
Mathematisches Forschungsinstitut Oberwolfach

Report No. 36/2024

DOI: 10.4171/OWR/2024/36

Mathematical Aspects of General Relativity

Organized by
Carla Cederbaum, Tübingen
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Abstract. General relativity is an area at the interface of partial differen-
tial equations, differential geometry, global analysis, mathematical physics
and dynamical systems. It interacts with astrophysics, cosmology, high en-
ergy physics, and numerical analysis. The field is rapidly expanding and has
witnessed remarkable developments and interconnections with other fields in
recent years.
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Introduction by the Organizers

The talks during the workshop covered a wide range of remarkable new develop-
ments in the field. Below we briefly summarise some of them, grouped below in
various thematic units.

1. A central focus of the workshop concerns the dynamics of asymptotically flat
solutions to the Einstein equations (isolated self-gravitating systems). This con-
tinues to be an area of rapid mathematical developments, concerning problems of
long-standing physical interest.

The workshop was opened by an overview talk by Igor Rodnianski on the state
of the art on the weak cosmic censorship conjecture, a fundamental problem in
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general relativity, and on the related question of the construction, structure and
stability properties of so-called “naked singularities”.

Elena Giorgi presented results on linear stability for the very slowly rotating,
small charge Kerr–Newman black holes, while Rita Teixeira da Costa presented
upcoming results about the Maxwell equations on general Kerr backgrounds, in-
cluding the difficult case of extremality. Stefan Hollands’ talk also touched upon
potential instabilities near extremality, seen from a more heuristic point of view.

Keeping to the theme of extremality, Ryan Unger presented results on extremal
critical collapse, showing that extremal black holes can form dynamically in grav-
itational collapse for the Einstein–Maxwell–Vlasov system, and in fact occur at
the threshold of black hole formation. Scattering results on the Maxwell–Vlasov
system on a fixed Minkowski background, on the other hand, were presented in
the talk of Leo Bigorgne.

Jonathan Luk presented a general method to understand the precise power-
law asymptotic fall-off for a wide variety of both linear and nonlinear massless
wave equations on very general asymptotically flat spacetimes, including black
holes, unifying and generalising many previous results in this setting. Yakov
Shlapentokh-Rothman, on the other hand, considered the problem of massive
fields, presenting recent results on the asymptotics of the Klein–Gordon equation
on the Schwarzschild spacetime, where the sharp statements turn out to depend
on difficult conjectures in number theory concerning exponential sums.

Turning to the case of asymptotically AdS spacetimes, Gustav Holzegel de-
scribed a linear stability result for Schwarzschild-AdS backgrounds, but with slow
logarithmic decay, while Christoph Kehle described an upcoming result on weak
turbulent instability for a nonlinear wave equation on Schwarzschild-AdS back-
grounds, suggesting that these backgrounds themselves may in fact become unsta-
ble as solutions to the vacuum Einstein equations in the full nonlinear theory.

2. In addition to the setting of isolated self-gravitating systems, an important
domain for general relativity is cosmology, and questions about the dynamics of
cosmological solutions of the Einstein equations is an important field of study.

In recent years, several results concerning big bang stability have appeared.
In his talk, Oliver Petersen formulated a general condition, in the absence of
symmetries and without requiring proximity to a specific background solution,
guaranteeing the formation of a big bang with curvature blow up. Warren Li
described results on Belinski–Khalatnikov–Lifshitz bounces in a spatially inhomo-
geneous setting and Andrés Franco Grisales described the asymptotics of solutions
to Maxwell’s equations on a fixed Kasner background.

There is also interest regarding stability results for cosmological solutions in the
expanding direction. Here several results concerning future global non-linear sta-
bility of cosmological solutions to the Einstein-Euler equations have appeared in
the last ten years or so. There are also related results concerning the Euler equa-
tions on a fixed expanding background. David Fajman described results relating
the stability of the fluid with the rate of expansion of the cosmological spacetime.
On the basis of his results in his numerical studies, he also conjectured a relation



Mathematical Aspects of General Relativity 3

between the speed of sound of the fluid and the rate of expansion necessary and
sufficient in order to obtain stability.

