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Introduction by the Organizers

The workshop Polynomial optimization for nonlinear dynamics: theory, algo-
rithms, and applications was organized by Giovanni Fantuzzi (Erlangen, Ger-
many), David Goluskin (Victoria, Canada) and Jean-Bernard Lasserre (Toulouse,
France). The workshop was attended by 43 onsite participants, including 12 who
were PhD students or postdocs. Participants came from universities widely dis-
tributed across Europe and North America, as well as from Australia, Chile, China
and Israel. Several hours were devoted to research talks on all five mornings and
on three of the evenings. Several hours after lunch, as well as the hours after
dinner, were kept open for free discussion. This discussion time was put to full
use, with almost all participants proactively grouping themselves in various ways
and scattering to blackboards throughout the facilities.
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The topic of the workshop was a fast-growing family of computational meth-
ods that use polynomial optimization to deduce information about nonlinear dy-
namical systems. These dynamical systems are often, but not always, governed
by nonlinear ODEs or PDEs, and the results obtained with help from polyno-
mial optimization typically surpass what other existing methods can give. The
mathematical progress needed to further improve, generalize, and analyze these
optimization-based methods lies at the interface of several different research com-
munities. These communities include applied nonlinear dynamics and control the-
ory, polynomial optimization, real algebraic geometry, and analysis of PDEs and
variational problems. A major success of the workshop was to bring these disparate
communities together and strengthen the ties between them, which were facilitated
by four one-hour overview talks and solidified by many impromptu discussions.

The four overview talks were designed both to be pedagogical and to highlight
open challenges. David Goluskin opened the workshop with a high-level view of
the various topics to be discussed and their interrelation, with emphasis on which
areas call for further work. Didier Henrion gave an introduction to the language
of occupation measures and explained how to formulate optimal control problems
in terms of psuedomoments of measures, which are related by convex duality to
polynomial optimization problems subject to sum-of-squares constraints. Monique
Laurent surveyed what is known about convergence rates for upper and lower
bounds on global minima of polynomials, which laid the groundwork for subsequent
discussions of convergence rates for the polynomial optimization problems arising
in the study of dynamical systems. Giovanni Fantuzzi gave a unified view on
efforts to generalize methods from finite to infinite dimensions, such as going from
minimizing polynomials to minimizing integral functionals, or going from ordinary
to partial differential equations.

In addition to the overview talks, there were 17 research talks, and seven junior
participants gave three-minute lightning talks in order to raise their visibility and
introduce their research areas to the other participants. The timing of the research
talks was flexible, but most were nominally allotted a half hour, and a few were
allotted more time. Speakers were selected based on which topics the organizers
considered to most likely stimulate discussion during the workshop. Corbinian
Schlosser and Matteo Tacchi-Bénard presented recent advances in proving conver-
gence rates for moment-sum-of-squares hierarchies, building on Monique Laurent’s
overview and taking steps towards generalization of such convergence rates to dy-
namical systems. Going beyond the ODE case, Elizabeth Carlson and Emilia
Fridman presented applications of convex programming to particular PDEs, while
Jared Miller addressed stochastic effects and hybrid systems. Federico Fuentes
explained how to apply polynomial optimization techniques to approximate global
optimizers of integral variational problems, while Ian Tobasco described challeng-
ing problems from materials science as a possible new application area for the
methods of the workshop. Amir Ali Ahmadi and Mario Sznaier spoke about how
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to learn dynamical systems with control, and Jason Bramburger showed how poly-
nomial optimization methods can be applied when one has data a dynamical sys-
tem rather than its governing equations. Pablo Parrilo discussed a version of the
shortest-path problem for a network connecting convex sets, with an eye towards
control. Heng Yang showed computational advances for using polynomial opti-
mization to solve optimal control problems, and Michael Stingl kindly presented
work by Michal Kočvara on ill-conditioning of computations that arise from poly-
nomial optimization. Jie Wang presented ways to refine convergent hierarchies of
polynomial optimization problems in the real and complex cases. Finally, turning
to algebraic aspects of polynomial optimization and its generalizations, Philipp
Di Dio discussed how evolution of polynomials under the heat equation or related
operators may preserve or add positivity properties, while Mareike Dressler and
Timo de Wolff spoke about conditions implying nonnegativity that differ from the
more widely used sum-of-squares conditions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Polynomial optimization methods for dynamics: the standard
approach and the need to go beyond it

David Goluskin

This overview talk explained how the different research areas represented at the
meeting fit together, and it emphasized where further advances are most needed.
The topic of the meeting is a family of methods that all loosely follow a certain
template. The steps below describe the most standard version of this template.

(1) Begin with a particular ODE or discrete-time dynamical system on state
space Rn.

(2) Formulate sufficient conditions wherein finding an auxiliary function V :
R
n → R subject to certain inequalities will imply a statement about the

dynamical system. Alternatively, such statements can be formulated on
the dual side in terms of measures.

(3) Assuming all relevant expressions are polynomial, inequality constraints
can be strengthened into polynomial sum-of-squares (SOS) constraints.
The result is an SOS optimization problem. Successively enlarging the
polynomial spaces for the auxiliary function V and other polynomial ex-
pressions gives a hierarchy of SOS optimization problems. On the dual
side, there is a corresponding hierarchy of moment problems.

(4) An SOS-moment problem is converted into a semidefinite program. The
particular semidefinite program depends on the choice of polynomial basis
– the monomial basis is the standard choice.

(5) The semidefinite program is solved using a primal-dual interior-point al-
gorithm, whose output implies a statement about the dynamical system
being studied.

I listed types of various statements about dynamical systems that can be produced
using the standard template. For an explicit example of how this template works, I
described how SOS optimization can give upper bounds on the maximum infinite-
time average of a chosen quantity among all trajectories in a chosen set, including
theoretical guarantees that the SOS hierarchies converge to the maximum time
average.

The rest of the talk described open challenges, both for studying methods that
follow the standard template and for going beyond these methods. First, within
the standard template there is room for more such methods giving different types
of statements about dynamical systems, and there is a need for stronger conver-
gence theory. Convergence theorems are lacking when dynamics are not restricted
a priori to a compact region of phase space, and convergence guarantees currently
lack rates of convergence as polynomial degrees are raised in the SOS hierarchies.
Second, computational implementations following the standard template often suf-
fer from prohibitively poor numerical conditioning, which motivates modifying the
template in various ways. One could modify step 5 by using a different algorithm
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to solve semidefinite programs. One could modify step 4 by choosing different
polynomial bases, and it is an open challenge to define what is meant by optimal
bases for different SOS problems, let alone to find those bases. One could also
modify step 3 by using other non-SOS nonnegativity certificates. Third, these
methods must be generalized to infinite-dimensional state spaces, as when going
from dynamical ODEs to PDEs.

Performance Analysis of Sum-Of-Squares Hierarchies for
Polynomial Optimization

Monique Laurent

We consider the polynomial optimization problem, of the form

fmin = min{f(x) : x ∈ S}, where S = {x ∈ R
n : gj(x) ≥ 0 (j ∈ [m]}

with f, gj ∈ R[x] multivariate polynomials. Such problems are in general nonlinear,
nonconvex hard problems, already for simple semialgebraic sets S like the ball,
the unit sphere, the hypercube or the simplex. Indeed, they can capture NP-hard
problems like testing convexity of a (quartic) polynomial, deciding whether an
integer sequence can be partitioned, or computing the maximum cardinality of an
independent set in a graph.

Hierarchies of upper and lower bounds can be constructed using the cone Σ of
sums of squares of polynomials. For an integer r ∈ N define the parameters

f (r) = inf
{

∫

S

f(x)σ(x)dµ(x) :

∫

S

σ(x)dµ(x) = 1, σ ∈ Σ, deg(σ) ≤ 2r
}

,(1)

f(r),Q = sup
{

λ : f − λ =
m
∑

j=0

σjgj, σj ∈ Σ, deg(σjgj) ≤ 2r
}

,(2)

f(r),O = sup
{

λ : f − λ =
∑

J⊆[m]

σJgJ , σJ ∈ Σ, deg(σJgJ) ≤ 2r
}

.(3)

Here, µ is a positive Borel measure with support S and we set g0 = g∅ = 1,
gJ =

∏

j∈J gj . The set of polynomials that admit a representation
∑m
j=0 σjgj

(with σj ∈ Σ and deg(σjgj) ≤ 2r) forms the quadratic module Q(g)2r generated by
the gj’s, truncated at degree 2r. The set of polynomials of the form

∑

J⊆[m] σJgJ
(with σJ ∈ Σ and deg(σJgJ) ≤ 2r) forms the pre-ordering O(g)2r generated by
the gj’s, truncated at degree 2r. Since Q(g)2r ⊆ O(g)2r and any polynomial in
O2r(g) is nonnegative over S, we have

f(r),Q ≤ f(r),O ≤ fmin ≤ f (r).

Moreover, since sums of squares of polynomials can be modelled using semidefi-
nite programs, each of the parameters f (r), f(r),Q, f(r),O can be modelled (and
computed) using semidefinite optimization.

Assume S is compact. Then, the upper bounds f (r) converge asymptotically
to fmin [7]. Based on Schmüdgen’s Positivstellensatz, the lower bounds f(r),O are
also known to converge asymptotically to fmin. The same holds for the (weaker)
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lower bounds f(r),Q under an Archimedean condition on the algebraic description
of S, based on Putinar’s Positivstellensatz (see [6]).

In this lecture we discuss the state-of-the-art results concerning the quality
of the upper and lower bounds, namely how fast the error ranges f (r) − fmin,
fmin−f(r),O and fmin−f(r),Q tend to 0 as a function of the order r of the relaxation.
For both upper and lower bounds the results can be roughly divided into two
categories: for ‘general’ sets S, and for ‘special sets’ S that admit some nice
symmetry structure (like the ball, the unit sphere, the hypercube or the simplex).
Different proof techniques are used for each category and, quite naturally, stronger
results can be shown for special sets. In addition, there is an intimate link between
the analysis for the upper and lower bounds.

We refer to the recent paper [9] for an overview of the state-of-the-art results
and for detailed references to the literature.

Convergence analysis of the upper bounds. The most general result is when
the set S is a convex body, or a semialgebraic set with a dense interior (selecting

the Lebesgue measure for µ); then, one can show f (r)− fmin = O
(

log2 r
r2

)

[12]. The
analysis has two key steps: (1) reduce the search to a univariate sum of squares s
and then set σ(x) = s(f(x)), (2) select the univariate sum of squares s as a tight
approximation of the Dirac delta at an extremity of an interval (using so-called
needle polynomials).

A stronger analysis in O
(

1
r2

)

can be shown for special sets S: for the interval

[−1, 1] (with dµ(x) = (1 − x2)−1/2dx in [4], with dµ(x) = (1 − x2)λ and λ ≥
−1/2 in [12]), for the ball and the simplex in [12], and for the sphere in [5].
The starting point is expressing the parameter f (r) as the smallest eigenvalue of
the matrix Af = (

∫

S f(x)pα(x)pβ(x)dµ(x))|α|,|β|≤r , where {pα} are orthonormal
polynomials with respect to the inner product provided by the measure µ on S.
In the univariate case, when K = [−1, 1] and f(x) = x, the matrix Ax coincides
with the (tridiagonal) Jacobi matrix, whose entries are given by the three-term
recurrence satisfied by the polynomials pk, and whose eigenvalues are the roots
of the polynomial pr+1. Hence, in this case, f (r) coincides with the least root of
pr+1, known to be in the order −1 + Ω

(

1
r2

)

for Jacobi type measures (1 − x2)λ

(λ > −1). This is the key ingredient used in [4] for the analysis in the case when
S = [−1, 1]n. Additional reductions are needed to extend the analysis to other
sets. This includes an integration trick in order to extend the analysis to the
sphere in [5] and looking at the local shape around a global minimizer to extend
the analysis to the ball, the simplex and ‘round’ convex bodies in [12].

Convergence analysis of the lower bounds. The best general result has been
obtained recently and shows a convergence rate in O

(

1
rc

)

for the bounds f(r),Q [1],
providing an impressive improvement on an earlier result in [10] (with a logarithmic
dependence on r). The analysis is technically involved, and combines a variety of
techniques, including the  Lojasiewicz inequality, approximation theory tools, and
a reduction to the analysis for the case of the hypercube [−1, 1]n (from [8]).
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For special sets such as the hypercube [−1, 1]n, the ball, the sphere and the sim-
plex, an improved performance analysis in O

(

1
r2

)

has been shown for the bounds
f(r),O (that are stronger than the bounds f(r),Q since they involve ‘richer’ sums-
of-squares decompositions). A key ingredient here is using the polynomial kernel
method to construct suitable sums-of-squares representations. Here is a general
‘recipe’. Assume we have an invertible linear operator Kr : R[x] → R[x]2r that
satisfies the following properties:

(P1) Kr preserves the constant polynomial: Kr1 = 1,
(P2) if p ≥ 0 on S, then Krp ∈ O(g)2r ,
(P3) ‖K−1

r f − f‖∞ ≤ ǫ.

