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algebraic models for Poincaré duality complexes in dimension 4, and the topo-
logical volume of the three-torus.

Mathematics Subject Classification (2020): 57K10, 57K20, 57K30, 57K40.

License: Unless otherwise noted, the content of this report is licensed under CC BY SA 4.0.

Introduction by the Organizers

The MATRIX-MFO Tandem Workshop Invariants and Structures in Low-Dimen-
sional Topology was organized by Stefan Friedl (Regensburg) and Paula Truöl
(MPIM Bonn) on the MFO side and by Joan Licata (Canberra) and Stephan
Tillmann (Sydney) on the MATRIX side.

This tandem workshop was modelled on a tandem workshop that took place
in 2021. The workshop in September 2021 was rather special: On the positive
side for many researchers in Germany it was the first in-person conference in 18
months. On the negative side, the Australian mathematicians were in lockdown.
So the tandem workshop in 2021 was an unforgettable event, but not always for
the best reasons.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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The workshop held in September 2024 covered similar topics and used a similar
format, but fortunately the circumstances were back to normal.

This time 24 mathematicians met at MFO and at the same time 20 mathemati-
cians met at MATRIX. To accommodate the hybrid setting and the time difference,
the workshop had an unusual format, consisting primarily of discussion sessions
and with very few formal talks. Our first goal was to give young mathematicians
the opportunity to introduce themselves and their work. The second goal was to
encourage conversations among all the participants and to try to make the work-
shop as interactive as possible. In order to achieve our second goal, we wrote to
all participants before the meeting, soliciting questions or topics to be discussed
at the meeting. Each participant was also given the opportunity to indicate which
problems they would be interested in discussing.

Among the many suggestions from the participants, we picked five problems
which had enough traction at MFO as well as on the Australian side:

(1) Computable invariants of colored spatial graphs.
(2) Random knots.
(3) Small clasp number knots.
(4) Algebraic Models for Poincaré Duality Complexes in Dimension 4.
(5) Topological volume of the three-torus.

Each topic had two discussion leaders, one at MFO and one in Australia.
The setup resulted in a rather unusual schedule. Every day we had a common

time between 9am and 11am German time. On Monday every participant got one
minute to introduce themselves using prepared slides. Afterwards the discussion
leaders gave short introductions to the five problems. Finally the various working
groups met in different rooms at MFO and they were joined via zoom by the
Australian mathematicians to get started. During the day, the groups at MFO
had lots of time to work in their respective problem groups. In the evenings, just
before dinner, all participants at MFO met again and each working group gave a
short summary of what happened and often the summaries would contain ideas,
suggestions and requests for the Australian side. These summaries were recorded
on Zoom. The participants at MATRIX started their next working day and picked
up the threads from the conversations at MFO.

We set up a common Google folder with a subfolder for each working group.
These folders were used to share ideas, papers and pictures between the working
groups on the two continents.

On Monday and Tuesday we also had a second common time between 1:30pm
and 2:15pm. Each of these afternoon time slots was filled with short (5 minute)
talks by young researchers. There were three such talks fromMATRIX on Monday,
and six such talks from MFO on Tuesday (four of them in the afternoon, two of
them in the morning tandem time).

On the remaining days of the workshop, the morning tandem time had the
same structure. We started with brief summaries from the working groups, and
occasionally an indication of the plans for the coming day. The bulk of the shared
time was left to the working groups to discuss and collaborate, with more detailed
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reports from the groups on either continent. Over the course of the week the
problems being discussed also evolved – for example the spatial graphs group
and the clasp number group met on Thursday for a joint discussion after having
observed some similarities of their problems. Participants were encouraged to
switch between groups during the week as they wished, but most remained with
their original choices.

In summary we feel that the collaboration across time zones and continents was
a great success. The technical equipment at MFO and MATRIX worked extremely
well and the big screens and the excellent cameras made it easy to share ideas. The
eight hour time difference turned out to be a blessing since it gave us enough time
to engage with mathematicians across continents, but it also gave each location
time to work on the problems separately and in smaller groups.

The extended abstracts are organized as follows. First we provide five summaries
of what happened in the working groups. These are followed by the extended
abstracts of the six short talks by Ferretti, Galvin, Merz, Santoro, Truöl and
Wakelin.

The organizers of this workshop hope that interactive meetings, which are more
focused on problem solving instead of a long list of talks, will become more com-
mon. The organizers also wish to thank the staff at MFO and MATRIX for making
this meeting possible and for providing us with all the technical support which was
required.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Simons Foundation for supporting Takahiro Kitayama in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Invariants of spatial graphs

Vitalijs Brejevs, Zsuzsanna Dancso, Livio Ferretti, Stefan Friedl,
Tobias Hirsch, Christopher Johnson, Takahiro Kitayama, Justin

Lanier, Stephan Tillmann

Let G be an abstract graph, possibly with decorations. Consider an embedding
φ : G → S3. Its image Γ is called a spatial graph. A basic problem is to classify
spatial graphs for a fixed G up to ambient isotopy. This should be viewed as a
generalization of the classification of knots and links, and indeed the robust toolkit
for analyzing knots and links can be leveraged effectively in studying more general
spatial graphs.

A first invariant of a given spatial graph are its constituent knots and links.
Any nonempty collection of disjoint cycles in G yields a knot or link in S3 under
the restriction of the embedding φ; and the set of all of these, possibly with
decorations, is an ambient isotopy invariant, as observed by Kauffman [2].

This invariant is not sufficient to distinguish spatial graphs that have the same
underlying abstract graph: Consider the spatial graphs with underlying spatial
graph the theta graph, called θ-curves. Two of these, the trivial θ-curve and the
Kinoshita θ-curve, are depicted in Figure 1. Although these θ-curves are not equiv-
alent [3, 4, 5, 9], they each have as their collection of constituent knots a set of three
unknots. In our collaboration, we have sought more powerful invariants of spatial
graphs. We have worked with several algebraic approaches to invariants; we’ve
considered Blanchfield pairings on Alexander modules and have also explored sets
of representations of π1(S

3 \Γ) into finite groups. We’ve also worked on extending
the notion of constituent knots and links using an “unzipping” construction.

Figure 1. The trivial and Kinoshita θ-curves with edges
coloured.

Context. A number of invariants of spatial graphs have been studied. Taking the
case of θ-curves as an example, a list of prime θ-curves with up to 7 crossings was
put forward by Litherland and later confirmed by Moriuchi [7, 8]. To distinguish θ-
curves, these authors used algebraic invariants: Litherland [6] used the Alexander
polynomial (first extended to spatial graphs by Kinoshita) while Moriuchi used the
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Yamada polynomial. Later work by Heard, Hodgson, Martelli and Petronio [1]
distinguished this same catalog by using geometric invariants of hyperbolic 3-
orbifolds associated with spatial graphs.

Blanchfield pairing. Let Γ ⊂ S3 be a spatial graph. We write H := H1(S
3 \ Γ)

and Λ := Z[H ]. One of the most classical invariants of Γ is the Alexander module
H1(S

3 \ Γ;Λ). As was pointed out in [6], it can also be interesting to consider
a relative Alexander module H1(S

3 \ Γ, A; Λ) where A ⊂ ∂(S3 \ Γ) is a suitable
subspace. This approach leads in particular to a suitable generalization of the
classical Alexander polynomial of knots.

These Alexander modules can be endowed with extra structure as follows: using
Poincaré duality one can define a hermitian form

TorΛH1(S
3 \ Γ, A; Λ)× TorΛH1(S

3 \ Γ, A; Λ) → Ω/Λ

where Ω is the quotient field of Z[H ]. For knots the Blanchfield pairing is well-
understood, and it turns out that for knots the Blanchfield pairing determines
many classical invariants, e.g. the Levine-Tristram signatures.

We discussed how one could define signature invariants of spatial graphs using
Blanchfield pairings. But a lot of work remains to be done.

