δ(G) = (0, 4, 1)
and ϕ(G) = 5.

(5) Let n ≥ 6 and let K2,n−5 be the complete bipartite graph on the bipartition of
its vertex set {1, 2} ∪ {3, 4, . . . , n− 3}. Then we set G to be the graph on [n]
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obtained by adding the edges {1, n− 1}, {2, n− 2}, {n− 1, n} and {n− 2, n}
to K2,n−3. Then δ(G) = (0, 3, 2) and ϕ(G) = 5.

In the proof of Theorem 2.1, in the case of i = 6, we provided a graph G with
n ≥ 8 vertices with δ(G) = (0, 5, 1). In the next example, we also provide graphs G
with all other possible triples δ(G) which yield ϕ(G) = 6.

Example 2.4. (1) Let n ≥ 8 and let G = K1∗(K3∪Cn−4). Then δ(G) = (3, 2, 1)
and ϕ(G) = 6.

(2) Let n ≥ 8 and let H = 1 ∗Cn−4 on the vertex set {1, 2, . . . , n− 3}. Then we
set G to be the graph on [n] obtained by adding the edges {1, n−2}, {n−2, n},
{n− 2, n− 1} and {n− 1, n} to H. Then δ(G) = (2, 3, 1) and ϕ(G) = 6.

(3) Let n ≥ 8 and let G = K2 ∗ (Cn−4 ∪ K1 ∪ K1). Then δ(G) = (2, 2, 2) and
ϕ(G) = 6.

(4) Let n ≥ 8 and let H = 1 ∗ Cn−4 with the vertex set {1, 2, . . . , n − 3}. Then
we set G to be the graph on [n] obtained by adding the edges {1, n − 2},
{n− 2, n− 1} and {n− 1, n} to H. Then δ(G) = (1, 4, 1) and ϕ(G) = 6.

(5) Let n ≥ 8 and let G = K3∗(Cn−4∪K1). Then δ(G) = (1, 2, 3) and ϕ(G) = 6.
(6) Let n ≥ 6 and let K2,n−5 be the complete bipartite graph with the bipartition

of its vertex set {1, 2} ∪ {3, 4, . . . , n − 3}. Then we set G to be the graph
on [n] obtained by adding the edges {1, n − 1}, {2, n − 2}, {n − 2, n − 1},
{n− 2, n} and {n− 1, n} to H. Then δ(G) = (1, 3, 2) and ϕ(G) = 6.

(7) Let n ≥ 8 and let G = K4,n−4. Then δ(G) = (0, 2, 4) and ϕ(G) = 6.
(8) Let n ≥ 8 and let C8 be the 8-cycle on [8]. Then we set G to be the graph on

[n] obtained by n − 8 times duplicating the vertex 1. Then δ(G) = (0, 4, 2)
and ϕ(G) = 6.

(9) Let n ≥ 8 and let K3,n−7 be the complete bipartite graph with the bipartition
of its vertex set {1, 2, 3} ∪ {4, . . . , n− 4}. Then we set G to be the graph on
[n] obtained by adding the edges {n− 3, n− 2}, {n− 2, n− 1}, {n− j, n} and
{j, n− j} for each j = 1, 2, 3 to H. Then δ(G) = (0, 3, 3) and ϕ(G) = 6.

3. The complete list of possible δ(G)

In this section we make the complete list of all possible δ(G). First we start with
the case κ(G) = 1.

Theorem 3.1. Fix integers n ≥ 8, f ≥ 0 and d ≥ 2. Then there exists a finite
simple non-complete connected graph G on [n] with δ(G) = (f, d, 1) if and only if
one of the following conditions is satisfied:

(1) f = 0 and 2 ≤ d ≤ n− 3;
(2) f = 1 and 2 ≤ d ≤ n− 2;
(3) f ≥ 2, d ≥ 2 and f + d ≤ n+ 1.

Proof. Note that if f(G) = 0, then diam(G) is never equal to n− 1 or n− 2. Also,
if f(G) = 1, then diam(G) 6= n− 1. Thus, if δ(G) = (f, d, 1) for some non-complete
connected graph G, then one of the conditions (1), (2), (3) holds. For the converse,
in the following, in each case (1), (2), (3) we construct a desired graph.
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(1) Assume that f = 0 and 2 ≤ d ≤ n − 3. If d = 2, 3, then ϕ(G) = 3, 4
which was discussed in Theorem 1.2 and Example 2.2. Now, let 4 ≤ d ≤ n − 3.
Let Pd+1 : 1, 2, . . . , d + 1 be the path graph. Then, let G be the graph obtained
by duplicating the vertex 2 and n − d − 2 times duplicating the vertex d. Then,
δ(G) = (0, d, 1).