Finally, cosmological solutions can also have local black hole regions, for in-
stance the Kerr–de Sitter solution, and the stability of these regions is an impor-
tant problem. Andras Vasy described recent and upcoming results on linear and
nonlinear waves on general Kerr–de Sitter backgrounds in the regions between the
event and cosmological horizons, with applications to the stability of these regions
themselves as solutions to the Einstein equations.

3. The workshop also featured the presentation of two very general, completely
local results about solutions of the Einstein equations, independent of asymptotic
structure.

The first is a result of Cécile Huneau, who presented a proof of Burnett’s con-
jecture. In particular, she considered the case that the relevant family of metrics
satisfy a generalized wave coordinate condition and she described a proof of the
fact that the limit metric g then satisfies the Einstein–massless Vlasov system. In
contrast to previous results, her result does not require any symmetry.

The second is a result of Peter Hintz. In his lecture, he presented a new, very
general theorem on gluing small Kerr black holes in an ambient vacuum spacetime,
preserving the Einstein equations. As an important novel application, this gives a
technique to construct solutions of the Einstein vacuum equations with two black
holes in the extreme mass-ratio limit.

4. An additional important focus of the workshop was to discuss constructions
and properties of initial data for the Einstein equations, an established field with
vibrant new developments.

From Gerhard Huisken, we learned about some new geometric notions of quasi-
local mass based on Inverse Mean Curvature Flow and how these can be used
to prove a version of Kip Thorne’s widely open hoop conjecture, improving upon
seminal results by Rick Schoen and Shing-Tung Yau. Lan-Hsuan Huang dedicated
her talk to the moduli space of Einstein manifolds with boundary, combining older
aspects established by Robert Bartnik with new methods from the analysis of static
and stationary extensions. This may open a new window on studying initial data
from a different, very powerful perspective.

Both Albachiara Cogo and Sven Hirsch discussed results on the existence of
initial data sets with special properties: Albachiara Cogo showed the existence
of entire maximal boosted asymptotically Euclidean slices of the Schwarzschild
spacetime, answering an open question posed by Robert Bartnik. Sven Hirsch
presented results refining findings by Lan-Hsuan Huang and Dan Lee, namely
showing the existence of geodesically complete, asymptotically Euclidean initial
data sets in certain null dust pp-wave spacetimes in dimensions ≥ 6 and proving
that these are the only non-Minkowskian initial data sets of zero ADM-mass.

In her talk, Olivia Vičánek Mart́ınez described a new geometric construction of
asymptotically Euclidean coordinates on asymptotically flat initial data sets via
the spacetime constant mean curvature foliation by Carla Cederbaum and Anna
Sakovich. These can be thought of as center-of-mass coordinates and might provide
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an avenue to a coordinate-free treatment of asymptotically Euclidean initial data
sets. Relatedly, Rodrigo Avalos presented a sufficient criterion for the existence of
asymptotically Schwarzschildean coordinates based on faster decay assumptions
on the Cotton tensor and on techniques related to Rick Schoen’s contribution to
the resolution of the Yamabe problem.

Sung-Jin Oh explained a very flexible and promising newly-developed method
of generating initial data sets with good localisation and fall off properties, gener-
alising and complementing existing gluing results.

Considering asymptotically hyperbolic instead of asymptotically Euclidean ini-
tial data sets, Anna Sakovich described recent results on the definition and geom-
etry of the mass aspect function. This opens the door for studying such initial
data under very weak decay assumptions; this could for example be relevant for
studying stability of geometric inequalities such as the positive mass theorem.

5. A final focus of the workshop was Lorentzian geometry and its connections to
general relativity, a very diverse field with lots of activity.