Invariants from representations. The complement of a regular neighborhood
of a spatial graph Γ is a compact 3–manifold M with non-empty boundary. The
boundary ∂M has a natural boundary pattern γ ⊂ ∂M ; this is a 1–manifold whose
components form a complete set of meridians for the edges in Γ.

Denoting the oriented edges e1, . . . , em we can consider the (m+1)-tuple (π1(S
3\

Γ), [µ1], . . . , [µm]) consisting of the fundamental group of the complement of Γ and
the conjugacy classes given by the oriented meridians µ1, . . . , µm of the oriented
edges.

Now given a group G and conjugacy classes C1, . . . , Cm ⊂ G, one can study
the set of representations of π1(S

3 \ Γ) into G that have the property that µi has
image in Ci. For instance, a natural choice in [1] is G = PSL(2,C) and mapping
all meridians to parabolics.

If G is finite, one can count the number of epimorphisms α : π1(S
3 \ Γ) → G

with α([µi]) ∈ Ci, i = 1, . . . ,m. An attractive choice for G is given by the group
G = SL(2,Fp) for some suitable prime p. For knots these invariants have turned
out to be very powerful. We expect that also for spatial graphs these invariants
will be very efficient at distinguishing spatial graphs.

The unzipped links invariant. We describe a method of obtaining links from a
θ-curve that forgets less information about the graph than looking only at embed-
ded cycles. The same method can also be used for arbitrary underlying graphs.
The idea is to produce links by unzipping edges.

Let G denote the standard θ-graph with edges labelled 0,1,2, and let ϕ : G → S3

denote an embedding with image Γ. One obtains a link from Γ by unzipping (dou-
bling) one of the edges (say, edge i), and connecting to the two adjacent edges at
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the ends to obtain a two-component link. For an unframed θ-curve, this opera-
tion is not well-defined, as the doubled edge supports an undetermined number of
twists; however, it can be made well-defined by fixing the linking number of the
two components. The linking number is determined by setting the orientations of
the two copies of the doubled edge i to coincide, and letting this determine the
orientations of the two resulting link components.

For i = 0, 1, 2, and n ∈ Z, denote by Lni (Γ) the unique two-component link
obtained by unzipping edge i with linking number n. The components of Lni are
labelled by the numbers {j, k} = {0, 1, 2} \ {i}. Denote by Lni,j the component

labelled by j. By definition, we have lk(Lni,j , L
n
i,k) = n. Notation can be chosen

such that the component Lni,j , as a knot, coincides with the constituent knot
corresponding to the cycle containing edges i and j of G. In particular, Lni,j
viewed as a knot is the same knot independent of n.

In summary, to the θ-curve Γ we associate an infinite list of knots and links:

Γ 7→ LΓ = (Ki, L
n
i )i∈{0,1,2};n∈Z

Here Ki is the constituent knot obtained by deleting the image of the edge i, and
Lni are the unzipped links.

Question 1. Is LΓ a complete invariant of Γ? If so, what is a minimal sub-list
of LΓ which uniquely determines the isotopy class of Γ?

Initially we thought that it should be relatively straightforward to give a nega-
tive answer to the question. But all of our attempts failed and we now think that
there is a good chance that the question might be answered in the affirmative.

Skein module relations. Let K denote the free Q[a, a−1]–module generated by
links in S3. Factoring out by the Conway skein relation !−" = a ·a we obtain
an extended version of the Alexander skein module—extended as we have not set
the value of the unknot. Call this module K∇.

We observed an interesting relation between elements of the list LΓ within K∇,
as follows. For any n, the unzipped links Lni and Ln+1

i differ in a single crossing
change. Furthermore, the knot obtained from smoothing this same crossing is
isotopic – via some untwisting – to Ki, the knot obtained from Γ by deleting the
edge i. Therefore, in K∇, we have equalities Lni − Ln−1

i = a ·Ki.
While this suggests, in spirit, that it is enough to record Lni for a given n (for

example, n = 0), we haven’t thus far obtained a proof of this.
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Models for random knots

Valentina Bais, Agnese Barbensi, Benjamin Burton, Daniele Celoria,
Chun-Sheng Hsueh, Marc Kegel, Joan Licata, Alice Merz, Jonathan

Spreer, Annika Thiele, Lucy Tobin

Several fundamental conjectures in low-dimensional topology are verified in many
cases but have resisted rigorous proofs. Some examples are the cabling conjec-
ture [1], the Berge conjecture [8], the cosmetic surgery conjecture [9], the L-space
conjecture [7], and the slice-ribbon conjecture [16]. An alternative approach that
could provide a weaker but still interesting answer is the study of the properties
described by such open problems from a probabilistic point of view. More con-
cretely, let P be a property of knots. What is the probability that a random
knot K satisfies the property P? The answer will in general depend very heavily
on the chosen model and, in particular, it will provide information on the fixed
probability measure rather than on the set of knots itself.

Several random models for knots have been defined and developed in the lit-
erature. Well studied examples are the braid model and the crossing number
model [10, 18, 19], and see [14] for a comprehensive overview over more models
from a recent workshop on the topic. In our research proposal, the following two
models are taken into account.

The grid model. Every knot K in S3 can be represented in a grid diagram,
that is a combinatorial encoding of a knot that behaves more friendly than usual
projection diagrams (see e.g. monotonic simplification of grid diagrams of the
unknot [13]). In particular, this approach is closely related to geometric and
algebraic properties of the knot, due to its connections with contact topology [22]
and knot Floer homology [23].

For a given integer n ∈ N there exist finitely many grid diagrams of size n, where
each diagram represents a knot. A simple combinatorial exercise shows that this
number is G(n) = n!(n − 1)!. Among these finitely many diagrams we choose a
random one and, by letting n converge to infinity, we get statements about generic
knots.

In particular, we have performed computer experiments to study invariants re-
lated to the smooth sliceness status of a knot. We used the program GridPyM [3]
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Figure 1. Example of a grid diagram

for analyzing and enumerating grid diagrams, the knot Floer homology calcula-
tor [24] and the algorithmic search for ribbon knots [17]. In detail:

(1) Let τ0(n) be the number of grid diagrams of size n that represent a knot
with vanishing τ -invariant. The τ -invariant is a powerful tool from knot
Floer homology whose non-vanishing is an obstruction for a knot being
slice. We have analyzed the ratio τ0(n)/G(n), see Figure 2.

(2) Let R(n) be the number of grid diagrams of size n representing a ribbon
knot. Assuming the slice ribbon conjecture is true, certifiably non-ribbon
knots can be assumed non-slice. Plotting R(n)/G(n) in the same plot as
τ0(n)/G(n) leaves a portion of our sample as potentially, but not definitely
slice. This portion seems to be a positive fraction of all samples. See
Figure 2

(3) Similar computer experiments for the Thurston–Bennequin number (tb)
suggest the surprising conjecture that the probability of a generic knot in
the grid model having positive Thurston–Bennequin invariant is a positive
constant, which we experimentally estimate to be C ∼ 0.018. We plan to
analyse this problem combinatorially in more detail and present an actual
proof of the above conjecture for some value C′ > 0.

The 1-vertex triangulation model. Let T be a triangulation of S3 with a
single vertex. Then any edge e in T represents a knot K ⊂ S3. By drilling out the
edge e we get an ideal triangulation of the knot complement S3 \K. Moreover, it
is known that any knot in S3 arises as an edge in a 1-vertex triangulation of the
3-sphere [15].

Since for any natural number t there exist finitely many 1-vertex triangulations
of S3 with t tetrahedra, this yields a random model of knots.
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Figure 2. Fraction of grids with τ = 0 (orange) and fraction of
grids with τ = 0 which are certified not ribbon (blue).

Figure 3. Fraction of grid diagrams with non-negative tb(n) per
grid size n.