(2) Assume that f = 1 and 2 ≤ d ≤ n − 2. If d = 2, then ϕ(G) = 4 which was
discussed in Theorem 2.1. So, let 3 ≤ d ≤ n − 2. Let Pd+1 : 1, 2, . . . , d + 1 be the
path graph. Then, let G be the graph obtained by n− d− 1 times duplicating the
vertex 2. Then, δ(G) = (1, d, 1).

(3) Assume that f ≥ 2, d ≥ 2 and f +d ≤ n+ 1. First assume that f +d = n+ 1.
Then, let Pd+1 : 1, 2, . . . , d + 1 be the path graph and let G be the graph obtained
from Pd+1 by f − 2 times duplicating the vertex d+ 1. Then δ(G) = (f, d, 1). This
case was also considered in [5, Theorem 1.4]. So, we assume that f + d ≤ n.

If f = 2 and d = 2, then ϕ(G) = 5 which was discussed in Theorem 2.1. Now, let
f ≥ 3 and d = 2. Let K1,n−1 be the complete bipartite graph with the bipartition
of its vertex set {1} ∪ {2, 3, . . . , n}. Let G be the graph on [n] which is obtained
from K1,n−1 by adding the edges {j, j + 1} for each j = 2, . . . , n − f + 1. Then,
δ(G) = (f, 2, 1).

Now, let f ≥ 2, d ≥ 3 and f + d ≤ n − 2. Let Pd+1 : 1, 2, . . . , d + 1 be the path
graph. Then, let H be the graph on [d + 2] which is obtained by adding the edges
{d, d+ 2} and {d+ 1, d+ 2} to Pd+1. Now, let G be the graph on [n] obtained from
H by f −1 times duplicating the vertex d+2 and by n−d−f −1 times duplicating
the vertex 2 in H. Then, δ(G) = (f, d, 1).

Next, let f ≥ 2, d ≥ 3 and f + d = n − 1. Let Pd+1 : 1, 2, . . . , d + 1 be the
path graph. Then, let G be the graph on [n] obtained from Pd+1 by f − 1 times
duplicating the vertex d+ 1 and by duplicating the vertex 2. Then, δ(G) = (f, d, 1).

Finally, let f ≥ 2, d ≥ 3 and f + d = n. Let Pd+1 : 1, 2, . . . , d + 1 be the path
graph. Then, let H be the graph on [d + 2] obtained from Pd+1 by duplicating 2
and adding the edge {2, d + 2}. Then, let G be the graph on [n] obtained from H
by f − 2 times duplicating the vertex d+ 1. Then, δ(G) = (f, d, 1). �

Next, we consider the case diam(G) = 2.

Theorem 3.2. Fix integers n ≥ 8, f ≥ 0 and k ≥ 2. Then there exists a finite
simple non-complete connected graph G on [n] with δ(G) = (f, 2, k) if and only if
one of the following conditions is satisfied:

(1) f = 0 and 2 ≤ k ≤ n− 2;
(2) f = 1 and 2 ≤ k ≤ n− 3;
(3) f ≥ 2, k ≥ 2 and f + k ≤ n.

Proof. Note that for any non-complete connected graph G, we have κ(G) ≤ n− 2.
If f(G) = 1, then κ(G) ≤ n− 3. In fact, if κ(G) = n− 2, then each vertex of G is
adjacent to at least n− 2 other vertices in G. Suppose that the vertex 1 is free. If
1 is adjacent to all other vertices of G, then G must be complete graph, since 1 is
a free vertex. Thus, we may assume that there is no edge connecting the vertices 1
and 2 in G. This implies that 2 is adjecent to all vertices other than 1 which means
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that 2 is also a free vertex of G. This contradicts the assumption that f(G) = 1.
Thus, if δ(G) = (f, 2, k) for some non-complete connected graph G, then one of the
conditions (1), (2), (3) holds. For the converse, in the following, in each case (1),
(2), (3) we construct a desired graph.

(1) Assume that f = 0 and 2 ≤ k ≤ n− 5. If k = 2, then ϕ(G) = 4 and the result
follows from Example 2.2. So, let 3 ≤ k ≤ n− 5. Let Kk be the complete graph on
[k], and let Pn−k−2 : k + 1, k + 2, . . . , n− 2 and P2 : n− 1, n be path graphs. Then,
let H = Kk ∗ (Pn−k−2 ∪ P2). Then, let G be the graph on [n] obtained by removing
the edges {1, k+2}, {2, n−3}, {1, n−1} and {2, n} from H. Then, δ(G) = (0, 2, k).
Note that if n− k = 5, then the vertices k + 2 and n− 3 coincide.