Transferring ideas from the study of the initial data sets and combining them
with techniques from Lorentzian and null geometry, Markus Wolff described a new
geometric flow along null hypersurfaces which allows one to construct foliations
by surfaces of constant spacetime mean curvature (in the sense of the foliations
considered by Carla Cederbaum and Anna Sakovich in initial data sets) in null
cones near null infinity. In her talk, Annegret Burtscher described a new charac-
terization of global hyperbolicity via completeness of the null distance, providing
a Lorentzian analogue of the Hopf–Rinow theorem.

Focusing on stationary spacetimes hosting a degenerate Killing horizon, James
Lucietti presented recent breakthroughs of fully characterizing their near-horizon
geometry and explained how this can be used to prove rigidity.

Finally, Jan Sbierski presented a result showing Lipschitz inextendibility of the
weak null singularities which are expected to form in the interior of generic rotating
black holes. Such a statement would be necessary to deduce versions of Penrose’s
strong cosmic censorship conjecture.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Todd Oliynyk and Igor Rodnianski in the “Simons
Visiting Professors” program at the MFO.
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Abstracts

Regularity of compactified 3-manifolds and the ADM Center of Mass

Rodrigo Avalos

In general relativity (GR), isolated gravitational systems are modelled by asymp-
totically Euclidean (AE) initial data sets, which are defined as sets of the form
I .
= (M3, g,K, µ, S), where (M3, g) is a 3-dimensional Riemannian manifold; K is

a symmetric (0, 2)-tensor field, while µ and S are, respectively, a function and a
1-form which stand for the energy and momentum densities induced by physical
sources. In this context, AE 3-manifolds are non-compact manifolds which out-
side a compact core K satisfy M3\K ∼= R3\B1(0) and, with respect to some fixed
asymptotic chart {xi}3i=1, satisfy decay conditions of the form:

gij = δij +Ok(|x|−τ ), Kij = Ok−1(|x|−τ−1) and µ, Si = Ok−2(|x|−ρ),

for some τ, ρ > 0 and k ≥ 0. For these types of initial data sets one can physically
motivate a set a asymptotic charges (E,P,C, J), respectively denoting their en-
ergy, momentum, centre of mass (COM) and angular momentum. These so-called
ADM charges have proven to be intimately related to the analysis of scalar cur-
vature deformations, foliations of infinity and rigidity phenomena, as is notably
exemplified by the famous positive mass/energy theorems and their role in the res-
olution of the Yamabe problem [13, 15]. In the case of an AE 3-manifold (M3, g)
with asymptotic coordinates {xi}3i=1, the ADM energy is defined as

E
.
=

1

16π
lim
r→∞

∫

Sr

(∂igij − ∂jgii) ν
jdωr ;(1)

whenever the limit exists, and where Sr →֒ R3\BR0
(0) denotes a topological sphere

of radius r > R0 contained within the end of M3, while ν denotes the outward-
pointing Euclidean unit normal to it and dωr the volume form on Sr induced by
the Euclidean metric. Precise geometric conditions can be formulated to guarantee
the convergence of (1) as well as the independence of this limit on the asymptotic
coordinates [2]. In this context, the COM of such an AE manifold (M3, g) with
E > 0 is given by a vector C = (C1, C2, C3) ∈ R3, whose components are defined
by the limits

Ck .
=

1

16πE
lim
r→∞

(∫

Sr

xk (∂igij − ∂jgii) ν
jdωr −

∫

Sr

(
gikν

i − giiν
k
)
dωr

)
,(2)

whenever the limits exist. The COM has proven to be related to interesting
problems in geometry, most notably the existence of geometric foliations in AE
manifolds and the convergence of the centre of such foliations, which has been
proposed as a geometric way of defining the COM. Notably, G. Huisken and S. T.
Yau introduced such a definition via constant mean curvature (CMC) foliations
near infinity for the first time in [10]. This triggered plenty of research related to
other asymptotic geometric foliations, such as [6, 4, 5]. In all these works, a critical
aspect of the analysis is the precise asymptotic behaviour of the AE manifold
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(M3, g), where one typically needs to impose (at least) certain asymptotic parity
conditions known as the Regee-Teiltelboim (RT) conditions. Actually, in many
cases a Schwarzschildian expansion near infinity is demanded [5, 6, 10], which
implies that, asymptotically,