In (P3) we assume f is scaled and translated so that its minimum (resp., maximum)
over S is equal to 0 (resp., 1). It is not difficult to see that one can conclude
fmin − f(r),O ≤ ǫ. The challenge then is constructing a linear operator Kr having
these properties. Property (P3) says (roughly) that Kr should be close to the
identity operator when acting on polynomials of degree at most d = deg(f). The
approach is to select a polynomial kernel Kr(x, y) ∈ R[x, y]2r,2r and then to define
the corresponding linear operator Kr that acts by convolution: for p ∈ R[x], define
Krp(x) =

∫

S p(y)Kr(x, y)dµ(y).
Consider first the case of the hypercube K = [−1, 1]n, equipped with the Cheby-

shev product measure dµ(x) =
∏n
i=1(1 − x2i )

−1/2dxi. Consider the multivariate
Chebyshev polynomials Tα =

∏n
i=1 Tαi

where Tk are the univariate Chebyshev
polynomials. Then the Tα are orthogonal w.r.t. the inner product given by µ.
Define the multivariate polynomial kernel Kr(x, y) =

∏n
i=1Kr(xi, yi), where the

univariate kernel is of the form Kr(xi, yi) = 1+2
∑r
k=1 λ

r
kTk(xi)Tk(yi) (also known

as the Jackson kernel), and the scalars λrk are selected so that 0 ≤ 1−λrk ≤ π2d2

(r+2)2

for 0 ≤ k ≤ d and Kr(xi, yi) ≥ 0 on [−1, 1]2. By construction, the corresponding
operator Kr satisfies (P1) and, using Markov-Lukacz, it also satisfies (P2). Fi-
nally, the selection of the scalars λrk ensures that (P3) holds with ǫ = O

(

1
r2

)

, thus

giving the analysis in O
(

1
r2

)

(as in [8]).

The same analysis in O
(

1
r2

)

is shown for the sphere in [3], and for the ball and
the simplex in [11]. It however relies on a different class of polynomial kernels,
constructed by exploiting the symmetry structure of the sets under consideration.
The idea (pioneered in [3]) is construct the kernel Kr(x, y) as a suitable perturba-

tion of the Christoffel-Darboux kernel, as Kr(x, y) =
∑2r

k=0 λk
∑

|α|=k pα(x)pα(y),

for appropriate scalars λk. Setting λ0 = 1 ensures (P1) holds. The key (harmonic
analysis) fact is that the sum

∑

|α|=k pα(x)pα(y) can be expressed in terms of an

associated univariate polynomial, when dealing with the sphere, the ball or the
simplex.

In the case of the unit sphere, this univariate polynomial is a Gegenbauer
polynomial Gk evaluated at xT y. Then, one selects Kr(x, y) = s(xT y), where

s(t) =
∑2r

k=0 λkGk(t), and one searches for scalars λk so that s is a sum of squares
(which ensures (P2) holds) and (P3) holds. Interestingly, the search for this uni-
variate s boils down to an instance of the upper bounds g(r) for a suitably defined
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univariate polynomial g on the interval [−1, 1]. As a consequence, it follows from
the earlier results on the upper bounds that a suitable s can be found, which gives
a suitable polynomial kernel Kr(x, y) and thus a suitable kernel operator Kr.

For the ball and the simplex, a similar approach can be followed, however with
more technical details as the summation formulas for

∑

|α|=k pα(x)pα(y) (given in

[13, 14]) are more involved. The full details can be found in [11].
Showing an improved convergence analysis for the lower bounds f(r),Q for sym-

metric sets remains widely open. A recent result is an analysis in O(1/r) for the
case of the hypercube shown in [2].
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A Framework for Computing Convergence Rates for the
Moment-SoS Hierarchy

Corbinian Schlosser

(joint work with Matteo Tacchi-Bénard, Alexey Lazarev)

The wide application of the moment-sum-of-squares (SoS) has its origins in poly-
nomial optimization problems (POP). Those are of the form

(POP)
f∗ := min

x∈Rn
f(x)

s.t. x ∈ K

where f is a given polynomial in n variabels, the set K ⊂ Rn is given by

K := {x ∈ R
n : pi(x) ≥ 0, i = 1, . . . ,m}

for given polynomials p1, . . . , pm in n variables. The starting point of the moment-
SoS hierarchy lies in the following simple reformulation of POP as the following
linear – but infinite dimensional – optimization problem (LP)

(1)
f∗ = sup

s∈R

s

s.t. f − s ≥ 0 on K.

For the moment-SoS hierarchy, the non-negativity constraint in (1) is replaced by
an SoS constraint. This is done as follows: Let SoS[x] be the set of sums of squares
of polynomials and, for ℓ ∈ N, the truncated quadratic module Qℓ is defined as

Qℓ := {σ0 +
m
∑

i=1

σipi : σ0, . . . , σm ∈ SoS[x], deg σ0, deg σipi ≤ 2ℓ for i = 2, . . . ,m}.

The moment-SoS hierarchy for POP reads, for ℓ ∈ N consider

(2)
f∗
ℓ := sup

s∈R

s

s.t. f − s ∈ Qℓ.

Under mild compactness assumptions, the seminal works [1, 2] applied the cele-
brated Putinar’s Positivstellensatze [3] to show f∗

ℓ ր f∗ as ℓ → ∞. It took until
[4] that first general quantitative convergence results were established. Those are
so-called effective Positivstellensätze which quantify ℓ ∈ N for which a given poly-
nomial f belongs to the truncated quadratic module Qℓ.

Naturally, the question on convergence rates transfers from POP to the variety
of different applications of the moment-SoS hierarchy, see [5] for examples. How-
ever, only a few works [6, 7] have addressed it so far. In this talk, we outline
a framework for computing convergence rates for the following general class of
infinite-dimensional LPs and their moment-SoS hierarchy (on the right)

(3)
d∗ := sup

p∈R[y]

T (p) , d∗
ℓ := sup

p∈R[y]ℓ

T (p)

s.t. A p− h ≥ 0 on K s.t. A p− h ∈ Qℓ.
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where K is given as before, T : R[y] → R a linear operator, A : R[y] → R[x] a
linear operator between the polynomial ring in variables y respectively x, and h a
given polynomial. It is readily verified that (1) and (2) are of the form (3).

Our proposed method [8] consists of the following steps:

1. Take a minimizer p⋆ of the LP (3).
2. If no minimizer exists, take a feasible polynomial pǫ with almost optimal

cost.
3. Perturb p⋆ (resp. pǫ) into a strictly feasible polynomial p̂ with T (p̂) ≤

d⋆ + δ.
4. Apply effective Positivstellensätze, such as [9], to show that p̂ is feasible

for moment-SoS hierarchy at some level ℓ ∈ N.
5. Relate the approximation error δ and the hierarchy level ℓ to derive a

convergence rate.

When no polynomial minimizer exists, it is still sometimes possible to enlarge
the search space in the infinite dimensional LP in (3) so that a (non-polynomial)
minimizer p̄ exists. For those cases, in Step 2, we suggest choosing the polynomial
pε as a polynomial approximation of p̄ where quantitative properties are inferred
via Jackson-type inequalities.

For Step 3, we assume a Slater condition being satisfied for the LP in (3).
We illustrate our method by showing how it encompasses the existing work [7]

on volume computation of semialgebraic sets. By leveraging a state-of-the-art Pos-
itivstellensatz [9], we improve their logarithmic convergence rate to a polynomial
one. This talk is complimented by the talk by Matteo Tacchi-Bénard.
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Computing Volumes with Sums-Of-Squares

Matteo Tacchi-Bénard

The problem of computing the volume of a compact set is known to be very difficult
in general. Even finding the exact volume of a convex polytope is a computational
challenge [1], while the volume of generic convex sets requires very sophisticated
methods to be reliably approximated [2, 3]. When the considered set is not even
convex, the task becomes even harder, reducing the possibilities to Monte-Carlo
or discretization techniques. However, if instead of being convex the set at hand is
assumed to be semialgebraic, then some powerful tools can be used to approximate
its volume [4, 5]. More specifically, [5] leverages the moment-SoS hierarchy [6] to
compute the volume of the set

S = {x ∈ R
n : g(x) ≥ 0},

where g ∈ R[x] is a polynomial. In this setting, assuming that S ⊂ B = [−1, 1]n,
the moment-SoS hierarchy is implemented to approximate the volume vol(S) as
the solution of the following Generalized Moment Problem (GMP) and its dual:

vol(S) = max

∫

µ

s.t. µ ∈ M(S)+

µ ∈ M(B)+(1a)

∀w ∈ R[x],

∫

w µ+

∫

w µ =

∫

[−1,1]n
w

vol(S) = inf

∫

[−1,1]n
w

s.t w|S − 1 ∈ C0(S)+

w|B ∈ C0(B)+(1b)

w ∈ R[x],

where for a compact set K ⊂ Rn, M(K)+ denotes the cone of Radon measures
on K, dual to the cone C0(K)+ of nonnegative continuous functions on K, with
respect to the topology of uniform convergence. Then, the moment-SoS hierarchy
consists in replacing C0(K)+ with the corresponding truncated quadratic module
Q(K)r (see an example description of Q(S)r in (4a) below) for increasing val-
ues of the relaxation order r. The challenge for its application to problem (1) is
that, while the primal (1a) admits the Lebesgue measure supported on S as its
minimizer, constraints qualification does not hold: the dual (1b) has neither poly-
nomial nor continuous minimizer. Instead, it only admits minimizing sequences of
polynomials that approximate the (discontinuous) indicator 1S of S from above
in the L1(B) topology, resulting in a Gibbs phenomenon in numerical computa-
tions. To cope with that difficulty, in [7], redundant constraints were added to
the primal (1a), that have no effect on the infinite dimensional GMP but sharply
tighten its moment relaxations, in order to speed up the practical convergence of
the corresponding hierarchy. More precisely, in [8] we formalized the following
“Stokes constraints” to be added to (1a):

(2) ∃ν ∈ M(∂S)+; ∀v ∈ C2(S),

∫

∆v µ = −
∫

∇g⊤∇v ν,
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which essentially is a variation of the divergence theorem, also known as Stokes’,
Gauss’ or even Green’s formula (∇g representing an inward pointing normal vec-
tor to ∂S and ν a scaled Hausdorff measure on ∂S). Moreover, we proved that
assuming that S has a smooth boundary ∂S and adding the above constraints
to (1a) resulted in existence of a minimizer on the corresponding dual problem,
which then reads as follows:

vol(S) = min

∫

[−1,1]n
w

s.t w|S + ∆v − 1 ∈ C0(S)+

w ∈ C0(B)+(3)
(

∇g⊤∇v
)∣

∣

∂S
∈ C0(∂S)+

v ∈ C2(S).

The proof of existence of a minimizer for (3) leverages the fact that its optimal-
ity conditions boil down to a Poisson PDE with Neumann boundary conditions,
for which existence and regularity of solutions is well-documented. The result-
ing optimal (v⋆, w⋆) are then approximated with appropriate polynomials with
the moment-SoS hierarchy, with no Gibbs phenomenon occurring as there is no
discontinuity anymore. While qualitatively explaining the spectacular practical
improvement in the accuracy of the resulting SoS programming approximations,
this reasoning lacked a quantitative analysis, which we recently presented in [9],
leveraging new results on effective Positivstellensätze (P-sätze) [10]. Namely, un-
der mild assumptions, [10] states that a degree d polynomial p ∈ Rd[x] that is
positive on S can be represented under the form

(4a) p(x) = σ0(x) + g(x) · σ1(x)

with σ0, σ1 ∈ SoS[x] (polynomial sums of squares) and max(deg(σ0), deg(g ·σ1)) ≤
2r for any level of SoS representation in the hierarchy r ∈ N satisfying the following
inequality:

(4b) r ≥ γ d3.5nL
(

max{|p(x)| : x ∈ [−1, 1]n}
min{p(x) : x ∈ S}

)2.5nL

for some constants γ, L > 0 depending on the geometry of S (a similar result holds
for B and ∂S instead of S).

Then, [9] proposes the following procedure to compute a convergence rate of
the SoS programming approximations of (1b) (resp. (3)):

(1) “Effective Weierstraß theorem”: Approximate the optimizer 1S (resp.
(v⋆, w⋆)) on [−1, 1]n with degree d polynomials wd (resp. and vd) using
Jackson-type inequalities in the appropriate metric

(2) “Effective Slater condition”: Perturb wd (resp. and vd) into a strictly
feasible polynomial w̃d = wd + θdŵ (resp. and ṽd = vd + θdv̂) of degree d
for some well chosen inward pointing polynomial ŵ (resp. and v̂)
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(3) “Effective Putinar P-satz”: Apply (4) to the positive polynomials w̃d on
B and pd(x) = w̃d(x)− 1 on S (resp. and pd(x) = w̃d(x) + ∆ṽd(x)− 1 on
S and qd(x) = ∇g(x)⊤∇ṽd(x) on ∂S)

(4) Conclusion: Tune the value of parameter θd to invert (4b) into an approx-
imation error / convergence rate.