Now, assume that f = 0 and k = n−4. Let Kn−4 be the complete graph on [n−4],
let P2 : n− 3, n− 2 and P ′2 : n− 1, n be path graphs. Then, let H = Kk ∗ (P2 ∪P ′2).
Then, let G be the graph on [n] obtained by removing the edges {1, n−3}, {2, n−2},
{1, n− 1} and {2, n} from H. Then, δ(G) = (0, 2, n− 4).

Next, assume that f = 0 and k = n − 3. Let Kn−3 be the complete graph on
[n− 3] and let P3 : n− 2, n− 1, n be the path graph. Let H = Kn−3 ∗ P3. Then let
G be the graph on [n] obtained by removing the edges {1, n − 2}, {2, n − 1}, and
{3, n} from H. Then, δ(G) = (0, 2, n− 3).

Next, assume that f = 0 and k = n − 2. Let Kn−2 be the complete graph on
[n − 2] and let P2 : n − 1, n be the path graph. Let H = Kn−2 ∗ P2. Then let G
be the graph on [n] obtained by removing the edges {1, n − 1} and {2, n} from H.
Then, δ(G) = (0, 2, n− 2).

(2) Assume that f = 1 and 2 ≤ k ≤ n − 4. If k = 2, then ϕ(G) = 5, and hence
the result follows from Example 2.3. Now suppose that 3 ≤ k ≤ n − 4. Let Kk be
the complete graph on [k] and let Pn−k−1 : k+ 1, k+ 2, . . . , n− 1 be the path graph.
Then, let H = Kk ∗ (Pn−k−1 ∪ n). Then, let G be the graph on [n] obtained by
removing the edges {1, k + 2} and {2, n− 2} from H. Then, δ(G) = (1, 2, k). Note
that if n− k = 4, then the vertices k + 2 and n− 2 coincide.

Now, assume that f = 1 and k = n − 3. Let Kn−3 be the complete graph on
[n−3], let P2 : n−2, n−1 be the path graph. Then, let H = Kn−3 ∗ (P2∪n). Then,
let G be the graph on [n] obtained by removing the edges {1, n− 2} and {2, n− 1}
from H. Then, δ(G) = (1, 2, n− 3).

(3) First assume that f = 2 and 2 ≤ k ≤ n − 4. Then let Kk be the complete
graph on [k], let Pn−k−2 : k+ 1, k+ 2, . . . , n−2 and P2 : n−1, n be the path graphs.
Then, let H = Kk ∗ (Pn−k−2 ∪ P2). Then, let G be the graph on [n] obtained by
removing the edges {1, n− 1} and {2, n} from H. Then, δ(G) = (2, 2, k).

Now, assume that f = 2 and k = n − 3. Then let Kn−3 be the complete graph
on [n− 3] and let P3 : n− 2, n− 1, n be the path graph. Then, let H = Kn−3 ∗ P3.
Then, let G be the graph on [n] obtained by removing the edges {n− 1, n− 2} and
{1, n} from H. Then, δ(G) = (2, 2, n− 3).

Next, assume that f = 2 and k = n− 2. Then, let G = Kn−2 ∗ (K1 ∪K1). Then,
δ(G) = (2, 2, n− 2).

Finally, assume that f ≥ 3 and 2 ≤ k ≤ n − f . Then let Kk be the complete
graph on [n]\ [n−k] and let Cn−k be the (n−k)-cycle on the vertex set [n−k]. Let
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H = Kk ∗ Cn−k. Then let G be the graph on [n] obtained by removing the edges
{j, j + 1} for each j = 1, . . . , f − 1 from H. Then, δ(G) = (f, 2, k). �

Finally, we consider κ(G) ≥ 2 and diam(G) ≥ 3.

Theorem 3.3. Fix integers f ≥ 0, d ≥ 3 and k ≥ 2. Then there exists a finite
simple non-complete connected graph G on [n] with δ(G) = (f, d, k) if and only if

n ≥ k(d− 1) + max{2, f}.