Figure 4. Variance of the distribution c(n) of cusps per grid size
n.
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We performed explicit computer experiments to create random knots in this
model, using the same data set of triangulations as used in [2]. In particular, we
determined how many of these knots are isotopic to the unknot, and how many
have hyperbolic complements. The results are displayed in Figures 5 and 6
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Figure 5. Proportion of unknots among sampled edges in S3.
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Figure 6. Left: Proportion of knots verified to be hyperbolic
among sampled edges in S3. Right: Number of identified knot
types among sampled edges in S3 with n tetrahedra which are
not seen for any smaller n.

Since the minimal number of tetrahedra in an ideal triangulation of S3 \K is
at most t+ 2 (coming from an explicit construction, implemented in Regina [20]),
we expect (and observe) that many knots in this model appear in the SnapPy [21]
census [12]. The knots in the SnapPy census are interesting since approximately
half of them are hyperbolic L-space knots [11, 4, 5, 6]. We expect many hyperbolic
knots that can be triangulated with 10 or 11 ideal tetrahedra are L-space knots as
well.
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In further work we plan to confirm this expectation in concrete experiments
and check the L-space conjecture on manifolds obtained by small surgeries on
these knots [11].
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Poincaré duality 4-complexes

Daniel Galvin

(joint work with Naageswaran Manikandan, Mark Pencovitch, and Arunima Ray)

Our group considered problems concerning 4-dimensional Poincaré duality com-
plexes, i.e. 4-dimensional CW-complexes which are equipped with a top-dimen-
sional homology class which induces Poincaré duality isomorphisms via the cap
product. The work of Baues-Bleile [2] showed that 4-dimensional Poincaré com-
plexes (from now, we use the abbreviation PD4-complexes) are classified by so-
called fundamental triples (T,w, b), given by the following data: a 2-coconnected
CW complex T , an orientation character homomorphism w : π1(T ) → Z/2, and a
specified homology class b ∈ H4(T ;Z). For a given PD4-complex X , we construct
the 2-type T by taking the second stage in a Postnikov tower for X , i.e. the space
T fits into a fibration sequence

K(A, 2) → T → K(π, 1)

where π := π1(X) and A := π2(X). In particular, T has the same first and second
homotopy groups as X but all of its higher homotopy groups vanish. The space T
is defined unqiuely up to homotopy equivalence by π, A and a cohomology class
k ∈ H3(π;A), called the k-invariant, which determines the fibration and is defined
as the obstuction to the fibration admitting a section. There is then a canonical
inclusion map c : X → T and the class b is defined as b := c∗[X ] ∈ H4(T ;Z).

There is another invariant that is associated to a PD4-complex: the equivari-
ant intersection form λ : H2(X ;Zπ) × H2(X ;Zπ) → Zπ which is defined using
the cap product with the fundamental class [X ]. In the literature, the pentuple
(π,A,w, k, λ) is referred to as the quadratic 2-type—but we will refer to it as the
symmetric 2-type as this more closely follows the terminology of algebraic surgery
due to Ranicki—and is an important invariant which can be recovered from the
fundamental triple. This is because there is a map

H4(T ;Z) → Herm(H2(X ;Zπ))

which recovers the equivariant intersection form from the image of the fundamental
class.

We considered the following general problems.

(1) Given a fundamental triple (T,w, b), does there exist a PD4-complex which
realises it? Does there exist a manifold that realises it?

(2) Assuming that a fundamental triple (T,w, b) is realised by a PD4-complex,
for which b′ ∈ H4(T ;Z) is the triple (T,w, b) realised by a PD4-complex?
Which b ∈ H4(T ;Z) are realised by manifolds?

(3) In general the symmetric 2-type does not determine the homotopy type
(see below references). What data should be added to the symmetric 2-
type to be able to recover the homotopy type in general? For which π
does the symmetric 2-type suffice? Can this enhacement be formulated
as a certain quadratic enhancement of the symmetric 2-type, to yield a
“quadratic 2-type”?
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Table 1. Literature Review.

Authors, and reference π w Result

Hambleton-Kreck [3] finite 0 Tors(Z⊗Zπ Γ(π2)) =
Ker(λ)

Hambleton-Kreck [3] finite
4-periodic H∗,
e.g. finite cyclic

0 Symm 2-type
classifies PD4

Bauer [1] finite & Sylow
2-subgp has
4-periodic H∗

0 Symm 2-type
classifies PD4

Hambleton-Kreck-
Teichner [13]

geometrically
2-dimensional

0 Symm 2-type does
not classify 4-mflds

Kasprowski-Powell-
Ruppik [10]

Sylow 2-subgp
has ≤ 2 gen

0 Symm 2-type
classifies PD4

Kasprowski-Nicholson-
Ruppik [9]

dihedral 0 Symm 2-type
classifies PD4

Kim-Kojima-Raymond [12]
and Hambleton-Kreck-
Teichner [8]

Z/2 Id Symm 2-type does
not classify 4-mflds

Kasprowski-Teichner [11] finite any Tors(Z ⊗Zπ Γ(π2)) =
Ker(λ)

Kasprowski-Teichner [11] Z/2 Id Symm 2-type
classifies top 4-mflds
but not PD4

Hillman [6] free any λ classifies PD4

Hillman-Kasprowski-
Powell-Ray [14, 7]

3-manifold gps,
whose finite
subgps are
cyclic

trivial
on finite
order
elts

Symm 2-type
classifies top 4-mflds.

We thought about two particularly special cases, the case of finite π, and the
case where π is geometrically 2-dimensional. By geometrically n-dimensional, we
mean that K(π, 1) has an n-dimensional CW model. We now give a specific
example for the second case.

Consider the manifold X := S1 × S1 × S2. This corresponds to the triple
(T,w, b) where T ≃ S1 × S1 × CP∞, w is the zero map, and b is a certain class
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in H4(T ;Z) ∼= Z ⊕ Z. The equivariant intersection is the zero form. By the
classification of manifolds with fundamental group Z×Z due to Hambleton-Kreck-
Teichner [8], there is another manifold with the symmetric 2-type, the manifold
Y := (S1 × S1)×̃S2, the twisted S2-bundle over S1 × S1. The manifold X is not
homotopy equivalent to Y , and this can be detected by the second Stiefel-Whitney
class. It is then an interesting problem to try and detect this difference inside
H4(T ;Z) and to generalise this procedure to more manifolds with geometrically
2-dimensional fundamental groups. One could also try to find other elements
in H4(T ;Z) which are realised by PD4-complexes. Since we know the manifold
classification, such PD4-complexes (if they exist) are necessarily not homotopy
equivalent to any 4-manifold.

In Table 1 we summarise the various known results concerning classification
of PD4-complexes which are in the literature. The table should be reasonably
self-explanatory.

Participants. We worked with Bea Bleile, Diarmuid Crowley, and Jayden Ham-
mett at MATRIX.
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Obstructing ribbon clasp number one

Daniele Celoria, Alessio Di Prisa, Joshua Howie, Joan Licata,
Filip Misev, Lisa Schambeck, Paula Truöl, Laura Wakelin

Ribbon clasp number. A knot K ⊂ S3 is null-homotopic and can therefore be
seen to bound a smoothly immersed discD # S3 with transversal self-intersections.
The singular set consists of intervals and circles of double points; in fact, we can ar-
range that only ribbon and clasp singularities occur. In particular, one can always
eliminate Whitney umbrellas, circles of double points and triple points (possibly
at the cost of increasing the number of clasp and/or ribbon singularities). Thus,
the count of clasp intersections seems to be a natural measure of complexity for K.

Definition 1. The ribbon clasp number c∗r(K) of a knot K ⊂ S3 is defined as the
minimal number of clasp intersections of an immersed disc D # S3 with ∂D = K
that has only ribbon and clasp singularities.