Denoting by W ⋆
r (resp. V ⋆r ) the optimal value of the level r ∈ N SoS program-

ming approximation of (1b) (resp. (3)), the above procedure returns the following
convergence rates:

W ⋆
r − vol(S) ∈ O

r→∞

(

r−
1
6c

)

(5a)

V ⋆r − vol(S) ∈ O
r→∞

(

r−
1

(2.5+ε)c

)

∀ε > 0(5b)

for a fixed constant c > 0 depending only on the dimension and geometry of S. In
other words, the addition of Stokes constraints results in more than squaring the
convergence speed of the moment-SoS hierarchy.
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From POP to POC with the Moment-SOS Hierarchy

Didier Henrion

The purpose of this tutorial talk was to explain how the moment-sums of squares
(mom-SOS) hierarchy can solve globally polynomial optimal control (POC), i.e.
optimal control problems with polynomial data and semi-algebraic state and con-
trol constraints.
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The first part was a quick introduction to mom-SOS for polynomial optimization
(POP) (i.e. without differential equations and control), emphasizing the primal-
dual linear formulation on measures and continuous functions, and explaining
how the moment resp. positive polynomial cones can be approximated with semi-
definite representable pseudo-moments resp. polynomial SOS cones.

The second part described mom-SOS for POC, emphasizing the similarities and
differences with POP, introducing relaxed controls (aka Young measures) and the
Liouville equation on occupation measures modeling the optimal transport (and
conservation) of mass along the controlled flow, culminating with the L1 norm
convergence results to the lower semi-continuous value function.

Moment-SOS Methods for Variational Problems and PDEs

Giovanni Fantuzzi

Moment-sum-of-squares (moment-SOS) hierarchies are a powerful approach to
solve polynomial optimization problems (POPs) on compact subsets of Rn [23, 34]
and to predict the dynamics of systems governed by ordinary differential equations
(ODEs) with polynomial vector fields (see, e.g., [36, 25, 35, 19, 11, 22, 39, 13, 38]).
This motivated a number of recent attempts to extend moment-SOS hierarchies to
infinite-dimensional problems from the calculus of variations, as well as to dynamic
problems constrained by time-dependent partial differential equations (PDEs).
Advances have appeared independently in the optimal control, fluid mechanics,
and applied analysis communities, often using dual frameworks and with little
cross-fertilization. In this talk (and this extended abstract) we reviewed some of
these advances, in order to elucidate similarities, differences, and open questions.

1. Moment-SOS methods for variational problems

The first part of the talk discussed applications of polynomial optimization to
static problems in the calculus of variations, which take the form

(1) f∗ := min
u:Ω→R

m

u=g on ∂Ω

∫

Ω

f(x, u(x), Du(x)) dx.

Here, Ω ⊂ Rn is an open and bounded Lipschitz domain, f : Ω×Rm×Rm×n → R

and g : Ω × Rm are given polynomial functions, and Du : Ω → Rm×n is the usual
matrix of partial derivatives of u. We assume a minimizer to exist in a suitable
Sobolev space, which is true under standard quasiconvexity, coercivity and growth
assumptions on f [9, §3.2.6]. We do not however assume that the problem is
convex. We seek to find the minimum value f∗ and an associated optimal map u∗

using polynomial optimization.

1.1. Discretization-relaxation strategies. One approach to attack problem (1)
is to first discretize it into a large but sparse finite-dimensional POP, and then ap-
proximate minimizers of this POP using sparse moment-sum-of-squares (moment-
SOS) hierarchies. This strategy was pioneered in [27, 29, 28], where finite differ-
ences were applied to generalizations of (1) including PDE constraints. If finite
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differences are replaced by finite elements, moreover, then moment-SOS hierar-
chies produce convergent approximations to minimizer u∗for variational problems
constrained only by boundary conditions and with a unique global minimizer [12].
It remains an open problem to remove this restrictive assumption and extend the
convergence analysis to variational problems with PDE constraints.

1.2. Null Lagrangians and occupation measures. A key limitation of the
discretize-and-relax approach reviewed above is that it does not give certified
lower bounds on f∗. For this reason, following ideas from [40, 41, 1, 2], in [7]
polynomial optimization was combined with null Lagrangians to bound f∗ from
below. Set X := Ω × Rm × Rm×n. A continuous function Ψ : X → R is a null
Lagrangian, written as Ψ ∈ NL, if there exists a vector field ϕ : X → Rn such that
Ψ(x, u(x), Du(x)) = ∇ · ϕ(x, u(x), Du(x)) for every Sobolev function u. By the
divergence theorem, this means that the integral functional

(2) LΨ[u] =

∫

Ω

Ψ(x, u(x), Du(x)) dx

depends only on the boundary values of u. If Ψ is a null Lagrangian and u satisfies
the boundary condition u = g on ∂Ω, therefore, one can write

∫

Ω

f(x, u,Du) dx =

∫

Ω

(f − Ψ)(x, u,Du) dx+ LΨ[g]

and deduce that

(3) f∗ ≥ sup
Ψ∈NL

f−Ψ≥0 on X

∫

Ω

Ψ(x, g,Dg) dx.

The maximum on the right-hand side of this inequality can be estimated from
below using polynomial optimization when f is polynomial, the integration domain
Ω is a basic semialgebraic set, the optimization is restricted to polynomial Ψ, and
the inequality f − Ψ ≥ 0 on X is strengthened into a sum-of-squares constraint.

Independently, [21] (see also [4] for an earlier formulation of the same frame-
work with no numerical implementation) proposed to lift problem (1) into a linear
minimization problem over occupation measures. In the present context, these are
measures supported on X such that

(4) 〈Ψ, µ〉 =

∫

Ω

Ψ(x, g(x), Dg(x)) dx

for every null Lagrangian Ψ, where angled brackets denote integration against a
measure. Condition (4) holds for all measures µ obtained by pushing forward
the Lebesgue measure on Ω by maps x 7→ (x, u(x), Du(x)) associated to Sobolev
functions u that satisfy u = g on ∂Ω. Thus,

(5) f∗ ≥ inf
µ∈M(X )

〈Ψ,µ〉=LΨ[g] ∀Ψ∈NL

〈f, µ〉.

If the constraint 〈Ψ, µ〉 = LΨ[g] is imposed only for polynomial null Lagrangians,
the minimization problem on the right-hand side of this inequality is a generalized



Polynomial Optimization for Nonlinear Dynamics 19

moment problem. Its optimal value, and thus f∗, can then be estimated from
below using standard moment-SOS hierarchies.

Although they have been proposed independently, the maximization over null
Lagrangians in (3) and the minimization over occupation measures in (5) are
essentially equivalent. Precisely, the weak duality inequality

(6) inf
µ∈M(X )

〈Ψ,µ〉=LΨ[g] ∀Ψ∈NL

〈f, µ〉 ≥ sup
Ψ∈NL

f−Ψ≥0 on X

∫

Ω

Ψ(x, g,Dg) dx

is always true, while strong duality (meaning the two sides of this inequality are
in fact equal) holds under mild conditions [14]. This is true even for variational
problems more general than (1), where the map u is subject to additional pointwise
or integral constraints.

What remains to be determined are necessary and sufficient conditions ensuring
that the lower bounds in (3) and (5) are equal to the global minimum f∗ of (1).
So far, equality is known to hold for convex variational problems [14, 20] and some
nonconvex ones [7], but not in general [14]. A complete understanding of the
nonconvex case, however, is still lacking.

2. Moment-SOS methods for PDE dynamics

Moment-SOS hierarchies have also been used to study dynamical systems governed
PDEs. Particular problems that have been considered include approximating PDE
solutions for a given initial condition [26, 18], proving the stability of equilibria
[17, 8, 15], and bounding time averages [37, 16].

One way to approximate PDE solutions with polynomial optimization is to view
the PDE as a constraint in a static variational problem over the PDE’s space-time
domain, and apply the moment-SOS methods described in §1. Occupation measure
frameworks for such problems are sharp for linear PDEs [5] and for nonlinear
scalar hyperbolic PDEs [26, 6]. For other classes of PDEs, including parabolic
ones, computations give good results [41, 1, 2] but no rigorous theory is available.

A different line of attack is to view a time-dependent PDE on a time interval
[0, T ] as an abstract evolution equation

(7)
d

dt
u(t) = F (u(t))

on a separable Hilbert space H. To make sense of this, one usually introduces a
countable basis ϕ0, ϕ1, . . . for H, a Banach space V with continuous embeddings
V →֒ H →֒ V ′ (primes denote dual spaces), and views (7) as the infinite set of
equations

(8)
d

dt
〈ϕk, u(t)〉 = 〈ϕk, F (u(t))〉 ∀k = 0, 1, . . .

where 〈·, ·〉 denotes the duality pairing between V and V ′. We call this process
a Galerkin expansion and the time-dependent quantities 〈ϕk, u(t)〉 the Galerkin
coefficients. For example, if (7) is a second-order parabolic PDE on the periodic
interval Ω = (−π, π), one can take H as the space of periodic functions in H1(Ω),
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V as the space of periodic functions in L2(Ω), and ϕk(x) = eikx, so (8) describes
the evolution of the time-dependent Fourier coefficients of the PDE solution u.

Having posed the PDE as an “infinite-dimensional ODE”, one can attempt to
mimic the established moment-SOS hierarchies for ODEs. The evolution of the
Galerkin coefficients is thus characterized using the moments of an occupation
measure supported on [0, T ] ×H,

(9)

∫

[0,T ]×H
tα0〈ϕk1 , u〉α1 · · · 〈ϕkm , u〉αm dµ(t, u),

and similarly defined moments of a terminal measure µT that is supported on H
and encodes the PDE solution at the final time T . On the dual side, one uses
functionals that depend polynomially on time and on the Galerkin coefficients.
This approach was recently followed by [18], who provide sufficient conditions for
infinite sequences to be moments of a measure-valued solution µ of the original
PDE, and previously by [37], who use functionals of the Galerkin coefficients to
characterize weak stationary statistical solutions—a type of measure-valued PDEs
solutions that arise when studying time averages. It must be noted, however, that
measure-valued PDE solutions need not coincide with more traditional notions of
solutions; we refer to the work by [37] for further discussion.

The idea of studying PDE solutions using functionals of the Galerkin coefficients
also underpins recent computational works aimed at proving stability and bound-
ing time averages in fluid mechanics [17, 8, 15, 16]. The distinguishing feature
of these works is that they attempt to address a key problem with the Galerkin
expansion (8): the equation for a Galerkin coefficient, in general, depends on in-
finitely many other coefficients. Implementations of moment-SOS hierarchies that
simply truncate the equations to a finite number of Galerkin coefficients, there-
fore, only produce results that apply to a finite-dimensional Galerkin projection of
the original PDE, rather than the PDE itself. This issue affects the computations
by [18] and some of those by [16], where the convergence of results for increas-
ingly large Galerkin projections is observed but not rigorously proved. To avoid
projection errors, [17] expand the PDE solution as

(10) u(t) =

N
∑

k=1

〈ϕk, u(t)〉ϕk + v(t)

and replace (8) with the N equations for the Galerkin coefficients 〈ϕk, u(t)〉, plus
an equation for the norm ‖v‖ of the expansion “tail”. Terms in these equations that
depend on the unknown function v are estimated in terms of 〈ϕ1, u〉, . . . , 〈ϕN , u〉
and ‖v‖, leading to a finite-dimensional but uncertain ODE system of N +1 equa-
tions. Any statements about the dynamics of this uncertain system applies auto-
matically to the original PDE dynamics. This approach has provided novel and
highly nontrivial results in fluid mechanics [15, 16], but relies on PDE-dependent
estimates whose quality can considerably affect the results. There are also no
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proofs that the uncertain system reduces to the original PDE as N → ∞, al-
though computations suggest that it does. Rigorous convergence results remain
to be established.
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Studying Stability of a Shear Flow using Sum-of-Squares
Polynomial Optimization

Elizabeth Carlson

Determining nonlinear stability of steady states for complex dynamical systems are
notoriously difficult problems, even for the seemingly simplest cases. For example,
it is expected that the standard steady state shear profile, 2D planar Couette flow,
is globally stable for all Reynolds numbers, however the state-of-the-art analysis is
decades old and only proves the stability for relatively low Reynolds numbers. In
recent years, a promising computational approach uses polynomial sum-of-squares
optimization to find Lyapunov functions based on low-mode projections onto an
orthogonal basis of L2 ∩H1. We will present a few extensions on existing work in
this area.

Going beyond ODE Systems with the Moment-SOS Hierarchy

Jared Miller

The moment-SOS hierarchy is a computational tool that successively outer ap-
proximates an infinite-dimensional linear program in measures (or continuous func-
tions) into a sequence of semidefinite programs [1]. The moment-SOS hierarchy has
applications in the realm of dynamical systems, such as in synthesis of Lyapunov
functions, optimal control [2], bounding long-time averages [3], peak estimation
[4], and reachable set estimation [5].