gij =

(
1 +

A

|x|

)
δij +O2(|x|−2),(3)

where A is a constant, related to the ADM energy of g. Clearly, the Schwarzschild-
ian case implies a strong version of the RT parity conditions. A generally recog-
nised problem in this context is that, except in very special cases, the existence
of an a priori expansion for the AE metric g with Schwarzschildian asymptotics
(or at least RT-type parity properties) is not known to be a consequence of some
set of geometric hypotheses. This got translated into a conjecture by Cederbaum-
Sakovich in [4] concerning the convergence of the COM under clearer geometric
conditions which, in the case of totally geodesic initial data sets (K = 0), can be
rephrased as

Conjecture 1 (Cederbaum-Sakovich). Given an AE manifold (M3, g) of order
τ ∈ (−1,− 1

2 ) with respect to a structure of infinity Φz with coordinates {zi}3i=1,

if ziRg ∈ L1(M\K,Φz), then there is a geometric condition on the coordinates
{zi}3i=1 ensuring the existence of a compatible asymptotic chart {z̄i}3i=1 such that
(2) converges in the z̄-coordinates.

One of our main results is to provide an answer to this conjecture under slightly
stronger conditions and identifying the right geometric objects which control the
existence of such suitable asymptotic coordinates. This result is presented below:

Theorem 1. (R. Avalos [1]) Let (M3, g) be a smooth W 4,p
−τ -AE manifold with

respect to a structure of infinity with coordinates {zi}3i=1, with τ ∈ (12 , 1) and
p > 2. Assume furthermore that:

1. Rg ∈ Lr
−3−ǫ(M,Φz) for some r > 3 and ǫ > 0;

2. Cg ∈ Lp1

σ (M,Φz) for some −6 < σ < −4 and p1 = 3
6+σ .

Then, there is a structure of infinity with coordinates {z̄i}3i=1, which is C1,α-
compatible with the original one, such that

g(∂z̄i , ∂z̄j ) =

(
1 +

4C

|z̄|

)
δij +O1(|z̄|−1−α),(4)

for some α > 0 and a constant C. If moreover Rg ∈ Lr
−4−ǫ(M,Φz), with r > 3

and ǫ > 0, then the center of mass converges in the coordinates given by (4).

In Theorem 1 the structure of conformal classes is critical, and insights into this
relation can be obtained thinking about the stereographic projections of (smooth)

Yamabe positive closed manifolds (M̂3, ĝ). This procedure provides an interest-
ing connection between special classes of closed Riemannian manifolds and AE
manifolds obeying the RT conditions. In general, the analysis of the conformal
class of an AE 3-manifold needed to prove Theorem 1 enforces the study of con-
formal classes of geometric objects with controlled singularities. This is because,
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in general, conformal compactifications of AE 3-manifolds will be of W 2,q(M̂)-
regularity for some q > 3

2 , even if g is smooth [8]. Further regularity on ĝ can be
obtained by analysis of the decay properties of the conformally invariant Cotton
tensor Cg, as was noted by M. Herzlich [9]. Another of our main results is to
interpolate between the results of [8] and [9], providing weaker decay condition
which are enough to provide C1,α-controls on ĝ, which is the threshold needed in
the analysis of Theorem 1.

Theorem 2. (R. Avalos [1]) Let (M3, g) be a smooth W k,p
τ -AE manifold, relative

to a structure of infinity with coordinates {zi}3i=1 and p > 2, τ ∈ (−1,− 1
2 ), k ≥ 4,

and let M̂ be the one point compactification of M . If Cg ∈ Lp1

σ (M,dVg) with −6 <

σ < −4 and p1 = 3
6+σ , then (M3, g) can be conformally compactified into (M̂, ĝ)

where M̂ stands for the 1-point compactification of M , such that ĝ ∈ W 2,q(M̂) for

some q > 3. In particular ĝ ∈ C1,α(M̂), for some α ∈ (0, 1).