If c∗r(K) = 0, then K is a ribbon knot and the interior of any disc D without
clasps can be pushed into the four-dimensional ball B4 to obtain a smoothly em-
bedded slice disc for K. Similar but a priori different invariants can be found in
the literature (cf. Shibuya [4]):

• the three-dimensional clasp number c3(K), defined as the minimal number
of clasps among all immersed discs D # S3 with only clasp intersections
with boundary K;

• the four-dimensional clasp number c4(K), defined as the minimal number
of (interior) transverse double points among all smoothly immersed discs
D # B4 with boundary K;

• the smooth four-genus g4(K), defined as the minimal genus among all
smoothly embedded orientable surfaces in B4 with boundary K.

The following inequalities are well-known and relatively straightforward to show.
For any knot K, we have

g4(K) ≤ c4(K) ≤ c∗r(K) ≤ c3(K).

In this project, we studied whether any of these inequalities are strict for certain
knots K. Note that a knot K with g4(K) = 0 and c∗r(K) > 0 would be a coun-
terexample to the slice-ribbon conjecture. Instead of looking for such an example,
we considered the problem of finding an obstruction to a knot K from having
c∗r(K) = 1, hoping to apply such an obstruction to knots of smooth four-genus
one.

Our observations are summarised below. Note that stronger results have been
proved by Owens–Strle [3] using related techniques. Unfortunately, we have not
yet succeeded in applying our methods to examples, so it remains to be seen
whether Proposition 2 and Corollary 3 can be used to settle open questions about
the ribbon clasp number.
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Double branched covers. Let K be a knot. Define the link L = K ∪ µ, where
µ is a meridian for K. If K has c∗r(K) = 1, then L bounds a ribbon annulus
in S3 and thus an embedded annulus A ⊂ B4. Denote by XA := Σ2(B

4, A) the
double branched cover of B4 over A ⊂ B4. Note that the intersection form of XA

is QXA
= (m) for some non-zero even integer m. The boundary of XA is the

double branched cover YL = Σ2(S
3, L). Using the long exact sequence of the pair

(XA, YL), we obtain the following.

Proposition 2. Let K be a knot with ribbon clasp number c∗r(K) = 1. Then

±2 · det(K) = k2 · det(QXA
)

for some odd integer k.

Proof. Consider the long exact sequence in homology of the pair (XA, YL) with
integer coefficients:

. . . H2(YL) H2(XA) H2(XA, YL)

H1(YL) H1(XA) H1(XA, YL) . . .

φ ψ

This simplifies to

0 → Z⊕ T ′ → Z⊕ T → G → T → T ′ → 0

for some finite groups T , T ′ and G = H1(YL), which in turn gives

0 → Z/mZ⊕ T/T ′ → G → T → T ′ → 0,

where QXA
= (m) is the intersection form of XA. By comparing the orders of

these finite groups, we deduce that 2 · | det(K)| = |G| = k2 ·m, where k · |T ′| = |T |.
Since det(K) is odd, k is also odd with m even. �

Lattice embeddings. Now let K be an alternating knot. Then the link L is
also alternating and so L bounds both a positive definite and a negative defi-
nite spanning surface with respect to the Gordon-Litherland form. In particular,
starting from a definite surface F± for K, we can construct a definite surface F ′

±

for L by attaching a small 1-handle with ±1 full twist to it. In this way, the
Gordon-Litherland form of F ′

± can be written as

GL(F ′
±) =

(
GL(F±) 0

0 ±2

)
.

Now suppose that QXA
= (m) with m > 0 (the case m < 0 is analogous). Let

F ′
− be a negative definite spanning surface for L and denote by XF ′

−

:= Σ2(B
4, F ′

−)

the double branched cover of B4 over a copy of F ′
− pushed into B4. Recall that the

intersection form of XF ′

−

is isomorphic to the Gordon-Litherland form of F [2],

hence XF is negative definite.
Let X := XF ′

−

∪ XA be the closed 4-manifold built by gluing these double

branched covers along their common boundary YL. Then X is a closed, orientable
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4-manifold with negative intersection form. Therefore, by Donaldson’s diagonali-
sation theorem [1], the intersection form of X must be isomorphic to the standard
lattice (Zn,−In). Since YL is a QHS3, we have a lattice embedding

(
H2(XF ′

−

)/Tors, QXF ′

−

)
⊕
(
H2(XA)/Tors, QXA

)
→֒ (Zn,−In) .

We can summarise the above discussion in the following corollary.

Corollary 3. Let K be an alternating knot with c∗r(K) = 1. Let F+ and F− be
positive and negative spanning surfaces, respectively, for K. Then there exist some
k,m > 0 such that 2 · det(K) = k2 · m and, for at least one choice of sign, the
lattice 


GL(F±) 0 0

0 ±2 0
0 0 ±m




embeds in the standard definite lattice of the same rank and signature, where GL(·)
denotes the Gordon-Litherland form.
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Computing the topological volume of some three-manifolds

Fathi Ben Aribi, Benjamin Burton, Dionne Ibarra, James Morgan,
Jessica Purcell, José Pedro Quintanilha, Diego Santoro, Saul

Schleimer, and Em Thompson

Every compact orientable three-manifold M with boundary consisting of a (pos-
sibly empty) union of tori contains a knot K whose complement M − K is a
hyperbolic manifold [12, Corollary 6.3]. This fact prompted Bessières, Besson,
Boileau, Maillot, and Porti to consider the set of all possible volumes of hyperbolic
manifolds that are obtainable from M by removing a (possibly empty) link [3].
Recall also that the set of hyperbolic volumes vol(M) of complete hyperbolic 3-
manifolds M with finite volume is a well-ordered set by work of Jørgensen and
Thurston [13]. Thus, it is natural (as in [3]) to define the following invariant of
3-manifolds:

Definition 1. The topological volume of a compact orientable three-manifold
with empty or toroidal boundary is

volt(M) = min{vol(M − L) | L is a link in M such that M − L is hyperbolic}.
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Recent work of Kegel, Ray, Spreer, Thompson, and Tillmann gave general upper
and lower bounds for the topological volume and determined the complements of
volt-realising links for all but finitely many lens spaces [10].

In this working group we tried to get a better understanding of the topological
volume of some manifolds that were not already covered by the work of [3]. In
particular, we focused on product three-manifolds of the type F × S1, where F is
a compact orientable surface.

1. The solid torus (F is a disk)

The easiest case to consider is D2 × S1. In fact, a theorem of Agol states that
the Whitehead link complement and the (−2, 3, 8)-pretzel link complement are the
minimal volume orientable hyperbolic three-manifolds with two cusps [1]. Since
hyperbolic volume decreases under Dehn filling, and since there exists a knot K in
D2 × S1 whose complement is diffeomorphic to the Whitehead link complement,
one deduces the following:

Proposition 1. The topological volume of D2 × S1 is given by

volt(S1 ×D2) = vol(W) = v8 = 3.66...

whereW denotes the Whitehead link complement and v8 is the volume of a regular
ideal octahedron in H3.

2. The thickened torus (F is an annulus)

One can see the thickened torus S1 × I × S1 as the exterior of the Hopf link in S3,
and the three-component link L6a5 admits the Hopf link as a sublink, thus

volt(S1 × I × S1) ≤ vol(S3 − L6a5) = 5.33...

The complement of L6a5 (also called the Magic Manifold) is actually conjectured
to have minimal volume among hyperbolic 3-manifolds with three cusps [1]. Hence,
if this conjecture is true, then the previous upper bound for volt(S1×I×S1) would
become an equality.