1. Optimal Control

The general template for an optimal control problem (OCP) is:

V ∗(·) = inf
u

∫ T

t0

[Running cost(t)]dt+ Terminal Cost(1a)

Dynamics are obeyed(1b)

u is a valid control(1c)

State constraints (initial, running, final)(1d)

For a continuous-time ordinary differential equation (ODE), the OCP in (1)
(with state space X , terminal set XT , input class U , running cost J , and terminal
cost JT ) is

V ∗(t0, x0) = inf
u

∫ T

t0

J(t, x(t), u(t))dt + JT (x(T ))(2a)

ẋ = f(t, x(t), u(t)) ∀t ∈ [t0, T ](2b)

u(t) ∈ U ∀t ∈ [t0, T ](2c)

x(t0) = x0, x(T ) ∈ XT(2d)
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The objective value term V ∗(t0, x0) is the value function of the OCP. The Value
function satisfies the Hamilton-Jacobi Bellman equations [6]:

V ∗(T, x) = JT (x) in XT(3a)

inf
u

(∂t + f · ∇x)V (t, x, u) + J(t, x, u) = 0(3b)

The value function V ∗ can be discontinuous. Linear-Program methods for opti-
mal control relax the inequalities in (3) into inequalities, forming an optimization
problem with respect to an initial distribution µ0 ∈ M+(X). When the admissible
input class U is the set of functions whose graph is restricted to [0, T ] × U (for
some set U), the inequality program for (3) is

d∗(t0, µ0) = inf
v

∫

x0

v(t0, x0)dµ0(x0)

(4a)

v(T, x) ≤ JT (x) ∀x ∈ XT(4b)

(∂t + f · ∇x)v(t, x, u) + J(t, x, u) ≥ 0 ∀(t, x, u) ∈ [0, T ] ×X × U(4c)

v ∈ C1([0, T ] ×X).(4d)

Any function v satisfying the constraints of (4) is a point-wise subvalue function:
v(t0, x0) ≤ V ∗(t0, x0). Under conditions of compactness, lower-semicontinuity
of J , and convexity in cost and dynamics [7], problems (4) and (3) will take
equal values. Application of the moment-SOS hierarchy follows by restricting v
as v ∈ R[t, x] and replacing each functional inequality constraint in (4) with a
Putinar Positivestellensätz verification of nonnegativity [8].

The linear programming method can be extended to non-ODE dynamical sys-
tems. In particular, this presentation focused on three main classes:

(1) Discrete-time systems
(2) Hybrid systems
(3) Stochastic systems

2. Discrete-Time systems

The dynamical law obeyed by trajectories of a dynamical system is described by
a generator, which returns the incremental change of a test function observed
along dynamical trajectories. As a point of comparison, the continuous-time and
discrete-time generators are

Continuous-Time: ẋ = f(t, x, u) v 7→ (∂t + f · ∇x)v(5)

Discrete-Time: x+ = R(t, x, u) v 7→ v(t+ 1, R(t, x, u)) − v(t, x)(6)

Substitution of the generator in (6) instead of the Lie derivative in (4c) will
render (4) the formulation for a discrete-time OCP. If the dynamics functions f,R
are both polynomials, then the following degree bounds are observed

deg(∂t + f · ∇x)v = deg v + deg f − 1

deg(v(t+ 1, R(t, x, u)) − v(t, x)) = deg v ∗ degR
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If instead a new lifting variable x̃ = R(t, x, u) is added [9], a lower polynomial
degree is observed at the cost of increasing the number of variables (t, x, u) to
(t, x, x̃, u):

deg(v(t+ 1, x̃) − v(t, x)) = deg v

3. Hybrid Systems

A hybrid system [10] is a dynamical system that exhibits continuous dynamics with
discrete transitions. Examples include walker robots, gearboxes in cars, sampled-
data systems, and billiards. Dynamics evolve in a sequence of modes modes ℓ ∈
1..L. The modes are connected together by arcs e = (ℓ, ℓ′) defining allowable
transitions. Continuous-time dynamics evolve in each mode according to

ẋℓ(t) = fℓ(t, x(t), u(t))(7a)

Until a guard surface Se is encountered. Upon hitting a guard surface, the system
executes a discrete transition based on the reset map Re at (e.g. ground)

xdst(e)(t
+) = Re(t, xsrc(e)(t), ue(t)).(7b)

Further assumptions of transversality and determinism of switching are usually
necessary to rule out Zeno or ambiguous executions.

An optimal control problem posed over hybrid dynamics with stage costs Jℓ,
terminal costs JT , and reset costs Ge has an LP formulation with per-mode vari-
ables {vℓ} [11]:

d∗(t0, x0, ℓ0)vℓ0(t0, x0)(8a)

(∂t + fℓ · ∇x)vℓ(t, xℓ, u) + Jℓ(t, xℓ, u) ≥ 0(8b)

JTℓ(xℓ) ≥ vℓ(T, xℓ)(8c)

Ge(t, xsrc(e), ue) ≥ vsrc(e)(t, xsrc(e)) − vdst(e)(t, Re(t, xsrc(e),ue
))(8d)

∀ℓ ∈ 1..L : vℓ ∈ C1([0, T ] ×Xℓ).(8e)

4. Stochastic Systems

A stochastic process is a time-indexed collection of probability distributions {µt}
[12] related together by a dynamical law. The dynamical law is represented by a
generator with increment ∆t. The generator is a linear operator Lτ such that the
following relation holds for all test functions:

(9) Lτv = lim
τ ′→τ

(〈v(t+ τ ′, x), µt+τ ′〉 − 〈v(t, x), µt〉)/τ ′.

The Lie derivative in (4c) is the instance of a generator for the ODE with time
increment ∆t = 0. Other examples of generators include an expression for a
Stochastic Differential Equation:

(10) Lv(t, x) = ∂tv + f(t, x) · ∇xv +
1

2
g(t, x)T

(

∇2
xxv

)

g(t, x).
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The law and generator for a discrete-time random process with parameter λ
drawn from a distribution ξ is

x[t+ ∆t] = f(t, x[t], u[t], λ[t]), λ[t] ∼ ξ(11)

L∆tv =

∫

Λ v(t+ ∆t, f(t, x, u, λ))dξ(λ) − v(t, x

∆t
.(12)

Substituting these generators into the expression in (4) results in a formulation
for a stochastic control program that minimizes the expectation of the costs J and
JT . Similarly, stochastic dynamics can be added in a hybrid setting through the
application of continuous-time generators (Lℓ) and discrete-transition generators
(Rℓ) [13].
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Wrinkling of confined elastic shells

Ian Tobasco

We discuss a problem in nonlinear elasticity, regarding the wrinkling of a confined
elastic shell. In the absence of external forces, a shell prefers to be curved. One can
exploit this to make a wrinkle pattern, by forcing a shell to reside nearby a plane.
Panel (A) of Figure 1 displays two experiments and corresponding simulations in
which a square is cut out from a spherical or saddle shell, and placed on a water



Polynomial Optimization for Nonlinear Dynamics 27

bath. Capillary forces cause the shells to adhere to the bath, and buoyancy forces
attempt to pull them flat, making a wrinkle pattern. Figure 2 shows the patterns
that arise by altering the cut out shape.

Can these wrinkle patterns be predicted? The papers [2, 1] explain that the
answer is “yes”, and in fact using a simple set of geometric rules. For one, the
wrinkles of negatively curved shells follow the paths of quickest exit from the cut
out shape (κ < 0 in the figures). Such paths are line segments that meet the
boundary at right angles, and meet each other at the medial axis drawn in the
κ < 0 half of Figure 2 in white. Surprisingly, the medial axis also explains the
patterns of positively curved shells (κ > 0). The explanation is in Panel (B) of
Figure 1. Most points p on the medial axis have exactly two closest boundary
points, called q and r in the top half of the figure. The line segments pq and
pr lie along the negatively curved wrinkles. The line segment qr lies along the
wrinkles of the “reciprocal” positively curved shell, obtained by sending κ → −κ
while fixing the cut out shape. In the special case that the point p on the medial
axis has three or more closest boundary points (q, r, s, t in the bottom half of the
figure), the wrinkles are “disordered”. Experimentally, such regions give wrinkles
that rearrange between trials, as well as in response to perturbations. While we do
not yet know how precisely characterize such disordered wrinkles, the sets where
they occur are completely determined.

These simple rules for the wrinkling of confined shells are rigorously derived
in [2, 1] as statements about minimizers of an energy functional. The starting
point is a “geometrically linearized” model for a floating shallow shell. Suppose
the initial cut out shell is the graph of a function p(x) defined for x = (x1, x2)
belonging to a reference domain Ω ⊂ R2. Then, its deformed configuration can
be found by minimizing the energy (written here with Poisson’s ratio ν = 0 for
simplicity)

(1) E(u,w) =

∫

Ω

1

2
|e(u) +

1

2
∇w ⊗∇w − 1

2
∇p⊗∇p|2 +

b

2
|∇∇w|2 +

k

2
|w|2 dx.

Here, u = (u1(x), u2(x)) and w(x) capture the displacements of the shell parallel
and perpendicular to the water bath, and e(u) is the symmetric gradient of u
given by eij(u) = (∂iuj + ∂jui)/2 for i = 1, 2. The first two terms in (1) are
the elastic energy. The last term accounts for buoyancy, which prefers w → 0.
The (non-dimensional) parameters b and k are proportional to the squared shell
thickness and the gravitational acceleration of the water, respectively. Taking
b → 0 corresponds to studying a sequence of ever thinner shells; taking k → ∞
ensures the shells are pulled nearly flat. Similar energy functionals have been used
in the surrounding literature (see, e.g., [3, 4] or [5] for a general introduction).

Given the energy (1), the question is to characterize its minimizers as b→ 0 and
k → ∞. To state a theorem, we work in the asymptotic regime k−3/2 ≪ b≪ k−1

and assume that p ∈ W 2,∞(Ω) where Ω ⊂ R2 is Lipschitz and strictly star-shaped.
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Figure 1. Elastic shells wrinkle upon a water bath [1]. (A) shows
squares cut from a spherical or saddle shell. Finite element simula-
tions and physical experiments appear in that order. (B) depicts
our rules for the wrinkles of positively (κ > 0) and negatively
(κ < 0) curved shells. The top half addresses ordered wrinkles.
The bottom half locates the disordered parts. Medial axes and
boundaries used for the predictions are dotted.
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κ < 0κ > 0

Figure 2. Predicted wrinkle patterns overlaid on experiments of
floating shells [1]. On the left are positively curved shells (κ > 0);
on the right are negatively curved shells (κ < 0). Regions with
cyan lines are predicted to have orderly wrinkles with peaks and
troughs along the lines. Regions absent these lines (bordered in
white, κ > 0) exhibit a statistical response. Dotted lines show the
ideal shapes used for the predictions.

Then, the minimum energies obey

(2) lim
min Eb,k

2
√
bk

= min
ueff(x)

e(ueff)≤ 1
2∇p⊗∇p

∫

Ω

1

2
|∇p|2 −

∫

∂Ω

ueff · ν̂ ds.

In-plane displacements ub,k selected by minimizing Eb,k converge (weakly) to so-
lutions ueff of the limiting problem in (2). The out-of-plane part wb,k → 0. These
results follow by identifying the Γ-limit of 1

2
√
bk
Eb,k [2].

There is a suggestive geometric interpretation of the limiting problem (2) for
ueff. It says that the shell should deform while on the bath so as to maximize its
projected area in the plane, under the constraint that it is tension-free. We turn
to discuss its consequences now.

A typical assumption in the literature is that the out-of-plane displacement
satisfies

(3) w(x) = lwra(x) cos

(

x · η̂(x)

lwr

)

where lwr ≈ 0 and the rescaled amplitude a(x) and wrinkle direction η̂(x) are slowly
varying. But there is no fundamental reason to believe that (3) is always correct,
especially given the possibility of a disordered response. A broader viewpoint is
to keep track of the defect measure

(4) µ(dx) := weak- ∗ lim ∇wb,k ⊗∇wb,k dx
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defined in [2]. For instance, the ansatz (3) generates the defect measure

(5) µ =
a2

2
η̂ ⊗ η̂ dx

upon taking lwr → 0. Conversely, proving that (5) holds for minimizing sequences
is one way of justifying (3).

The paper [2] proves that the defect measure µ associated to any sequence of
minimizers of (1) must solve the boundary value problem

(6)











− 1
2curlcurlµ = κ in Ω

〈cof∇∇ϕ, µ〉 = 0 in Ω

ν̂ · [∇ϕ] 〈τ̂ ⊗ τ̂ , µ〉 = 0 at ∂Ω

.

The converse holds for “almost minimizers” which, by definition, have minimal
energy at leading order (Eb,k = min Eb,k + o(

√
bk)). The term κ = det∇∇p is the

Gauss curvature in the shallow shell approximation, where p is the initial height of
the shell. The vectors ν̂ and τ̂ are the outwards pointing unit normal and tangent
vectors to the shell boundary, ∂Ω. The coefficients in (6) depend on a new quantity
ϕ(x), which solves the maximization problem

(7) max
ϕ(x) is convex

ϕ(x)= 1
2 |x|

2 outside Ω

∫

Ω

ϕκ.

This is the convex dual of the limiting problem (2) for ueff.
These results give a method for predicting wrinkle patterns: find a function ϕ

solving (7), and solve the boundary value problem (6) for the defect measure µ.
This gives the layout of the patterns and their amplitude. Figure 2 shows various
patterns recovered this way, overlaid against the experiments. Blue lines fill out
the predicted ordered regions where ∇∇ϕ 6= 0 so that a simple formula like (5)
holds. The wrinkle direction η̂(x) points perpendicularly to the plotted lines. The
amplitude a obeys an ODE along each line, obtained directly from the PDE (6).