The idea of the proof of Theorem 2 exploits that a weighted Lp-control of Cg

will translate on an a priori Lp control of Cĝ, in turn translating into W−1,p(M̂)-
control for ∆ĝRicĝ. Once W−1,p-control for ∆ĝRicĝ is obtained, the remaining
improvements of regularity follow through some delicate new elliptic regularity
theorems. It is interesting to note that the associated elliptic regularity theory is
rather close to critical cases, being related to the conjecture posed by J. Serrin
in [14] about the celebrated De Giorgi-Nash regularity theory, which has been
addressed, for instance, in [3, 12, 16, 11]. The geometric problem analysed in

Theorem 2 naturally poses the related problem of bootstrapping an a priori Lq′ -
solution to the tensor equation

∆gu = f(5)

for a W 2,q(Mn) metric on a closed manifold M , with q > n
2 , u a symmetric (0, 2)-

tensor field, and f ∈ Lp, which is outside of the scope of the referred papers. Our
associated regularity results find applications of their own within mathematical
GR and the analysis of the rough initial data sets, something that has recently
motivated related results analysed in [7].
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Modified scattering for the small data solutions to the

Vlasov-Maxwell system

Léo Bigorgne

The Vlasov-Maxwell system is a classical model in collisionless plasma physics.
We will focus here on the dynamics of its small data solutions. The system reads

v0∂tf + v · ∇xf + vµFµ
j∂vjf = 0,(V)

∇µFµν = J(f)ν , ∇µ∗Fµν = 0,(M)

where

• f : Rt×R3
x×R3

v → R+ is the density distribution function of the particles.

• J(f)ν :=
∫
R3

v

vν
v0 fdv is the current density and v0 =

√
1 + |v|2.

• The electromagnetic field is represented by a 2-form F , the Faraday tensor.
The Hodge dual of F is given by ∗Fµν = 1

2F
λσελσµν .

In order to lighten the notations, we consider, as it is usually done in the mathe-
matical community, plasmas composed by one species of particles of charge q = 1
and mass m = 1.

The existence of global-in-time classical solutions to the Vlasov-Maxwell system
is only known in the pertubative regime or under certain symmetry assumptions.
Although the problem remains open besides these specific cases, various continu-
ation criteria have been obtained during the past decades (see for instance [7, 9]).

Much more is known for the small data solutions to (V)–(M). In particular,
Glassey-Strauss proved in [8] that these solutions are global and decay with the
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same rate as the solutions to the linearised Vlasov-Maxwell system around 0. More
precisely, any small data solution (f, F ) to (V)–(M) verifies

(1)

∫

R3
v

f(t, x, v)dv .
1

〈t+ |x|〉3 , |F |(t, x) . 1

〈t+ |x|〉 〈t− |x|〉 .

Many refinement of this result has been obtained recently. In particular, no com-
pact support assumption is required anymore on the data, the derivatives of the
solutions can be controlled [3, 10] and the smallness assumption on the electro-
magnetic field has been relaxed [11, 4].

Once the optimal decay estimates (1) are proved, the next question one may
ask is whether or not (f, F ) can be approached by a linear solution. For this, we
would like to prove that asymptotic completeness holds, that is (f, F ) converges in
a suitable sense to an asymptotic state. Since the characteristics of the linearised
Vlasov operator vµ∂xµ are timelike straight lines, the trajectories of isolated mas-
sive bodies, we could expect

(2) f(tv0, x+ tv, v) → f∞(x, v), as t→ +∞ and in L1(R3
x × R

3
v).

Concerning the electromagnetic field, we could expect it to converge along null
rays,

(3) rF (r + u, rω) → F∞(u, ω), as r → +∞ and in L2(Ru × S
2
ω).