3. When F is a pair of pants

With the same reasoning as before, for F the pair of pants (or three-times punc-
tured sphere), F × S1 is the exterior of the connected sum of two Hopf links, and
such a connected sum is a sublink of the 4-component link 842. Since Yoshida
proved that 842 (which is a minimally twisted chain link like L6a5) has minimal
volume among hyperbolic 3-manifolds with four cusps [14], we deduce:

Proposition 2. When F is a pair of pants, we have

volt(F × S1) = vol(S3 − 842) = 2v8 = 7.33...
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4. When F is the sphere

We then considered the manifold S2 × S1. We were able to find a hyperbolic knot
K in it whose exterior is diffeomorphic to the 0-surgery on one component of the
pretzel link P (−2, 3, 8) (called m043 in the SnapPy census [4]) in Figure 1. The
volume of S2 × S1 − K provides an upper bound on the topological volume of
S2 × S1, and is 3.25 . . .. Hence

volt(S2 × S1) ≤ vol(m043) = 3.25... < v8

This, together with the aforementioned theorem by Agol [1], yields:

Corollary 1. The topological volume of S2 × S1 is realised by a knot.

At this point, one could prove that volt(S2×S1) = vol(m043) = 3.25... by listing
the finite number of hyperbolic 3-manifolds with one cusp and whose volume is
between 3.07 and 3.26, and then checking for each one that none of its respective
finite number of exceptional surgeries is S2 × S1. We do not need to check when
the volume is smaller than 3.07, thanks to work of Gabai, Haraway, Meyerhoff,
Thurston and Yarmola [7, Theorem 1.5]. If such an example with smaller volume
exists, it is not in Dunfield’s census [6].

Figure 1. The pretzel link P (−2, 3, 8). The SnapPy census
manifold m043 is obtained by 0-surgery on the unknot compo-
nent (blue).

Towards a theoretical proof, we tried to exploit the fibration by 2-spheres of S2×
S1 to study minimisers in S2×S1. In fact, an interesting feature of the knot K we
found is that it can be isotoped to be transverse to this fibration (in other words,
K is the closure of a braid in S2 × S1). We showed that this is not an accident.

Theorem 2. Suppose that K ′ is a knot in S2 × S1 that realises volt(S2 × S1).
Then K ′ can be isotoped to be transverse to the fibration by 2-spheres. Moreover,
K ′ intersects each of these spheres in at least 5 points.

The key idea of the proof is to put K in thin position with respect to the
fibration to find an essential punctured sphere in its exterior. We cut along this
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Figure 2. The candidate for the link L realising volt(T3)
(from [9])

punctured sphere, and then by studying the guts of the resulting manifold [2] we
argue that, if K ′ cannot be isotoped to be transverse to the fibration, then the
volume of its exterior is at least v8 = 3.66... and hence it is not a volume minimiser.

There might be some way to use the fact that the minimiser has to be a braid
with at least 5 strands to prove that it is indeed m043.

5. The three-torus

We also studied the topological volume of the 3-torus T3. A starting point of this
investigation was the familiar depiction of T3 as a 3-dimensional cube with opposite
faces identified, and the 3-component link L which appears as a set of three disjoint
straight line segments, each connecting two opposite faces, and orthogonal to them,
as in Figure 2.

It is well-known that T3−L is homeomorphic to the hyperbolic manifold S3−B,
where B denotes the Borromean rings; for example see [9, Section 2.1]. More
precisely, performing 0-framed surgery along B yields T3. We conjectured that
this link L realises volt(T3), and that therefore the inequality

volt(T3) ≤ vol(S3 −B) = 2v8

is actually an equality.
We attempted to disprove this conjecture by computing the hyperbolic volumes

of various links in T3. This required representing the link in SnapPy first as a link
with the union of the Borromean rings, and then performing 0/1 Dehn filling on
the link components corresponding to the Borromean rings.

Despite much experimentation, we could not find a counterexample to the con-
jecture. On the contrary, the following observation supports it:

Theorem 3. If L′ is a hyperbolic 3-component link in T3 whose components are
geodesics (for the Euclidean metric in T3), then

vol(T3 − L′) ≥ vol(T3 − L) = 2v8.

Such links are studied in [9, 8, 5]. In particular, Hui shows that these are
hyperbolic if and only if the directions of the components γ1, γ2, γ3 are linearly
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independent [8]. In that case, we consider the foliation by planes spanned by the
directions of (say) γ1 and γ2. Then γ1, γ2 lie in different leaves F1, F2 of this
foliation. After removing a small neighbourhood of L′, the tori Fi each get cut
into an annulus with k punctures F ′

i , where k = |α3 ∩ Fi|. We cut the hyperbolic
manifold T3 − L′ along F ′

1 ∪ F ′
2, resulting into two components. Each has guts

with Euler characteristic at most −1. Thus, their volumes are each bounded below
by v8 due to a result of Agol, Storm, Thurston [2] and Miyamoto [11, Theorem 4.2].

A somewhat promising idea that might allow one to actually show that volt(T3)
= 2v8 would be to try and generalise the guts machinery we used for S2 × S1 to
the case of T3.

The results presented so far serve as the starting point of an investigation of
topological volume for 3-manifolds that fiber over S1. A natural next example to
consider would be the product F × S1 with F a once-punctured torus. It would
also be interesting to better understand the behaviour of hyperbolic volume under
connected sums (although some partial results are known [10, Corollary 2.13 and
Section 4.4]), and under gluing along tori.
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A combinatorial formula for the multivariable link signature

Livio Ferretti

(joint work with David Cimasoni, Jessica Liu)

The Levine-Tristram signature is among the most studied and best understood
invariants of links in the 3-sphere. For a link L ⊂ S3, it is given by a map
σL : S1 \ {1} → Z, ω 7→ σL(ω) = sign(H(ω)), where H(ω) is a certain hermitian
matrix constructed from the Seifert form and sign denotes the signature. Slightly
less known is the fact that the Levine-Tristram signature admits a multivariable
generalization to the setting of colored links, introduced in [3]. Let us recall that,
given an integer µ > 0, a µ-colored link is an oriented link L ⊂ S3 each of whose
components is endowed with a color in {1, . . . , µ} in such a way that all these
colors are used. For a µ-colored link L we will use the notation L = L1 ∪ · · · ∪Lµ,
where Li is the sublink of L consisting of all the components of color i.

The definition of the multivariable signature uses a generalization of Seifert
surfaces known as C-complexes.

Definition 1. A C-complex for a µ-colored link L = L1 ∪ · · · ∪Lµ is a union S =
S1 ∪ · · · ∪ Sµ of surfaces embedded in S3 satisfying the following conditions:

(1) for all i, the surface Si is a (possibly disconnected) Seifert surface for Li;
(2) for all i 6= j, the surfaces Si and Sj are either disjoint or intersect in a

finite number of clasps ;
(3) for all i, j, k pairwise distinct, the intersection Si ∩ Sj ∩ Sk is empty.

Now, given a C-complex S for a colored link L, choosing a normal direction for
every surface Si allows one to push-off curves on S and define a generalized Seifert
form (see [3] for a precise definition). In a nutshell, whatever Seifert matrices
can do in one variable for oriented links, generalized Seifert matrices can do in
µ variables for µ-colored links. For instance, one can construct a multivariable
signature σL : (S1 \ {1})µ → Z, defined as the signature of a certain Hermitian
matrix given as a linear combination of all the generalized Seifert matrices (for all
choices of normal directions).