There is one final ingredient needed to prove the simple rules for wrinkles, and
it is what gives the diagrams from Panel (B) of Figure 1. Again, these diagrams
link the patterns of positively (κ > 0) and negatively (κ < 0) curved shells. The
surprise is that the corresponding solutions ϕ+ and ϕ− of the dual problem (7)
are Legendre transforms of one another, for simply connected Ω. With this fact
and some convex analysis (see the Supplementary Information of [1]), one finally
deduces that

(8) cof∇∇ϕ− = RT∇P∂ΩR and cof∇∇ϕ+ = RT∇PMR.

In these formulas R is a rotation by π/2, and x 7→ P∂Ω(x) is the closest point
projection taking x ∈ Ω\M to P∂Ω(x) ∈ ∂Ω. The set M where this map is not
well-defined is the medial axis of Ω. The reciprocal projection x 7→ PM(x) is
depicted in Panel (B) of Figure 1: there, PM(x) = p if x belongs to the segment
qr or to the polygon qrst (see [1] for a formula). Plugging (8) into (6) proves the
simple rules.
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Global Minimization of Polynomial Integral Functionals

Federico Fuentes

(joint work with Giovanni Fantuzzi)

The first part of this talk is based on recently published work [1]. We describe a
discretize-then-relax strategy to globally minimize integral functionals over func-
tions in a Sobolev space satisfying prescribed Dirichlet boundary conditions, i.e.

F∗ := inf
u∈W 1,p

0 (Ω;Rm)

∫

Ω

f(x, u(x),∇u(x)) dx .

The strategy applies whenever the integral functional, f , depends polynomially
on the function and its derivatives, even if it is nonconvex. Naturally, suitable
(and well established) growth, coercivity and quasiconvexity assumptions are im-
posed on f to ensure the existence of such a minimizer in the first place, without
precluding the existence of multiple local (or even global) minimizers (see [2]).

The ‘discretize’ step uses a bounded finite element scheme to approximate the
integral minimization problem with a convergent hierarchy of sparse polynomial
optimization problems over a compact feasible set, indexed by the decreasing size
h of the finite element mesh. The ‘relax’ step employs sparse moment-sum-of-
squares relaxations to approximate each polynomial optimization problem (POP)
with a hierarchy of convex semidefinite programs (SDPs), indexed by an increasing
relaxation order ω (see [3]). At each value of h and ω an approximation for

the infimum, λ∗h,ω, is computed explicitly, and a function u∗h,ω ∈ W 1,p
0 (Ω), is

constructed from the moments collected from the SDP solution.
We remark that solving these problems typically requires at least hundreds of

“degrees of freedom” to accurately capture solutions that often contain localized
features, so the resulting POPs involve hundreds of variables. Without sparsity,
this is computationally infeasible due to the prohibitive cost and memory footprint
of solving each SDP. Meanwhile, exploiting sparsity whenever possible dramati-
cally lowers these costs, making this a necessity in practice. The finite element
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discretization not only naturally produces such correlative sparsity, but also pro-
vides flexibility in terms of the domain shape and benefits from existing theoretical
results in approximation theory.

We prove that, as ω → ∞ and h→ 0,

lim
h→0

lim
ω→∞

λ∗h,ω = F∗ .

Moreover, if the global minimizer of the original problem, u∗, is unique, we show
that u∗h,ω converges weakly to u∗ in the Sobolev space W 1,p(Ω). In particular,

lim
h→0

lim
ω→∞

‖u∗h,ω − u∗‖Lp(Ω) = 0 .

For this theoretical result, technical conditions on the finite element spaces are
required, which in practice are always possible to satisfy, but, more importantly,
regarding the sparse moment-sum-of-squares hierarchy, the so-called running inter-
section property (RIP) is also needed. Lastly, with a further separability assump-
tion on the form of f , we show that evaluating the functional on u∗h,ω produces a

convergent sequence of upper bounds to F∗ (since, in principle, the λ∗h,ω are not

known a priori to be either upper nor lower bounds on F∗).
We report computational experiments, including ones that show our numerical

strategy works well even when technical conditions required by our theoretical
analysis are not satisfied. In particular, in our examples, we obtained reasonable
results without enforcing the RIP, which is convenient, since the necessary modi-
fications to ensure the RIP often result in prohibitive increases of computational
cost. Our results also suggest that knowing L∞ bounds of the global optimizers a
priori could be of great benefit to improve the quality of results, and that, in prac-
tice, using ω-converged solutions to jump-start Newton solvers is a viable strategy
to more quickly obtain the desired solution.

Finally, as a preview of upcoming work, we demonstrate how to extend these
techniques to the minimization of integral functionals constrained by well-posed
semilinear partial differential equations, which appear ubiquitously in control the-
ory. We show computational experiments in one and two spatial dimensions of
relevant problems in control theory.
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Shortest Paths in Graphs of Convex Sets

Pablo Parrilo

Given a graph, the shortest-path problem requires finding a sequence of edges with
minimum cumulative length that connects a source vertex to a target vertex. We
consider a variant of this classical problem in which the position of each vertex in
the graph is a continuous decision variable constrained in a convex set, and the
length of an edge is a convex function of the position of its endpoints. Problems
of this form arise naturally in many areas, from motion planning of autonomous
vehicles to optimal control of hybrid systems. The price for such a wide applica-
bility is the complexity of this problem, which is easily seen to be NP-hard. Our
main contribution is a strong and lightweight mixed-integer convex formulation
based on perspective operators, that makes it possible to efficiently find globally
optimal paths in large graphs and in high-dimensional spaces.

Data-Driven System Analysis Using Polynomial Optimization and the
Koopman Operator

Jason J. Bramburger

(joint work with Giovanni Fantuzzi)

Many important statements about dynamical systems can be proved by finding
scalar-valued auxiliary functions whose time evolution along trajectories obeys cer-
tain pointwise inequalities that imply the desired result. A familiar example from
ordinary differential equations (ODEs) is a Lyapunov function: a positive definite
function V that proves the global stability of a vector field F if the time deriv-
ative of V along trajectories is decreasing, i.e. dV/dt = F · ∇V ≤ 0 everywhere
in space. On paper, finding auxiliary functions can be a difficult task. However,
for polynomial dynamical systems one can attempt to find auxiliary functions by
expanding them in a monomial basis, thus resulting in a polynomial optimization
problem. There are now well-developed computational methods to solving these
polynomial optimization problems associated coming from finite-dimensional dy-
namical systems which involve strengthening the inequalities to sum-of-squares
conditions and then translating them to an equivalent semidefinite program to be
solved numerically.

What all auxiliary functions have in common is that they encode system dy-
namics through the time derivative along trajectories, the Lie derivative, which
for ODEs took the form F · ∇V above. The Lie derivative can further be recog-
nized as the generator of the celebrated Koopman operator [3], for which there are
now machine learning techniques that can estimate the Koopman operator (and
its Lie derivative) directly from data. This work employs extended dynamic mode
decomposition (EDMD) to approximate the action of the Koopman operator on
the span of finitely many monomials [5], for which there are performance guaran-
tees as the amount of data increases [2, 4, 5]. This means that one can identify
auxiliary functions by estimating the action of the Lie derivative using EDMD on
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spans of monomials to construct auxiliary functions in using only data gathered
from the system. Thus, by estimating the Lie derivative using EDMD, we can then
implement the well-developed polynomial optimization framework for identifying
auxiliary function to provide statements about an underlying system using only
data gathered from it.

This presentation will rigorously present the connection between auxiliary func-
tion methods and the Koopman operator, while also introducing a variant of
EDMD for estimating the Lie derivative from data that is best suited to this
application. Two major strengths of the method will be highlighted throughout
the talk. First, it can be applied to a broad class of deterministic and stochastic
processes with no adjustments needed to differentiate between these two settings.
Second, it directly discovers approximations of the Lie derivative, meaning that
no system identification from the data is necessary. With these strengths, we
highlight applications into:

(1) Finding Lyapunov functions from data to prove global stability of a steady-
state;

(2) Bounding infinite time averages of quantities of interest for both deter-
ministic and stochastic systems;

(3) Introduce the dual formulation of these methods from [1] that can identify
invariant measures of dynamical systems.

This presentation will show how one can bring together some of the most important
topics in modern dynamical systems analysis to produce a simple, yet powerful,
numerical procedure to analyze dynamic data.
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[4] M. Korda and I. Mezić, On convergence of extended dynamic mode decomposition to the
Koopman operator, J. Nonlinear Sci., 28 (2018), 687–710.

[5] M.O. Williams, I.G. Kevrekidis, and C.W. Rowley, A data-driven approximation of the
Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015),
1307–1346.

Constructive Methods for Robust Control of PDE Systems

Emilia Fridman

Many important plants (e.g. flexible manipulators or heat transfer processes) are
governed by partial differential equations (PDEs) and are often described by mod-
els with a significant degree of uncertainty. Some PDEs may not be robust with
respect to arbitrary small time-delays in the feedback. Robust finite-dimensional
controller design for PDEs is a challenging problem.
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In this talk two constructive methods for finite-dimensional control will be pre-
sented:

Spatial decomposition (or sampling in space) method, where the spatial domain
is divided into N subdomains with N sensors and actuators located in each subdo-
main; Modal decomposition method, where the controller is designed on the basis
of a finite-dimensional system that captures the dominant dynamics of the infinite-
dimensional one. Sufficient conditions ensuring the stability and performance of
the closed-loop system are established in terms of simple linear matrix inequalities
that are always feasible for appropriate choice of controllers. We will discuss de-
layed and sampled-data implementations as well as application to network-based
deployment of multi-agents.

On the Conditions of SDP Problems arising in
Polynomial Optimization

Michael Stingl

We will first introduce a definition of a condition number for SDP problems and
show (by experiments) its relation to trustworthiness of results of standard SDP
solvers. The numerical experiments will be focused on SDP problems arising in
polynomial optimization. We will further present a new generation of the code
Loraine.jl, focused on high-accuracy solution of small but difficult SDP problems.
The code uses extended-precision arithmetic provided by MultiFloats.jl. We will
demonstrate that the solver can deliver reliable solutions to difficult (highly ill-
conditioned or almost infeasible) problems arising in global polynomial optimiza-
tion. In particular, we will give numerical confirmation of theoretical convergence
rate of Lasserre hierarchy for certain polynomial optimization problems studied in
the literature.

Strengthening Lasserre’s Hierarchy in Real and Complex
Polynomial Optimization

Jie Wang

Consider the real polynomial optimization problem:

(RPOP) inf {f(x) : x ∈ K},
where f ∈ R[x] and the feasible set K is given by

K := {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0},

and the complex polynomial optimization problem:

(CPOP) inf {f(x,x) : x ∈ K},
where

K := {x ∈ C
n | gi(x,x) ≥ 0, i = 1, . . . ,m} ,

and f, g1, . . . , gm ∈ C[x,x] are self-conjugate polynomials.
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Lasserre’s hierarchy [1] is a well-established scheme for globally solving (RPOP)
and attracts a lot of attentions of researchers from diverse fields due to its nice
theoretical properties in recent years. There is also a complex variant of Lasserre’s
hierarchy [2] for globally solving (CPOP). However, a bottleneck of Lasserre’s
hierarchy is its limited scalability as the size of associated semidefinite relaxations
grows rapidly with relaxation orders. To accelerate the convergence of Lasserre’s
hierarchy, we propose to strengthen moment relaxations by including additional
positive semidefinite conditions. Concretely, let MR

d and MC

d denote the d-th order
real and complex moment matrices, respectively. We can prove the following result.

(i) Suppose that y is a pseudo-moment sequence with MR
r (y) � 0 for some

r ∈ N. Then for any s ∈ N with s < r, one has

(1)

[

MR
s (y) MR

s (xiy)
MR

s (xiy) MR
s (x2iy)

]

� 0, i = 1, . . . , n.

(ii) Suppose that y is a complex moment sequence admitting a Borel repre-
senting measure. Then for any s ∈ N, one has

(2)

[

MC
s (y) MC

s (xiy)
MC

s (xiy) MC
s (|xi|2y)

]

� 0, i = 1, . . . , n.

Note that the PSD conditions (2) arise from the characterization of normality of
the so-called shift operators.

Now we can strengthen moment relaxations by including the PSD conditions
(1) or (2). For the real case, it is

(3)



































inf
y

Ly(f)

s.t. y0 = 1,

MR

r−di(giy) � 0, i = 1, . . . ,m,
[

MR
r (y) MR

r (xiy)

MR
r (xiy) MR

r (x2iy)

]

� 0, i = 1, . . . , n.

It turns out that (3) provides an intermediate relaxation between the r-th and
(r + 1)-th moment relaxations for (RPOP).

For the complex case, it is

(4)



































inf
y

Ly(f)

s.t. MC
r (y) � 0, y0,0 = 1,

MC

r−di(giy) � 0, i = 1, . . . ,m,
[

MC
s (y) MC

s (xiy)

MC
s (xiy) MC

s (|xi|2y)

]

� 0, i = 1, . . . , n.

Here s ∈ N is a tunable parameter which we call the normal order. It turns out
that (4) provides a bilevel hierarchy of relaxations for (CPOP) which is indexed
by the relaxation order r and the normal order s.