It turns out that, because of the long range effect of the Lorentz force vµFµ
j

and unless f vanishes identically, the distribution function does not verify linear
scattering (that is (2) does not hold). This has been proved in the context of the
Vlasov-Poisson system by Choi-Ha [6]. One can already see it at the level of the
characteristics of the Vlasov equation (V), which verify

Ẋj =
V j

V 0
, V̇ j =

V µ

V 0
Fµ

j .

Then, as |F | . t−2 along timelike straight lines, we can expect t 7→ V (t) to
converge to V∞ as t→ +∞ and

∣∣V (t)− V∞
∣∣ . 1

t
,

∣∣∣Ẋ(t)− V∞
V 0
∞

∣∣∣ . 1

t
,

suggesting that the spatial characteristics does not verify X(tv0∞) ≈ x∞ + tv∞ for
t≫ 1. In fact, f satisfies a modified scattering dynamics.

In contrast, the electromagnetic field does verify linear scattering. In order to
state a refined version of (3), we introduce a null frame

L := ∂t − ∂r, L := ∂t + ∂r, eθ :=
1

r
∂θ, eϕ :=

1

r sin(θ)
∂ϕ

and the null components of the Faraday tensor

αeA := FeAL, αeA := FeAL, ρ :=
1

2
FLL, σ := Feθeϕ .

It is well-known that in the vacuum setting and if F |t=0 decays sufficiently fast,
then ρ, σ ∼ r−2 and α ∼ r−3 along null rays. The next result is obtained in [4, 5].
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Theorem 1. Let (f, E,B) be a solution to the Vlasov-Maxwell system arising
from sufficiently small and regular initial data. Then,

• The distribution function f verifies modified scattering along logarithmical
corrections of the linear characteristics, defined teleologically. There exists
f∞ : R3

x × R3
v → R, such that, for all (t, x, v) ∈ R+× R3

x × R3
v,

∣∣∣f
(
v0t− log(t)

|v0|2 v
µ
Fµ

0(v), xk + tvk − log(t)

|v0|2 v
µ
Fµ

k(v), v
)
− f∞(x, v)

∣∣∣ . log3(2 + t)√
1 + t

,

where the constant in time 2-form v 7→ F(v) is a functional of
∫
R3

x
f∞(x,·)dx

capturing the asymptotic behavior of the electromagnetic field along time-
like geodesics,

F
(
v0t, x+ tv

)
= t−2

F(v) + o
(
t−2−δ

)
, δ > 0.

• The Maxwell field F verifies linear scattering. There exists α∞, ρ∞ and
σ∞ defined on Ru × S2ω such that

∣∣rα(r + u, rω)− α∞(u, ω)
∣∣ . 〈r + |u|〉−1,

∣∣r2ρ(r + u, rω)− ρ∞(u, ω)
∣∣+

∣∣r2σ(r + u, rω)− σ∞(u, ω)
∣∣ . 〈u〉 〈r + |u|〉−1.

Moreover, ρ∞ and σ∞ are fully determined by α∞ and
∫
R3

x
f∞(x, ·)dx

through constraint equations.

Conversally, given a sufficiently regular scattering state (f∞, α
∞) satisfying the

same constraint equations, there exists a unique global classical solution (f, E,B)
to the Vlasov-Maxwell system verifying the previous convergence estimates.

The constraint equations are related to the electromagnetic memory effect [2].
They differ significantly to the ones that one would obtain for the massless Vlasov-
Maxwell system or in higher dimensions.