Much like the Levine-Tristram signature, the multivariable signature is an in-
variant that has many alternative definitions and remarkable topological prop-
erties; for instance, it gives lower bounds on the genus of spanning surfaces in
B4 with boundary the link and is almost everywhere an invariant of topological
concordance [4]. However, while the definition using Seifert forms is in principle
algorithmic, for a µ-colored link one would need to compute 2µ−1 a priori unre-
lated matrices, which quickly grows impractical for links with many colors. The
goal of our work in [2] was to show how the multivariable signature can be de-
fined and computed in a purely combinatorial way, as the signature of a single real
symmetric matrix directly constructed from a colored link diagram. This goes as
follows:

Definition 2. Given a µ-colored diagram D, let τD(x) be the symmetric matrix
with rows and columns indexed by the regions of D and whose coefficients are
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a

b

c

d

j k

a b c d
a xjk xj 1 xk
b xj 2xjxk − xjk xk 1
c 1 xk xjk xj
d xk 1 xj 2xjxk − xjk

Figure 1. A crossing v together with the corresponding 4 × 4
minor of τv(x). The incoming left strand is of color j, the incoming
right strand of color k, and the four adjacent regions are a, b, c,
and d.

functions of formal variables x = {xj , xjk | 1 ≤ j, k ≤ µ} indexed by (unordered
pairs of) colors, defined by

τD(x) =
∑

v

sgn(v)√
1− x2

j

√
1− x2

k

τv(x) ,

where the sum is over all crossings of D, the indices j, k ∈ {1, . . . , µ} are the
(possibly identical) colors of the two strands crossing at v, and the only non-
vanishing coefficients of the matrix τv(x) are given in Figure 1.

Also, we shall denote by τ̃D(x) the matrix obtained by removing the two rows
and columns corresponding to two adjacent regions of D determined by a marked
point on D.

Note that if the regions a, b, c, d around a crossing v are not all distinct, then
one should add the corresponding rows and columns of τv(x). We then obtain the
following formula.

Theorem 1 ([2]). Let D be an arbitrary µ-colored diagram for a µ-colored link L.
For any ω = (ω1, . . . , ωµ) ∈ (S1 \ {1})µ, the signature of L is given by

σL(ω) =
1
2
(sign(τ̃D(ω))− wm(D)) ,

where wm(D) is the sum of the signs of all monochromatic crossings ofD, and τD(ω)
stands for the evaluation of τD(x) at

xj = Re(ω
1/2
j ) , xjk = Re(ω

1/2
j ω

1/2
k ) .

To be totally precise, we need to fix one square root of each coordinate ωj ∈

S1\{1} of ω: our choice is to take ωj = eiθj with θj ∈ (0, 2π), and ω
1/2
j = eiθj/2. In

other words, ω
1/2
j denotes the unique square root such that Im(ω

1/2
j ) lies in (0, 1].

In particular, we have
√
1− x2

j = Im(ω
1/2
j ). Note that x2

j 6= 1, so τD(ω) is a

well-defined symmetric real matrix.
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Moreover, note that the evaluation of the formal variables satisfies xjj = 2x2
j−1

for all j. Therefore, if a crossing v is monochromatic, then the matrix τv(x) can
be written in a simple form which only depends on the single variable xj . In
particular, if µ = 1, then τD(x) depends on a single variable. This matrix was first
introduced by Kashaev in [5]. Remarkably, Kashaev had discovered this matrix
for completely different reasons, with motivations coming from quantum topology,
and he only conjectured that this should give a way of computing the Levine-
Tristram signature. The conjecture (in the one-variable case), was proved in [1]
and [6], so our result can be seen as a multivariable generalization of Kashaev’s
conjecture.
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Stable smooth isotopy of surfaces in simply-connected 4-manifolds

Daniel Galvin

Let X and X ′ be homeomorphic, compact, orientable, smooth 4-manifolds. It is
the result of Gompf [3] that X and X ′ are stably diffeomorphic, i.e. for some k ≥ 0
there exists a diffeomorphism

X#(#kS
2 × S2)

∼=
−→ X ′#(#kS

2 × S2).

We consider an analogous version for embedded surfaces in a simply-connected
4-manifold. In particular, we present the following theorem.

Theorem 1. Let X be a compact, orientable, smooth 4-manifold and let Σ1,
Σ2 ⊂ X be a pair of smoothly, properly embedded surfaces which are topologi-
cally isotopic relative to their boundaries. Then Σ1 and Σ2 are externally stably
smoothly isotopic, i.e. there exists k ≥ 0 such that Σ1 and Σ2 become smoothly
isotopic relative to their boundaries in X#(#kS

2 × S2), where we perform the
connected-sums in the complement of Σ1 ∪ Σ2.

We now present a sketch proof of the theorem.

Proof of Theorem (sketch). We will consider the closed case for simplicity, i.e. X ,
Σ1 and Σ2 will all be closed. The topological isotopy between Σ1 and Σ2 provides

us with a homeomorphism Ĝ : X → X which sends Σ1 to Σ2. It is a consequence of
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the uniqueness of normal bundles for codimension two embeddings in 4-manifolds

[1, Theorem 9.3A] that we can isotope Ĝ relative to Σ1 to a homeomorphism which

sends ν(Σ1) to ν(Σ2) via a smooth vector bundle isomorphism, so assume that Ĝ

already has this property. Restricting Ĝ to the exteriors produces a homeomor-
phism

G : X \ ν(Σ1)
≈
−→ X \ ν(Σ2),

i.e. a homeomorphism of the surface exteriors. The idea is now to try to modify
G relative to the boundary to a diffeomorphism, allowing taking connected-sums
with S2 × S2. All we need to ensure is that the resulting stable diffeomorphism
of X is smoothly isotopic to the identity (we are allowed to stabilise further to
achieve this). A theorem of Quinn [4, Theorem 1.4] says that all this requires is
that the resulting stable diffeomorphism induces the identity map on homology.

We return to modifying G. A result of Freedman-Quinn [1, Theorem 8.2] says
that there is an obstruction to G being stably pseudo-isotopic to a diffeomorphism,
i.e. pseudo-isotopic to a diffeomorphism after taking connected-sums with S2×S2.
We use a theorem of the author [2, Theorem 3.2] that says we can modify this
obstruction to be zero after taking a connected-sum with a single copy of S2 × S2

by modifying the stabilised homeomorphism on a neighbourhood of a curve union
the new S2×S2 summand. The result can be then be stably pseudo-isotoped to a
diffeomorphism. Our modification that we made to kill the smoothing obstruction
can be taken to not change the induced map on homology, and hence the resulting
stable diffeomorphism of X is stably isotopic to the identity. It follows that Σ1

and Σ2 are externally stably smoothly isotopic. �
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Taut foliations and left orderability

Alice Merz

For a closed, oriented 3-manifold M , a (codimension 1) foliation is, roughly speak-
ing, a partition of M into injectively immersed surfaces, called leaves, such that lo-
cally it is the partition of R3 in parallel planes. A foliation is said to be taut if every
leaf intersects a closed curve transverse to the foliation. It is a well-known theo-
rem, proved independently by Lickorish [7], Novikov [8] and Zieschang, that every
3-manifold admits a coorientable foliation. However, the foliations constructed
with their procedure are in general not taut, and in fact not every 3-manifold
admits a coorientable taut foliation (e.g. see [8], [10], [11]).
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Figure 1. Foliating D2 × R by saddles.

In [9] the authors showed that Heegaard Floer homology gives obstructions to
the existence of taut foliations. Namely they show that if M is an L-space, then
M does not support a coorientable taut foliation, and they ask if the converse also
holds.

In [1] the authors conjecture moreover that being an L-space is equivalent to the
fundamental group of the manifold being left-orderable, meaning that it admits a
total order that is invariant by left multiplication. This leads to the formulation
of one of the most well-known conjectures in low dimensional topology, called the
L-space conjecture, and, despite its audacity, it is now known to hold for graph
manifolds and on a large class of hyperbolic rational homology spheres.

Conjecture 1 ([1],[6]). Let M be an irreducible, rational homology 3-sphere. The
following are equivalent:

(1) M is not an L-space;
(2) M admits a coorientable taut foliation;
(3) π1(M) is left-orderable.

In my talk I mostly focused on properties (2) and (3), and more precisely on
possible strategies to induce a left order on π1(M) given an explicit coorientable
taut foliation F on M .