To improve scalability, the strengthening technique can be further integrated
into different sparse versions of Lasserre’s hierarchy. Numerical experiments are
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performed on a variety of real and complex polynomial optimization problems. It
is shown that the strengthening technique can indeed improve the bound produced
by the usual Lasserre’s hierarchy, and most often allows to achieve global optimal-
ity at lower relaxation orders for complex polynomial optimization problems. Con-
sequently, the strengthening technique provides substantial computational savings
and yields considerable speedup (sometimes even by orders of magnitudes).
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Sparse Moment-SOS Relaxations for Direct Optimal Control

Heng Yang

(joint work with S. Kang, X. Xu, J. Sarva, L. Liang)

Direct methods for optimal control, referred to as trajectory optimization, is the
workhorse for computing numerical solutions of complex optimal control problems.
Nonlinear programming with engineered initializations has been the de-facto ap-
proach for trajectory optimization, which however, can suffer from undesired local
optimality.

In this talk, I show that many trajectory optimization problems that can be
written as polynomial optimization problems (POPs) admit tight convex relax-
ations, and such relaxations can be solved at large scale by exploiting problem
structures jointly with GPU-based parallelization in a customized ADMM solver.
A full paper of this talk can be found in [1] with numerical experiments.

1. Problem Statement

Let N be the number of steps (with [N ] := {1, . . . , N}), {xk}Nk=0 ⊂ Rdx be the

state trajectory, and {uk}N−1
k=0 ⊂ Rdu be the control trajectory, we consider the

following trajectory optimization problem:

min
{uk}N−1

k=0 ,{xk}N
k=0

lN(xN ) +

N−1
∑

k=0

lk(xk, uk)(1a)

subject to x0 = xinit(1b)

Fk(xk−1, uk−1, xk) = 0, ∀k ∈ [N ](1c)

(uk−1, xk) ∈ Ck, ∀k ∈ [N ](1d)

where lk, k = 0, . . . , N are the instantaneous and terminal losses; xinit is the initial
state; Fk represents the discretized system dynamics as a differential algebraic
equation (e.g. obtained from the continuous-time dynamics via multiple shoot-
ing); and Ck imposes constraints on uk−1 and xk (e.g. control limits, obstacle
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avoidance). We assume lk and Fk are polynomial functions and Ck are basic semi-
algebraic sets (i.e. described by polynomial constraints), in which case problem (1)
is an instance of polynomial optimization (POP) that is nonconvex and NP-hard
in general.

2. Sparse Moment-SOS Relaxations

We first introduce a special type of sparsity in polynomial optimization known as
chain-like sparsity and show that problem (1) satisfies this pattern.

Definition 1 (POP with Chain-like Sparsity). Let z ∈ R
d and I1, . . . , IN ⊂ [d]

be N index sets such that
⋃N
k=1 Ik = [d] and

(

⋃k−1
j=1 Ij

)

⋂

Ik = Ik−1

⋂

Ik, ∀k ∈
{2, . . . , N}, then the following POP is said to admit a chain-like sparsity pattern

p⋆ = min
z∈Rd

N
∑

k=1

fk(z(Ik))(2a)

subject to gk,i(z(Ik)) ≥ 0, ∀k ∈ [N ], i ∈ Gk(2b)

hk,j(z(Ik)) = 0, ∀k ∈ [N ], j ∈ Hk(2c)

where Gk (resp. Hk) indexes the inequality (resp. equality) constraints for variables
z(Ik), and fk, gk,i, hh,j ∈ R[z(Ik)] are polynomials in the variables z(Ik) (called a
clique).

For trajectory optimization problem (1), each clique contains variables z(Ik) =
{xk−1, uk−1, xk} ∈ R2dx+du and these cliques form a chain-like graph. Clearly, each
dynamics constraint (1c) and set constraint (1d) only involves the k-th clique, and
the objective function (1a) readily admits the decomposition in the form of (2a).

We now introduce the sparse moment-SOS hierarchy for relaxing the POP (2)
as a sequence of semidefinite programs. Given a sequence of numbers ϕ = (ϕα) ∈
R

s(d,n) indexed by the (exponents of) monomials in [z]n, we define a one-to-one
linear map from R[z]n to R,

(3) ℓϕ : f(z) =
∑

α

cαz
α 7→

∑

α

cαϕα, ∀f(z) ∈ Rs[z]n.

The application of ℓϕ to polynomial vectors and matrices is element-wise.

Proposition 2 (Sparse Moment Relaxation). In (2), denote dfk := deg(fk),
dgk,i := ⌈deg(gk,i)/2⌉, and dhk,j := deg(hk,j). Given a positive integer κ such that

2κ ≥ 2κ0 = max{{dfk}k∈[N ], {2dgk,i}k∈[N ],i∈Gk
, {dgk,j}k∈[N ],j∈Hk

},
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the κ-th order sparse moment relaxation for problem (2) reads

p⋆κ = min
ϕ∈Rs(d,2κ)

N
∑

k=1

ℓϕ (fk(z(Ik)))(4a)

subject to ϕ0 = 1, and ∀k ∈ [N ], i ∈ Gk, j ∈ Hk :(4b)

Mk := ℓϕ
(

[z(Ik)]κ[z(Ik)]Tκ
)

� 0,(4c)

Lk,i := ℓϕ

(

gk,i(z(Ik)) · [z(Ik)]κ−dg
k,i

[z(Ik)]T
κ−dg

k,i

)

� 0,(4d)

ℓϕ

(

hk,j(z(Ik)) · [z(Ik)]2κ−dh
k,j

)

= 0.(4e)

Problem (4) is a convex optimization whose variable is the sequence ϕ. The
sequence ϕ is called the truncated moment sequence (TMS) because it can be
interpreted as the moments of a probability measure supported on the feasible set
of the POP (2). Mk and Lk,i, whose entries are linear in ϕ, are called the moment
matrix and the localizing matrix, respectively.

The power of the sparse moment relaxation (4) is twofold. First, every relax-
ation generates a lower bound p⋆κ ≤ p⋆ and the lower bound increasingly converges
to p⋆. Second, the convergence can be detected and certified.

Theorem 3 (Convergence of Sparse Moment Relaxations [2]). Suppose ∀k ∈ [N ],
∃Rk > 0 such that ‖z(Ik)‖∞ ≤ Rk. Then:

(i) Problem (4) is solvable for any κ ≥ κ0. Let M⋆
k be an optimal solution.

(ii) p⋆κ ≤ p⋆, ∀κ ≥ κ0. Moreover, p⋆κ → p⋆, as κ→ ∞.
(iii) If under some relaxation order κ, it holds that rank(M⋆

k ) = 1, ∀k ∈ [N ].
Then p⋆κ = p⋆, i.e. the relaxation is tight.

Theorem 3 provides a way to check the tightness of the relaxation and extract
globally optimal solutions z⋆ of the nonconvex POP (2). In fact, condition 3
guarantees the optimal TMS φ⋆ admits a representing Dirac measure supported on
the unique optimal solution z⋆. Therefore, one can extract z⋆ from the entries of ϕ⋆

corresponding to degree-one monomials. Even when the relaxation is not tight, one
can extract a near-optimal solution ẑ using a three-step heuristic described in [1].
Denote as p̂ the POP objective (2a) evaluated at ẑ, we compute the certificate of
suboptimality

(5) ξκ =
p̂− p⋆κ

1 + |p̂| + |p⋆κ|
≥ 0.

An ξκ that is close to zero certifies the global optimality of ẑ.

3. Fast sGS-ADMM in GPUs

Focusing on the sparse moment relaxation (4), denote

(6) X := ({Mk}k∈[N ], {Lk,i}k∈[N ],i∈Gk
)

as the tuple of all moment and localizing matrices, which lives in a vector space

Ω that is the Cartesian product of {Ss(|Ik|,κ)}k∈[N ] and {Ss(|Ik|,κ−d
g

k,i
)}k∈[N ],i∈Gk

.
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Let Ω+ ⊂ Ω be the cone containing tuples X whose elements are PSD, we claim
the moment relaxation (4) can be written as a standard multi-block SDP [3]

(7) p⋆κ = min
X

{〈C,X〉 : A(X) = b, X ∈ Ω+}

for some b ∈ R
m, C ∈ Ω and linear map A(X) := (〈Ai, X〉)i∈[m] with Ai ∈ Ω. The

inner product in the space Ω is defined element-wise. Due to space limitations, we
provide a tutorial about how to convert the moment relaxation (4) as a standard
SDP (7) in [1], where we also show our conversion is two orders of magnitude faster
than sostools and yalmip .

Let y ∈ Rm and denote A∗ as the adjoint of A defined as A∗y :=
∑

l∈[m] ylAl.

The Lagrangian dual of (7) reads:

(8) max
y∈Rm,S∈Ω

{〈b, y〉 : A∗y + S = C, S ∈ Ω} .

sGS-ADMM can be seen as a semi-proximal ADMM method applied to the Aug-
mented Lagrangian of (8). A full description of the algorithm, its implementation
details, and numerical experiments can be found in [1].
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A Mathematical Formalism for Safe Learning

Amir Ali Ahmadi

(joint work with Abraar Chaudhry, Vikas Sindhwani, Stephen Tu)

In many applications such as robotics, autonomous systems, and safety-critical
control, one needs to learn a model of a dynamical system by observing a small
set of its trajectories in a safe manner. This model can serve as a tool for mak-
ing predictions about unobserved trajectories of the system. It can also be used
for accomplishing downstream control objectives. Often, an important challenge
during the initial stages of learning is that deploying even a conservative learning
strategy on a real world system, such as a robot, is fraught with risk. How should
the robot be “set loose” (i.e., initialized) in the real world so that our uncertainty
about its dynamics is reduced, but with guarantees that the robot will remain
safe (e.g., it does not exit a pre-specified region in state space)? How much more
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aggressive can our learning strategy get “on the fly” as uncertainty is reduced?
This interplay between safety and uncertainty while learning dynamical systems
is the central theme of our work. We propose a mathematical formulation that
captures the essence of this interplay and study the optimization problems that
arise from the formulation in several settings.

The central object of our mathematical framework is a discrete-time dynamical
system

(1) xt+1 = f⋆(xt),

where f⋆ : R
n → R

n is an unknown map. This could be either a naturally
arising autonomous system, or a closed-loop control system with a fixed feedback
policy. Our interest is in the problem of safe data acquisition for estimating the
unknown map f⋆ from a collection of length-T trajectories {ϕf⋆,T (xj)}mj=1, where

ϕf,T (x) := (x, f(x), . . . , f (T )(x)).
In our setting, we are given as input a set S ⊂ Rn, called the safety region,

in which the state should remain throughout the learning process. We say that
an initial state x is T -step safe under a map f : Rn → Rn if f (i)(x) ∈ S for
all i = 0, . . . , T . We define ST (f) ⊆ S to be the set of states that are T -step
safe under f . In order to safely learn f⋆, we require that measurements are made
only at points in ST (f⋆). Obviously, if we make no assumptions about f⋆, this
task is impossible. We assume, therefore, that the map f⋆ belongs to a set of
dynamics U0, which we call the initial uncertainty set. As experience is gathered,
the uncertainty over f⋆ decreases. Let us denote the uncertainty set after we have
observed k trajectories {φf⋆,T (xj)}kj=1 by,

Uk := {f ∈ U0 | φf,T (xj) = φf⋆,T (xj) , j = 1, . . . , k}.

Observe that Uk+1 ⊆ Uk for all k. For a nonnegative integer k, define

STk :=
⋂

f∈Uk

ST (f) ,

the set of points that are T -step safe under all dynamics consistent with the initial
uncertainty set and the data after observing k trajectories. We refer to the set STk
as the T -step safe set (the dependence on k is implicit). Note that STk ⊆ STk+1

for all k. A primary goal of our work is to characterize the sets STk as feasible
regions of tractable optimization problems. In certain settings where an exact
tractable characterization is not possible, our goal would be to find tractable inner
approximations of these sets. For robustness reasons, we would like these inner
approximations to be full-dimensional so that safe queries to the system can be
made while tolerating perturbations which may arise during implementation.

A secondary goal of our work is to provide algorithms for what we define as the
T -step safe learning problem. Fix a scalar ε̄ > 0 and a norm ||.|| on Rn. Given a
safety region S ⊂ Rn and an initial uncertainty set U0, the T -step safe learning
problem (up to accuracy ε̄ and with respect to norm ||.||) is to sequentially choose
vectors x1, . . . , xm, for some nonnegative integer m, such that:
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(1) (Safety) for each k = 1, . . . ,m, xk ∈ STk−1,
(2) (Learning) supf∈Um,x∈ST (f⋆) ‖f(x) − f⋆(x)‖ ≤ ε̄.

If for a given T , no such sequence of vectors x1, . . . , xm exists (for any m), we
say that T -step safe learning is impossible. Note that if T -step safe learning is
possible, then T ′-step safe learning is also possible for any T ′ < T . Moreover,
since the highest rate of safe information assimilation is achieved when T = 1, to
prove that safe learning is impossible for any T , it is necessary and sufficient to
prove its impossibility for T = 1.