Finally, let us mention the independent work of Ben-Artzi-Pankavich [1] where
modified scattering for the distribution function f is proved.
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Local and global properties of the null distance

Annegret Burtscher

(joint work with Leonardo Garćıa-Heveling, Brian Allen)

A spacetime (M, g) does not admit a canonical metric space structure. If one
attempts a length metric space construction as in Riemannian geometry, now based
on the maximation of length Lg(γ) =

∫
I

√
−gγ(s)(γ̇(s), γ̇(s))ds of future-directed

timelike curves γ : I → M , one arrives ats the Lorentzian distance (sometimes also
called time separation function)

dg(p, q) :=

{
sup{Lg(γ); γ future-directed causal curve from p and q} p ≤ q,

0 else,

The Lorentzian distance has many important features, especially when (M, g) is
globally hyperbolic and g is sufficiently regular. These properties have already
been exploited successfully in Lorentzian geometry [3] and in recent synthetic
approaches to Lorentzian geometry [4, 12, 17, 20]. Nonetheless, the Lorentzian
distance is very far from being a metric: it is not symmetric, not positive definite,
and only satisfies a reverse triangle inequality.

In 2016 Sormani and Vega [25] succeeded in constructing an honest metric on
stably causal spacetimes, called null distance. It is the aim of this short note to
discuss the construction and important basic properties of the null distance that
can render it useful for analyzing low-regularity structures in general relativity.

Recall that stably causal spacetimes are precisely those spacetimes that admit a
time function [16]. We fix a time function τ : M → R that is locally anti-Lipschitz,
for example, a smooth temporal functions [5] or, if available, a regular cosmological
time function [2]. To each continuous, piecewise causal curves β : I →M one can

assign the null length L̂τ (β) =
∑k

i=1 |τ(β(si)) − τ(β(si−1))|, where the si denote
the parameter values where β changes time orientation. Then

d̂τ (p, q) = inf{L̂τ(β);β piecewise causal curve from p to q}.
Already in [25] it was shown that d̂τ is a conformally invariant metric on M

that induces the manifold topology. It is clear that the metric topology should
depend on both g and τ . But how much? Garćıa-Heveling and I [10] have shown
that if one restricts oneself to the class of (weak) temporal functions, then the null
distances generated by any pair (gi, τi), i = 1, 2, on M are locally bi-Lipschitz. By
using a semi-global argument this result can also be extended to compact sets and
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is in line with the corresponding bi-Lipschitz property of Riemannian distances
[8].

Globally, the metric structure crucially depends on both g and τ . As a general
paradigm one should aim to work with a time foliation that closely reflects the
causal properties and global structure of (M, g) one wishes to investigate. If (M, g)
is globally hyperbolic, for instance, one is best served with a Cauchy temporal

function. Then d̂τ encodes causality globally [10], i.e., for all p, q ∈M

p ≤ q ⇐⇒ d̂τ (p, q) = τ(q) − τ(p).(1)

Note that =⇒ is trivial and that the assumptions for ⇐= can be weakened to time
functions with slices that are future/past Cauchy [10] or future/past complete [15].
This relaxation implies that the null distance of a spacetime with regular cosmo-
logical time function encodes causality. Before the global result was published
Sakovich and Sormani [22] had already obtained that the null distance of any
stably causal spacetime encodes causality locally (see [10] for a variation). Heuris-
tically this makes sense also from the perspective of the global result as every
point in a spacetime admits a globally hyperbolic neighborhood. In [10] we have
provided several examples that show that the global result does not generalize to
spacetimes that are not globally hyperbolic nor to globally hyperbolic spacetimes
with more general time functions. The question when causality encoding property
(1) holds was already mentioned as an open problem in [25] and by Sormani [24] in
the Oberwolfach Workshop ID 1832. The above results fully answer the question
for spacetimes without (timelike) boundary.