Let M̃ denote the universal cover of M . The foliation F lifts to a foliation F̃
and one can consider the leaf space L = M̃/F̃ . Notice that, since π1(M) acts on

M̃ preserving the foliation F̃ , it acts on L.
It is a well-known fact (see for example [3]) that if F is taut, L is a simply

connected 1-manifold, that in general is non-Hausdorff. If the leaf space L happens
to be Hausdorff, it is indeed equal to R, and in this case we say that F is R-covered.
However not every taut foliation is R-covered, as shown by the following example.

Example 2. One can foliate D2 × R as follows: start by foliating its interior by
saddles (see left side of Figure 1). To obtain a foliation of D2 × R, one can add
some limiting leaves, called walls, as in the right-hand side of Figure 1. The leaf
space of this foliation is a real line (given by the leaves in the saddles) and some
non-Hausdorff points given by the limiting leaves as depicted in Figure 2.
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Figure 2. The leaf space of D2 × R.

It is not too hard to show (see for example [4]) that a countable group G is
left-orderable if and only if it acts effectively on R by orientation preserving home-
omorphisms. Thus, if a taut foliation F on an irreducible 3-manifold is R-covered,
we get an action of π1(M) on the real line. In this case it is sufficient that the
action is non-trivial (see [2]) to show that π1(M) is left-orderable. Unfortunately,
most foliations are not R-covered, but one can hope to improve this technique to
some taut foliations that are not R-covered, but such that the leaf space admits
a quotient homeomorphic to R, and the action of π1(M) descends to an action
on this quotient. This technique was effectively used by Zung [13] to show that
the fundamental group of some surgeries on mapping tori of pseudo-Anosov maps
are indeed left-orderable, but it is in general not easy to apply since one needs to
deeply understand the leaf space of the foliation.

Question 1. Can we understand the leaf space of some “explicit” taut foliations
that have been constructed in the literature such as, for example, the ones con-
structed in [12], in order to apply this technique?
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An overview on the L-space conjecture

Diego Santoro

A codimension-1 foliation of a closed 3-manifold M is taut if every leaf intersects
a closed transversal, i.e. a smooth simple closed curve in M that is everywhere
transverse to the foliation. Taut foliations have been a classical and fruitful tool
in the study of 3-dimensional manifolds [27, 10]. A foliation is said co-orientable
if the line bundle TM/TF is orientable, where TF is the plane bundle tangent to
F . When the ambient manifold M is orientable, this is equivalent to require that
TF is an orientable plane bundle.

It is a classical theorem by Lickorish [18] and Novikov-Zieschang [20] that every
closed orientable 3-manifold M supports a co-orientable (codimension-1) foliation.
On the other hand, the existence of a co-orientable taut foliation puts constraints
on the topology of M . For example, it is a consequence of the results of [20, 24, 23]
that if a closed orientable 3-manifold M 6= S2 × S1 contains a co-orientable taut
foliation, then M has infinite fundamental group, is irreducible and its universal
cover is diffeomorphic to R3. However, taut foliations are quite abundant: every
irreducible closed orientable 3-manifold with positive first Betti number supports a
co-orientable taut foliation [10]. A lot of work was required to prove the existence
of hyperbolic 3-manifolds not supporting taut foliations. The first examples are
due to Roberts-Shareshian-Stein [25].

Some years later, many other examples were found by using techniques com-
ing from Heegaard Floer homology. In fact, Ozsváth-Szabó [21] proved that L-
spaces do not admit co-orientable taut foliations. A rational homology sphere
M is an L-space if it has minimal Heegaard Floer homology, i.e. if it satisfies

rankĤF (M) = |H1(M,Z)|. Their theorem was based, among the other things, on
an approximation result for C2-foliations by Eliashberg-Thurston [9], that has been
later generalised by Bowden [1] and Kazez-Roberts [14] to less-regular foliations.

Taut foliations and L-spaces are two of the three concepts unified by a recent
conjecture proposed by Boyer-Gordon-Watson [4] and Juhász [11]. More specifi-
cally, the conjecture is:

L-space conjecture. ([4, 11]) For an irreducible oriented rational homology 3-
sphere M , the following are equivalent:

(1) M supports a co-oriented taut foliation;
(2) M is not an L-space;
(3) M is left-orderable, i.e. π1(M) is left-orderable.

In my talk I gave a partial overwiew of what is know on this conjecture. Perhaps
surprisingly, the conjecture is now known to be true for large classes of 3-manifolds,
such as graph manifolds [3, 12] and, as already observed, L-spaces do not support
co-orientable taut foliations.

Moreover, in [8] Dunfield tested the conjecture on a census of more than 300, 000
hyperbolic rational homology spheres and proved it for more than 60% of these
manifolds.
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The existence of a co-orientable taut foliation on a rational homology sphere M
can be used to produce interesting actions of π1(M) on 1-dimensional manifolds,
both on Thurston’s universal circle [7] and on the leaf space of the pullback foli-

ation on the universal cover M̃ of M (this is a simply connected, not necessarily
Hausdorff, 1-dimensional manifold). This is particularly interesting in light of a
result of Boyer-Rolfsen-Wiest [6] that characterises left-orderability of π1(M) in
terms of actions on the real line and in fact, in some cases, both these actions have
been succesfully used to prove left-orderability [5, 13, 29, 26].

How one should be able to obtain a taut foliation from a left-order is more
misterious. Nonetheless, Li was recently able to do this when the ambient manifold
M has Heegaard genus two [16]. On the same lines, left-orders were previously
used by Zhao and by Baik-Hensel-Wu to construct respectively taut foliations on
M minus a ball [28] and certain types of singular foliations on M [2].

While significant progress has been made, key questions remain open. For
example, a concrete and easy to state, yet quite general, question is the following:

Question. Let K be a non-trivial knot in S3 and suppose that K has no reducible
surgeries. Let r be a rational number in (1−2g, 2g−1), where g denotes the genus
of K.

• Does the r-surgery on K support a co-orientable taut foliation?
• Is the r-surgery on K left-orderable?

Notice that it follows by [15, 22] that such a surgery on K is never an L-
space, and therefore the L-space conjecture predicts an affirmative answer to both
questions. The answer to the first question is known to be positive for small enough
slopes [17] and recent works of Massoni imply that the set of slopes on K that are
strongly realised1 is open [19].
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Notions of braid positivity and knot concordance

Paula Truöl

This talk gives a brief overview of some of the speaker’s past and present research
interests.

Knots are closed, connected, oriented, smooth, 1-dimensional submanifolds of
the 3-dimensional sphere S3, which are usually studied up to (ambient) isotopy.
A natural generalization in dimension 4 of the question whether certain knots are
isotopic to the trivial knot, called unknot, is the notion of concordance, an equiv-
alence relation on the set of all knots. Two knots K and J are called concordant
if there exists an annulus A ∼= S1 × [0, 1] smoothly and properly embedded in
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S3 × [0, 1] such that ∂A = K × {0} ∪ J × {1} and such that the induced orien-
tation on the boundary of the annulus agrees with the orientation of K, but is
the opposite one on J . Knots up to concordance form a group, the concordance
group C, with the group operation induced by connected sum.

An important open question in the area is the Slice–Ribbon Conjecture, which
originated from a question posed by Fox in 1962, asking whether every slice knot is
a ribbon knot [6]. Slice knots are those knots that are concordant to the unknot.
Equivalently, they bound a smoothly embedded disk in the 4-ball B4 bounded
by S3, while ribbon knots bound an immersed disk in 3-dimensional space with only
ribbon singularities. The study of slice knots has been crucial to our understanding
of the interactions between 3- and 4-dimensional spaces and is at the center of
research in low-dimensional topology.

Isotopic knots are concordant, but the converse is generally not true, as any
nontrivial slice knot shows. We are particularly interested in families of knots for
which concordance implies isotopy. In [2], Baker showed that for any two strongly
quasipositive, fibered knots K0 and K1, if K0#−K1 is ribbon (which in particular
implies that K0 and K1 are concordant), then K0 is isotopic to K1. He conjectured
the following.