In many situations, the choice of the sequence of {x1, . . . , xm} that achieves
T -step safe learning may not be unique. We further suppose that for a function
c : Rn 7→ R that takes nonnegative values over S, initializing the unknown system
at a state x ∈ S comes at a cost of c(x). In such a setting, we are interested in
safely learning the dynamical system at minimum total initialization cost. Ideally,
we wish to minimize

∑m
k=1 c(xk) over sequences {x1, . . . , xm} that satisfy the safe

learning conditions 1 and 2 above. However, such an optimization problem cannot
be solved without knowing the action of the true dynamics f⋆ on the initialization
points {xk} ahead of time. Hence, a natural online algorithm is to sequentially
solve the following greedy optimization problem

(2) min
x∈ST

k−1

c(x) ,

whose optimal solution gives the next cheapest T -step safe initialization point xk,
given information gathered before time k. A byproduct of our primary goal of char-
acterizing the sets STk tractably is efficient algorithms for solving the optimization
problem (2).

In our work, we derive tractable conic programs that exactly characterize or
inner approximate T -step safe sets (for any k) for both linear systems and a general
class of nonlinear systems in the extreme cases when T = 1 and T = ∞. For linear
systems, we also address the case when T = 2, and provide algorithms for solving
the exact (i.e., ε̄ = 0) T -step safe learning problem when T = 1, 2,∞. The
interested reader can find these results and more details in [1].
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Verifiable Safe Data-Driven Control

Mario Sznaier

The goal of this presentation was twofold (i) to use the problem of safe data driven
control to illustrate the difficulties entailed in using semi-algebraic optimization
techniques in scenarios involving dynamical systems, due to poor scaling proper-
ties, and (ii) to propose ways to mitigate this issue exploiting duality and a novel
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semi-definite optimization algorithm that requires solving only second-order cone
or linear programs.

1. Verifiable safe control for known systems

The goal of safe data driven control is to synthesize safe control laws that guarantee
that all trajectories of a dynamical system of the form

(1) ẋ = f(x) + g(x)u + w

that start in a set Xo do not enter an unsafe set Xu for all possible polytopic
disturbances w ∈ W .

= {w : Ww ≤ dw}
Safety verification and synthesis of safe control laws for the case where the

dynamics are known have been the subject of intense research during the past
decade. Level-set methods separate the initial and unsafe set by the 0-contour of
a solved function. Barrier functions [1] are a level-set method to certify the safety
of trajectories, given that the superlevel sets of the barrier function are invariant.
This superlevel invariance can be relaxed through slack (class-K) conditions, while
ensuring that the 0-level set is invariant [2, 6]. The level-set certificate of stabil-
ity may be solved jointly with a safety-guaranteeing control policy u(·) (Control
Barrier Function). When a barrier function is given, the min-norm controller will
ensure safety of trajectories, and can be found through quadratic programming [3].
Barrier functions and funnels [4, 5, 7] contain bilinearities when jointly synthesiz-
ing controllers and barriers. An alternative level-set certificate is Density functions
[9], which are based on Dual Lyapunov methods for stability [8]. Controllers and
density functions can be simultaneously solved in a convex manner. Specifically,
it can be shown that the following modification of Rantzer’s criteria [10] yields a
safe control law that is robust to ℓ∞ bounded disturbances:

Lemma 1 ([11]). Assume that the set Xu has a description:

Xu .
= {x : hi(x) ≥ 0, i = 1. . .Nc} .

If there exist scalar functions ρ(x), ψ(x) ∈ C1 such that: (i) u(x)
.
= ψ(x)

ρ(x) is well

defined over the safe region ρ(x) ≥ 0, (ii) for all w(·) ∈ W and initial condition
x0 ∈ X0, the trajectories of (1) are well defined, and (iii) the following conditions
hold:

∇ · [ρ(x) (f(x) + w) + ψ(x)g(x)] − ρ(x)h(x) > 0(2a)

∀x ∈ Rn and w ∈ W

ρ(x) ≥ 0, ∀x ∈ X0, ρ(x) < 0, ∀x ∈ Xu,(2b)

where h
.
= mini {hi(x)}, then the control law u(x) renders the closed loop system

robustly safe with respect to Xu.
When the dynamics and the constraints defining the sets Xo and Xu are poly-

nomial, ρ and ψ can be found by solving a semi-algebraic optimization problem in
the 2n indeterminates x and w.
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2. The data driven case

Consider now the case where the only information available about the plant is
that it can be expressed as linear combinations of functions φ : Rn → Rdf ,
γ : Rn → Rdg with

f(x) = Fφ(x); g(x) = Gγ(x)(3)

for some unknown system parameter matrices F ∈ Rn×df and G ∈ Rn×dg , that
must be inferred from experimental measurements of T derivative-state-input tu-
ples, {ẋs,xs, us}s=t1...tT , sampled from the trajectories of (1) under some bounded
disturbance w ∈ W , indexed by the observations times t1. . .tT . In this context,
the safe data driven control problem can be formally stated as: Problem 1, Given a
disturbance set description (W,dw), training data {(ẋs,xs, us)}s=t1...tT , and ba-
sic semialgebraic sets X0, Xu, find a state-feedback control law u(x) that renders
all closed-loop systems consistent with the observed data and priors W-robustly
safe with respect to X0 and Xu.

Definition 1. Given training data {(ẋs,xs, us)}s=t1...tT and the uncertainty de-

scription (W,dw), the consistency set C, which contains all systems that are con-
sistent with the data is defined as:

(4) C .
= {f, g : W [ẋs − f(xs) − g(xs)us] ≤ dw, s = t1. . .tT }

Exploiting the property of the Kronecker product

vec(PXQ) = (QT ⊗P)vec(X),

with f = vec(FT ), g = vec(GT ) leads to an equivalent representation of (4)

(5) C =

{

f ,g :
[

A B
]

[

f
g

]

≤ ξ − 1⊗ dw

}

using the matrix blocks (with f(xs) = vec(φ(xs)
TFT ))

(6) A
.
=







W⊗ φT (t1)
...

W⊗ φT (tT )






,B

.
=







W⊗ ut1γ
T (t1)

...
W⊗ utT γ

T (tT )






, ξ

.
=







Wẋ(t1)
...

Wẋ(tT )







Combining this description with the polytopic description of the disturbances
leads to a polytopic augmented consistency set describing the set of all possible
plants and disturbances:

(7) P1

.
=







f , g,w :

[

A B 0

0 0 W

]





f

g

w



 ≤

[

ξ − 1⊗ dw

dw

]







Thus, in principle the data driven safe control problem can be reduced to a semi-
algebraic optimization problem by simply imposing that condition (2) holds for all
x and all w, f ,g ∈ P1. Note however that this problem will involve polynomials
in O(n2) indeterminates (since f ,g are now variables). Thus, it quickly becomes
intractable. In the next section we will show how to exploit duality to recover a
semi-algebraic optimization problem in only O(n) indeterminates.
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3. Reducing complexity via duality

For a given pair (ρ, ψ), consider the set of all systems of the form (1) that are

rendered safe by the control action u = ψ
ρ , along with the admissible perturbations,

that is, the set of all (f ,g,w) such that

(8) ∇ · [ρ(x)f(x) + ψ(x)g(x) + ρ(x)w] − ρ(x)h(x) > 0

holds for all x ∈ Rn. For each x, this set is a polytope of the form:

(9) P2

.
=











f ,g,w : −





(∇ · [ρ(In ⊗ φT )])T

(∇ · [ψ(In ⊗ γT )])T

(∇ρ)T





T 



f

g

w



 < −ρh











where the divergence operator is applied column-wise to the matrix. The term ∇·
[ρ(x)(In ⊗ φ(x)T )]f may be interpreted as ∇ · vec(ρ(x)φ(x)TFT ) = ∇ · [ρ(x)f(x)].

It follows that (8) holds for all admissible disturbances w ∈ W and all plants
in the consistency C set if and only if P1 ⊆ P2. This inclusion can be enforced
through duality as follows:

Lemma 2 ([11]). Assume that the data and priors are consistent (e.g. C 6= ∅).
Then P1 ⊆ P2 if there exists a vector function y(x) ≥ 0,y(x) ∈ R

2nT+2n such
that the following functional set of affine constraints is feasible:

(10) yT (x)N = r(x) and yT (x)e < −ρ(x)h(x),

where

(11)
N

.
=

[

A B 0
0 0 W

]

, e
.
=

[

ξ − 1⊗ dw
dw

]

,

r(x)
.
= −

[

∇ · [ρ(In ⊗ φT )] ∇ · [ψ(In ⊗ γT )] ∇ρ
]

Remark 1. Proceeding as in Theorem 2 in [12], it can be shown that if φ(x), γ(x)
are continuous functions, then y(x) can be chosen to be continuous.

Exploiting this Lemma leads to the following result

Theorem 2 ([11]). A sufficient condition for the existence of a state-feedback
control law u(x) such that all systems in the consistency set C are rendered robustly
safe, is that there exists a continuous vector function y(x) ≥ 0 and functions
ρ ∈ C1, ψ ∈ C1 such that

yT (x)N = r(x), ∀x ∈ R
n(12a)

yT (x)e < −ρ(x)h(x), ∀x ∈ R
n(12b)

|ψ(x)| ≤ −ρ(x)h(x), ∀x ∈ R
n(12c)

ρ(x) ≥ 0, ∀x ∈ X0(12d)

ρ(x) < 0, ∀x ∈ Xu.(12e)

The corresponding control law is given by u(x) = ψ(x)
ρ(x) .
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Remark 2. Constraint (12c) is a convex tightening of the condition that ψ = 0
when ρ = 0 in the safe zone ρ(x) ≥ 0. This ensures satisfaction of Assumption (i)
in Lemma 1.

Remark 3. Note that since the entries of y(x) are continuous, they can be ap-
proximated by polynomials. Thus, in the case of polynomial dynamics, finding
polynomial (ρ, ψ) reduces to a semi-algebraic optimization problem involving poly-
nomials only in the indeterminate x ∈ Rn. Hence, this dual problem has substan-
tially better scaling properties than the original (primal) problem as one goes up
the Lasserre hierarchy.

4. An efficient algorithm for solving Semi-Definite Programs

It is well known that semi-algebraic optimization problems can be relaxed to a
convex Semidefinite Program (SDP) of the form:

X∗
PSD = argmin

X�0
Tr

(

CT X
)

s.t. Tr
(

ATi X
)

= bi i = 1, . . . ,M
(13)

However, even when exploiting duality, the safe data driven control problem leads
to SDPs involving matrices of size

(

2n+r
r

)

, where r is the order of the relaxation.
For instance, for a system with 10 states, using polynomials of degree 3 leads
to matrices of size 1140, and using 4th order polynomials leads to matrices of
size 5985. In turn, solving the resulting SDP using a conventional interior point
method will involve at least O(3× 108) variables, which is beyond the capabilities
of most solvers. In this section we review an algorithm that we recently proposed
[13], based upon a combination of Cholesky factorizations and Linear Programs
(LPs) or Second Order Cone Programs (SOCPs). This algorithm is guaranteed to
converge, in polynomial time to an ǫ-optimal solution a generic SDP.

4.1. Interior Point Methods for SDPs and the Central Path. First formu-
lated by Karmakar [14], interior point methods (IPM) have become widely adopted
due to their guaranteed polynomial runtime [15]. These methods handle conic con-
straints by adding to the cost a “barrier” that tends to infinity when approaching
the boundary of the feasible set. To prevent numerical instability, IPMs solve a
sequence of optimization problems in which the barrier is weighted by a factor
1/t, where t is increased until ǫ-optimality is reached. In the case of SDPs, the
most widely used barrier function is the negative log-determinant, which leads to
problems of the form:

Xt = minimize
X

Tr
(

CT X
)

− 1

t
log (|X |)

s.t. Tr
(

ATi X
)

= bi i = 1, . . . ,M
(14)

The curve defined by the optimizers Xt of (14) as a function of t > 0 is called the
Central Path of the problem. As t → ∞, Xt converges to the optimizer of (13),
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X∗
PSD. Moreover, due to duality theory, the elements of the central path satisfy

the following inequality:

(15) Tr
(

CT Xt

)

≥ Tr
(

CT X∗
PSD

)

≥ Tr
(

CT Xt

)

−N/t

which provides an optimality bound at any point in the path.

4.2. DD and SDD relaxations of Semidefinite Programming. In [16], the
authors proposed a relaxation for general SDPs based on replacing the positive
semidefinite constraints by lower complexity ones involving diagonally-dominant
and scaled diagonally-dominant matrices, defined below:

Definition 3. A symmetric matrix X with elements X(i, j) is diagonally-dominant
(DD) if

X(i, i) ≥
∑

j 6=i
|X(i, j)| ∀i

Definition 4. A symmetric matrix X is scaled diagonally-dominant (SDD) if
there exist a positive diagonal matrix D and a DD matrix Y such that X = DYD.

From these definitions it follows that DDN ⊂ SDDN ⊂ PSDN , where DDN ,
SDDN and PSDN denote the cones of N × N DD, SDD and Positive Semi-
Definite (PSD) matrices. Thus, relaxations of the SDP (13) can be obtained by
simply replacing the constraint X � 0 with the stronger ones X ∈ DDN or
X ∈ SDDN . The following results, adapted from [17, 18] provides an alternative
characterization of DD and SDD matrices that was used in [17] to show that these
relaxations indeed lead to LPs or SOCPs with lower complexity than the original
SDP. Define the mapping Ψi,j from 2 × 2 matrices to N ×N matrices:

Ψi,j(M) = M̄ where

{

M̄({i, j}, {i, j}) = M
0 otherwise.

i.e. the {i, j} sub-matrix of M̄ is M, and the other entries of M̄ are 0. Ψi,j(.)
allows for characterizing DD and SDD matrices in terms of “exploded” 2×2
matrices as follows:

Lemma 3 ([17, 18]).