Proof. First let G be a non-complete connected graph on [n] with δ(G) = (f, d, k)
where f ≥ 0, d ≥ 3 and k ≥ 2. Let Q1 : 1, 2, . . . , d + 1 be a longest path in G.
Since G is k-connected, there exist k internally disjoint induced paths between the
vertices 1 and d+ 1, say Q1, . . . , Qk. Since d = diam(G), each Qi for i = 2, ..., k has
length at least d. Since none of the internal vertices of each Qi for i = 1, . . . , k is a
free vertex, it follows that the number of non-free vertices of G is at least k(d− 1).
Note that the vertices 1 and d+ 1 can be free or not. Then, we deduce that

n ≥ k(d− 1) + max{2, f}.
Conversely, suppose that n ≥ k(d − 1) + max{2, f}. Let Q1, Q2, . . . , Qk be path

graphs of length d− 2 on disjoint sets of vertices. Let i and i+ k be the leaves of Qi

for each i = 1, . . . , k. Let H = Q1 ∪ Q2 ∪ . . . ∪ Qk with V (H) = [k(d − 1)]. Then,
let H ′ be the graph on [k(d− 1) + 2] obtained by adding the edges {j, k(d− 1) + 1}
and {k + j, k(d− 1) + 2} for each j = 1, . . . , k.

First assume that f = 0. Then, let G be the graph on [n] obtained by n− (k(d−
1) + 2) times duplicating the vertex 1 in H ′. Then, δ(G) = (0, d, k).

Next assume that f = 1. Then, let G be the graph on [n] obtained by n− (k(d−
1) + 2) times duplicating the vertex 1 in H ′ and by adding the edges {k + i, k + j}
for all 1 ≤ i < j ≤ k. Then, the vertex k(d− 1) + 2 is the only free vertex of G, and
hence δ(G) = (1, d, k).

Finally, assume that f ≥ 2. Let e = {s, t} be an edge of Qk. Then, let H ′′ be the
graph on [k(d− 1) + 3] by adding the edge {s, k(d− 1) + 3} and {t, k(d− 1) + 3} to
H ′. Then let G be the graph on [n] obtained from H ′′ by f−3 times duplicating the
vertex k(d− 1) + 3 and n− (k(d− 1) + f) times duplicating the vertex 1 and then
by connecting all the neighbors of the vertex k(d− 1) + 1 in the new graph to each
other by an edge as well as connecting all the neighbors of the vertex k(d − 1) + 2
to each other. Then, δ(G) = (f, d, k). �

In the next two corollaries we consider, in particular, the characterizations due to
ϕ(G) = n + 2 and ϕ(G) = n + 1 to recover [5, Theorem 1.4] and [6, Theorem 3.3],
respectively.

Corollary 3.4. Fix integers n ≥ 8, f ≥ 0, d ≥ 2 and k ≥ 1. Then there exists
a finite simple non-complete connected graph G on [n] with ϕ(G) = n + 2 and
δ(G) = (f, d, k) if and only if f + d+ k = n+ 2 and one of the following conditions
is satisfied:

(1) f ≥ 2, k ≥ 1 and d = 2;
(2) f ≥ 2, k = 1 and d ≥ 2.
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Proof. First suppose that G is a graph on [n] with ϕ(G) = n + 2, f = f(G) ≥ 0,
k = κ(G) ≥ 2 and d = diam(G) ≥ 3. Then by Theorem 3.3, we have

f + d+ k − 2 ≥ k(d− 1) + max{2, f}.
Thus, we have

(k − 1)(d− 2) ≤ f −max{2, f},
which is impossible. Therefore, if ϕ(G) = n+ 2, then k = 1 or d = 2, and hence the
result follows from Theorem 3.1 and Theorem 3.2. �

Corollary 3.5. Fix integers n ≥ 8, f ≥ 0, d ≥ 2 and k ≥ 1. Then there exists
a finite simple non-complete connected graph G on [n] with ϕ(G) = n + 1 and
δ(G) = (f, d, k) if and only if f + d+ k = n+ 1 and one of the following conditions
is satisfied:

(1) f ≥ 2, k ≥ 1 and d = 2;
(2) f ≥ 2, k = 1 and d ≥ 2;
(3) f ≥ 2, k = 2 and d = 3.

Proof. First suppose that G is a graph on [n] with ϕ(G) = n + 1, f = f(G) ≥ 0,
k = κ(G) ≥ 2 and d = diam(G) ≥ 3. Then by Theorem 3.3, we have

f + d+ k − 1 ≥ k(d− 1) + max{2, f}.
Thus, we have

(k − 1)(d− 2) ≤ f −max{2, f}+ 1,

which is possible if and only if f ≥ 2, d = 3 and k = 2. Therefore, if ϕ(G) = n+ 1,
then k = 1 or d = 2 or f ≥ 2, d = 3 and k = 2. Then the result follows from
Theorem 3.1, Theorem 3.2 and Theorem 3.3. �
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