Conjecture 1 (Baker’s conjecture, [2]). If two strongly quasipositive, fibered knots
are concordant, then they are isotopic.

A knot K is fibered if its complement in S3 is the total space of a locally trivial
fiber bundle where each fiber is the interior of a Seifert surface for K. A knot is
strongly quasipositive if it is the closure of a strongly quasipositive braid β ∈ Bn
for some n ≥ 1. Here Bn denotes the braid group on n strands which can be
presented by n− 1 generators σ1, . . . , σn−1 and relations

σiσj = σjσi if |i− j| ≥ 2 and σiσi+1σi = σi+1σiσi+1 [1].

See [3] for an overview on braids and their closures. An n-braid is strongly quasi-
positive if it is a product of certain conjugates of the positive Artin generators σi
of Bn, namely of the positive band words σi,j , where

σi,j = (σi · · ·σj−2)σj−1 (σi · · ·σj−2)
−1

for 1 ≤ i < j ≤ n; see Figure 1.

� �� �

Figure 1. The positive band word σi,j .
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Baker’s result described above shows that the Slice–Ribbon Conjecture im-
plies Conjecture 1. In other words, either concordance implies isotopy for the
set of strongly quasipositive, fibered knots or the Slice–Ribbon Conjecture is false.
In [12], I showed that Baker’s conjecture is false in a strong sense if the requirement
that the knots are fibered is dropped.

Theorem 2 ([12]). Every non-trivial strongly quasipositive knot is smoothly con-
cordant to infinitely many pairwise non-isotopic strongly quasipositive knots.

As far as we know, the following question, which is a weaker version of Conjec-
ture 1, remains open.

Question 3 ([11]). Are there only finitely many strongly quasipositive, fibered
knots in each smooth concordance class in C?

Braid positive knots are those knots which are closures of positive braids, i.e.
those braids that can be represented in terms of the positive Artin generators
σ1, . . . , σn−1 of Bn for some n ≥ 1. Braid positive knots are fibered [10] and
strongly quasipositive, so a special case of Baker’s conjecture is the following ques-
tion.

Question 4. Are concordant braid positive knots isotopic?

Focusing on the special case of closures of positive 3-braids (positive 3-braid
knots), in previous work I worked towards understanding the concordance classes
of these in [13]. In this case, Question 4 seems to be particularly accessible due to
classification results on the conjugacy classes of 3-braids [7, 8]; see also [13, Proposi-
tion 3.2]. As a corollary to our main theorem in [13], we provide the following step
towards understanding the concordance classes of positive 3-braid knots. Here,
υ(K) = ΥK(1) denotes a (smooth) concordance invariant from knot Floer homol-
ogy defined by Ozsváth–Stipsicz–Szabó [9] and g(K) denotes the Seifert genus
of K.

Corollary 1. Let K be a knot that is the closure of a positive 3-braid. Then
the minimal r such that K is the closure of σp11 σq12 σp21 σq22 · · ·σpr1 σqr2 for integers
pi, qi ≥ 1, i ∈ {1, . . . , r}, is r = g(K) + υ(K) + 1. Moreover, if K and J are
concordant positive 3-braid knots, then this minimal r is the same for both K
and J .

However, there are still many pairs of examples of positive 3-braid knots that
we cannot distinguish in concordance with these methods, although we know them
to be non-isotopic from the work of Birman–Menasco [4, 5], e.g. the closures of
σ3
1σ

3
2σ

6
1σ

6
2 and σ3

1σ
5
2σ

3
1σ

7
2 . In the future, we plan to compute more concordance

invariants for positive 3-braid knots to decide whether these pairs differ in con-
cordance. Note that a pair of concordant, but non-isotopic positive 3-braid knots
would provide a counterexample to the Slice–Ribbon Conjecture.
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[1] E. Artin, Theorie der Zöpfe, Abhandlungen aus dem Mathematischen Seminar der Univer-
sität Hamburg 4 (1925), 47–72.

[2] K. L. Baker, A note on the concordance of fibered knots, Journal of Topology 9 (2016), 1–4.
[3] J. S. Birman and T. E. Brendle, Braids: a survey, Handbook of knot theory (2005), 19–103.
[4] J. S. Birman and W. W. Menasco, Studying links via closed braids. III. Classifying links

which are closed 3-braids, Pacific J. Math. 161(1) (1993), 25–113.
[5] J. S. Birman and W. W. Menasco, A note on closed 3-braids, Commun. Contemp. Math.

10 (2008), 1033–1047.
[6] R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc.

The Univ. of Georgia Institute 274 (1962), 168–176.

[7] F. A. Garside, The braid group and other groups, The Quarterly Journal of Mathematics
20(1) (1969), 235–254.

[8] K. Murasugi, On closed 3-braids, American Mathematical Society, Providence, R.I. (1974),
Memoirs of the American Mathmatical Society, No. 151.
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The Dehn surgery characterisation problem

Laura Wakelin

1. Characterising slopes

Let S3K(p/q) denote the 3-manifold obtained by performing Dehn surgery of slope
p/q ∈ Q ∪ {1/0} on a knot K ⊂ S3.

Definition 1. A slope p/q ∈ Q is called characterising for a knot K ⊂ S3 if
the existence of a knot K ′ ⊂ S3 and an orientation-preserving homeomorphism
S3K(p/q) ∼= S3K′(p/q) implies that K = K ′.

Every slope is characterising for the unknot [3], as well as for the trefoils and the
figure eight knot [6]. In general, for any given knot, every slope with sufficiently
high denominator is characterising.

Theorem 2 (McCoy [5], Lackenby [4], Sorya [7]). For any knot K ⊂ S3, there
exists a constant C(K) such that every slope p/q ∈ Q with |q| ≥ C(K) is a
characterising slope for K.

McCoy’s proof of the existence of this bound for torus knots is constructive.
However, neither Lackenby’s proof for hyperbolic knots, nor Sorya’s proof for
satellite knots in the general case, gives a method for computing C(K) explicitly.
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Theorem 3 (McCoy [5], Wakelin [9], Sorya [7], Sorya–Wakelin [8]). For any knot
K ⊂ S3 whose exterior S3K has a known JSJ decomposition, a value for the constant
C(K) can be explicitly computed via the following algorithm.

Knot K ⊂ S3 and JSJ decomposition of S3K

Is K a torus knot? McCoy [5]
yes

Is K a hyperbolic knot?

no

Wakelin [9]
yes

Is K a composite knot?

no

Sorya [7]
yes

Is S3K a graph manifold?

no
yes

Sorya–Wakelin [8]
no

C(K)

2. Non-characterising slopes

Despite the ubiquity of characterising slopes, there are also plenty of examples of
non-characterising slopes.

Definition 4. A slope p/q ∈ Q is called non-characterising for a knot K ⊂ S3 if
there exists another knot K ′ ⊂ S3 and an orientation-preserving homeomorphism
S3K(p/q) ∼= S3K′(p/q) but K 6= K ′.

The following result demonstrates that slopes with arbitrarily high denominator
can be realised as non-characterising slopes for infinitely many pairs of knots.

Theorem 5 (Brakes [1], Wakelin [9]). Any slope 1/q ∈ Q can be realised as a
non-characterising slope for a pair of multiclasped Whitehead doubles of double
twist knots, K = Wn(Tmq ) and K ′ = Wm(T nq ), for any non-zero integers m 6= n.

Brakes’ construction suggests that this method could also be extended to realise
slopes p/q ∈ Q with p ≡ 1 mod q as non-characterising slopes. Joint work in
progress proposes a new strategy to generalise this to all slopes.

Theorem 6 (Hayden–Piccirillo–Wakelin [2]). Any slope p/q ∈ Q can be realised as
a non-characterising slope for a pair of knots which can be constructed explicitly.
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