Y ∈ DDN ⇐⇒ Y =

N
∑

i,j

Ψi,j(Mi,j), Mi,j ∈ DD2

Similarly,

Y ∈ SDDN ⇐⇒ Y =

N
∑

i,j

Ψi,j(Mi,j), Mi,j � 0

Thus, enforcing the constraint X ∈ DDN(SDD)N indeed reduces to a set of
linear (second order cone) constraints.
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4.3. Iterative Basis Update. While replacing the PSD constraint in (13) with
the stronger one X ∈ DDN or X ∈ SDDN leads to a computationally cheaper
optimization, the solution to these relaxed problems can be far from the true
optimum. To alleviate this [17] proposed an iterative algorithm with improve per-
formance, based on alternating between solving a sequence of DD/SDD problems
and performing Cholesky factorizations. Briefly, the idea is to solve at step k a
problem of the form

X∗
k (Uk−1) = argmin

X,Y
Tr

(

CTX
)

s.t. Tr
(

ATi X
)

= bi i = 1, . . . ,M

UTk−1Y Uk−1 = X, Y ∈ DDN / SDDN

(16)

where Uk−1 is a Cholesky factor of the previous solution, e.g. Xk−1 = UTk−1Uk−1.
Note that since I ∈ DDN(SDDN ), the previous iterate X∗

k−1, is always a feasible
solution of (16). Hence the algorithm generates a sequence of solutions with non-
increasing cost. This sequence, however, is not guaranteed to converge to the
optimizer of the original SDP (13). Indeed, in numerical tests the algorithm tends
to converge to strictly suboptimal values for all medium to large size problems
(N >> 10). This is precisely what motivated our research showing that indeed, it
is possible to obtain an LP/SOCP based globally convergent algorithm.

4.4. Solving SDPs by solving a sequence of LPs/SOCPs. In this section we
present a globally convergent algorithm for solving the SDP (13) based on DD and
SDD programs. The algorithm is split in two phases. The first phase, the decrease
phase, consists of solving a sequence of DD/SDD programs, exactly as in [17]. As
noted above, this sequence tends to stagnate on a suboptimal objective cost as the
iterates approach the boundary of the PSD cone and their conditioning worsens.
To prevent this, a second phase of the algorithm that consists of a series of steps
designed to improve the iterates’ conditioning starts after the decrease phase. We
call these steps centering steps, as they guide the iterates towards the center path
of the SDP by solving a sequence of analytic centerings on the DD/SDD set. These
centering steps constitute the centering phase of the algorithm.

Figure 1 shows a graphical description of the proposed algorithm. In the de-
crease phase, a sequence of problems of the form (16) are solved, decreasing the
cost. After a fixed number sd of decrease steps, the centering phase starts and a
sequence of problems of the form (17) are solved :

Xl (Ul−1) = argmin
X,Y

−φ (Y ) s.t.

Tr
(

ATi X
)

= bi i = 1, . . . ,M

Tr
(

CTX
)

= Tr
(

CTXl−1

)

UTl−1Y Ul−1 = X, Y ∈ DDN / SDDN

(17)

Here the function −φ(Y ) is the logarithmic barrier of the DD/SDD sets and Ul−1

is the Cholesky factor of Xl−1. The sequence of centering steps converges to a
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Figure 1. The algorithm alternates between a cost decreasing phase

and a centering phase that brings the iterate to a point ǫc-close to the
central path. After a finite number of phases, the iterate is brought to a
point ǫc-close to the central path with parameter tκ ≥ t∗, guaranteeing
ǫg-convergence to the solution of the SDP.

point ǫc close to the central path of the SDP, i.e. the optimizer of the analytic
centering defined on the PSD cone. At the end of this sequence the conditioning
of the current iterate has improved and due to the properties of the SDP central
path, the optimality gap is given by (15). At this point, a new decrease phase
starts and the algorithm keeps iterating between decrease and centering phases.

The main result in [13] shows that, under the following assumptions:

A1: The data matrices C and Ai all satisfy that:

Tr
(

ATi Aj
)

= Tr
(

ATi C
)

= 0 ∀1 ≤ i, j ≤M

||C||F = ||Ai||F = 1 ∀i = 1, . . . ,M

A2: There exists at least one feasible X for (13) such that X ≻ 0 (Slater’s
condition).

A3: The cost function evaluated at the optimizer of (13) satisfies Tr(CTX∗
PSD)

> −∞.

the algorithm converges to a global optimum of the problem. Note that Assump-
tion A1 can be made to hold trivially for any SDP by orthogonalization and
projection; A2 guarantees strong duality; and A3 guarantees that the optimal cost
is finite. Specifically, we have the following result:

Theorem 5. Algorithm converges to ǫg-optimality in at most κ iterations of De-
crease and Centering Phases, where κ is given by:

(18) κ = ⌈ log (N/ǫ∗) − log (t0)

log (χ)
⌉ χ =

N
√

1 + Θ

N
√

1 + Θ −
√

Φ
> 1

where Φ is a positive constant that satisfies Φ ≤ {2/(N + 1), 1} for the DD and
SDD case, respectively, and Θ is a positive constant that depends only on the
problem data.
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In principle Sum-of-Squares optimization offers a powerful tool for establishing
properties of the trajectories of a dynamical system. However, the poor scaling
properties of SoS render this approach impractical beyond relatively low order
systems. As we illustrated in this presentation using as an example the problem
of data-driven verifiably safe control, computational complexity can be mitigated
by the use of duality to obtain equivalent problems with a substantially reduced
number of variables. Computational complexity can be further reduce through
the use of the algorithm that we presented in the second portion of the talk. This
algorithm can solve a generic SDP to optimality by solving a sequence of lower
complexity Second Order Cone Programs or Linear Programs.
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K Positivity Preservers and their Generators

Philipp Di Dio

In this talk we present very recent results on K-positivity preservers and their
generators. These studies are motivated by a strange observation, namely that
several non-negative polynomials which are not sums of squares become sums of
squares under the heat equation.

The heat equation acts as a positivity preserver, i.e., a linear map from the
polynomials to the polynomials such that non-negativity is preserved. It was an
open problem for 14 years how all K-positivity preservers for general K ⊆ R look
like. This question is fully answered in this talk.

Since the heat equation is generated by the Laplace operator we ask which other
operators generate positivity preserver. We use the theory of Fréchet Lie groups
and the Lévy-Khinchin formula to answer the question for the constant coefficient
case. For the non-constant coefficient case we reduce it to the constant coefficient
case.

We give an outline how these and future results shall be used in optimization,
i.e., making non-negative polynomials continuously into sums of squares.

Theoretical and Practical Applications of Signomial Rings to
Polynomial Optimization

Mareike Dressler

(joint work with Riley Murray)

Signomials generalize polynomials by allowing arbitrary real exponents at the ex-
pense of restricting the resulting function to the positive orthant. In [1], we in-
troduce the concept of signomial rings and show how this and a newly presented
signomial Positivstellensatz lead to a novel convex relaxation hierarchy of lower
bounds of signomial and polynomial optimization. We provide numerical examples
to illustrate the hierarchy and its performance on problems in chemical engineer-
ing, reaction networks, and optimal control (peak estimation.)

Signomial rings. Let A ⊆ Rn be a distinguished finite ground set containing the
origin. To every α ∈ A we associate a “monomial” basis function eα : Rn → R

that takes values eα(x) = 〈α,x〉. A signomial supported on a finite set A ⊆ Rn is
a real-linear combination f(x) =

∑

α∈A cαe
α(x). Its support, denoted by supp(f),

is formally defined as the smallest set A ⊂ Rn for which f ∈ span{eα}α∈A. A
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posynomial is a signomial with only nonnegative terms. The signomial ring R[A]
is the R-algebra generated by the basis functions {eα}α∈A.

Conditional SAGE as nonnegativity certificates. Signomials that are non-
negative on a convex set X and have at most one negative term are called X-AGE
functions. A signomial that can be written as a sum of X-AGE is called X-
SAGE. Detecting whether a signomial is X-SAGE boils down to a relative entropy
program, a convex optimization problem. An important property of conditional
SAGE is that they preserve sparsity, i.e., if f is X-SAGE supported on a set A,
then f is a sum of X-AGE signomials, each supported on A, see [2, 3].

Positivstellensatz for X-SAGE. We prove the following Positivstellensatz,
which is the first signomial Positivstellensatz to leverage conditional SAGE in
the presence of nonconvex constraints and the first to permit irrational exponents.

Theorem 1 (Positivstellensatz for X-SAGE). Consider a compact convex set X,
signomials g1, . . . , gm ∈ R[A], and K = {x ∈ X : gi(x) ≥ 0 for all i = 1, . . . ,m}.
If f ∈ R[A] is positive on K, then there is an identity

(
∑

α∈A e
α

)r
f = λ0 +

∑m
i=1 λi · gi,

for X-SAGE λ0 ∈ R[A], posynomials λi ∈ R[A], and r ∈ N.

Note that the representation involves an explicit identity which is affine in f
and the “unknown” signomials λ0, λi. We emphasize that neither X nor K (nor
their images under exponential maps) need be semialgebraic.

Complete hierarchy of lower bounds. Given signomials f, g1, . . . , gm and a
closed convex set X , we want to compute

f⋆K = inf
x∈K

f(x), where K = {x ∈ X : gi(x) ≥ 0 for all i = 1, . . . ,m}.

As usual, we want to use our Positivstellensatz to compute lower bounds on
f⋆K . To search for an identity given in the Positivstellensatz, we have to decide on
r ∈ N and permissible supports for the posynomials λi. Since signomials have no
concept of “degree” that is central to polynomial optimization theory we reclaim
it via artificially imposing an A-degree on signomials. Hence, let Ad be the set of
sums of at most d vectors from A, then we define the A-degree of a signomial f
as degA(f) = inf{d : supp(f) ⊆ Ad}.

With this, we can grade the certificates from the Positivstellensatz according to
the largest A-degree of the constituent signomials which leads us to bounds for
the signomial optimization problem.

Definition 2. If r := d− degA(f) ≥ 0, the A-degree d SAGE bound is defined as

f
(d)
K := sup γ such that

(
∑

α∈A e
α

)r
(f − γ) = λ0 +

∑m
i=1 λi · gi,

whith γ ∈ R and λ0 and λi being X-SAGE signomials supported on Ad and

invsuppd(gi), respectively. If otherwise d < degA(f), we set f
(d)
K = −∞.

Here, invsuppd(g) := {α ∈ Ad : α + supp(f) ⊆ Ad}. Each bound f
(d)
K can be

computed via relative entropy programming.
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Corollary 3. The sequence f
(1)
K , f

(2)
K , . . . is nondecreasing and bounded above by

f⋆K. If the signomials f, g1, . . . , gm belong to R[A] and X is compact, then

lim
d→∞

f
(d)
K = f⋆K .

This is the first completeness result for minimizing an arbitrary signomial sub-
ject to constraints given by a compact convex set and a conjunction of arbitrary
(but finitely many) signomial inequalities. It is also the first completeness result for
a hierarchy that uses conditional SAGE in the presence of nonconvex constraints.

For practical purposes it is an important open question how to choose the “best”
signomial ring R[A] resp. ground set A.
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Determining Multistationarity in n-site Phosphorilation using Sums of
Nonnegative Circuit Polynomials

Timo de Wolff

Multisite phosphorylation is a signaling mechanism known to give rise to multiple
steady states, a property termed multistationarity. When phosphorylation occurs
in a sequential and distributive manner, one obtains a family of networks indexed
by the number of phosphorylation sites n. We address the problem of understand-
ing the parameter region where this family of networks displays multistationarity,
by focusing on the projection of this region onto the set of kinetic parameters. The
problem is reduced to studying whether a specific polynomial attains negative val-
ues over the positive orthant. The coefficients of the polynomial are symbolic,
given as polynomials in terms of the kinetic parameters. We provide sufficient
conditions for the polynomial to be positive and hence, preclude multistationarity,
and also sufficient conditions for it to attain negative values and hence, enable
multistationarity. We derive these conditions by exploiting the structure of the
polynomial, its Newton polytope, and employing a certificate of nonnegativity
called sums of nonnegative circuit polynomials (SONC).

Reporter: Ali Arslan
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SWITZERLAND

Prof. Dr. Antonis

Papachristodoulou

Dept. Engineering Science
University of Oxford
Parks Road
Oxford OX1 3PJ
UNITED KINGDOM

Dr. Jeremy Parker

Department of Mathematics
University of Dundee
Dundee DD1 4HN
UNITED KINGDOM

Prof. Dr. Pablo A. Parrilo

Department of Electrical Engineering
and Computer Science
Laboratory for Information and
Decision Systems
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

David Rackl

Institut für Mathematik
Universität Klagenfurt
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