Another, rather surprising, global result concerns the completeness of the met-

ric space (M, d̂τ ). In Riemannian geometry, thanks to the Hopf–Rinow theorem,
metric completeness is equivalent to geodesic completeness. In the Lorentzian set-
ting such a result is impossible but in many other situations global hyperbolicity
fills the role of complete Riemannian manifolds (for example, in the Avez–Seifert
theorem; see [9] for a thorough discussion). Let us independently investigate the

meaning of completeness for (M, d̂τ ). It is clear that forcefully removing a point
of a spacetime results in noncompleteness. The same is true for Riemannian com-
pleteness but there the Nomizu–Ozeki theorem at least guarantees the existence of
a complete Riemannian metric (and distance). It is thus natural to expect that for
a completeness result the time function τ has to be special in some way. Allen and
I [1] have shown that a time function that is globally anti-Lipschitz with respect to
a complete Riemannian metric results in a complete null distance. For a temporal
function τ this simply means that there is a complete Riemannian metric h such
that dτ(v) ≥ ‖v‖h for all future-directed causal vectors v. Conveniently, it was
shown by Bernard and Suhr [6, 7] almost simultaneously (but in a completely dif-
ferent context) that temporal functions with such a property exist precisely when
(M, g) is globally hyperbolic. Hence, when (M, g) is globally hyperbolic there al-

ways exists a time function such that (M, d̂τ ) is a complete metric space. That the
converse also holds was observed in joint work with Garćıa-Heveling [10]. Follow-
ing a question of Jim Isenberg, I have shown that both the null distance and this
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result generalize to proper cone structures (see [19] for an overview of this setting)
and to a large class of semi-Riemannian manifolds [9].

To conclude, let me recall that one of the main motivations of Sormani to
introduce the null distance was to investigate a question of Yau about spacetime
convergence and stability [24]. In this direction, Allen and I have already analyzed
the special case of convergence of warped product spacetimes [1] and Sakovich and
Sormani [22] have obtained a crucial isometry theorem. A candidate for a limiting
space could be the Lorentzian synthetic spaces [18] mentioned in the beginning of
this extended abstract. For those spaces we have recently shown that all important
classes of time functions can be constructed [11]. The general existence of locally
anti-Lipschitz time functions in this setting, which is needed to guarantee the
positive definiteness of the null distance, however, is still open.

Apart from the original motivation I expect, based on the work of Chruściel and
Grant [13] and the fact that Lipschitz is the correct regularity for metric spaces,
that the null distance can in the future also be used to investigate low regularity
situations in general relativity where Lipschitz regularity is or could be at the
threshold (such as matter–vacuum boundaries, spacetime extensions [23], strong
cosmic censorship conjecture [14, 21]).
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Maximal surfaces and boosts in the Schwarzschild spacetime

Albachiara Cogo

In Minkowski spacetime, there is a one-to-one correspondence between inertial
observers, boosts and complete spacelike maximal (vanishing mean curvature)
surfaces by the renowned Cheng-Yau Bernstein type theorem. We address the
question of whether there is a correspondent generalization of this idea in non-flat
spacetimes, starting from the Schwarzschild spacetime. Towards this direction, we
will discuss the existence of a maximal surface approaching a coordinate-dependent
hypersurface related to a boost of Minkowski in the asymptotically flat end and
describe some of its properties. This is work in progress.

A stability phase transition for cosmological fluids

David Fajman

(joint work with Maciej Maliborski, Maximilian Ofner, Todd Oliynyk,
Zoe Wyatt)

Consider a cosmological spacetime of topology R+ ×M with Lorentzian metric

(1) g = −dt2 + a(t)2g0,

with covariant derivative∇, where (M, g0) is a 3-dimensional Riemannian manifold
without boundary and a : R+ → R+ is a monotonically increasing function called
the scale factor.
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The corresponding relativistic Euler equations take the form

(2)
uµ∇µρ+ (ρ+ P )∇µu

µ = 0,

(ρ+ P )uµ∇µu
ν + (gµν + uµuν)∂µP = 0,

where the functions ρ and P denote the energy density and pressure of the fluid,
respectively. uν is the velocity vector field of the fluid. We consider the particular
type of a barotropic fluid, which has the equation of state

(3) P = Kρ,

where K = c2S is the square of the speed of sound of the fluid and takes values
K ∈ [0, 1/3]. The system (2) with g of the form (1) and equation of state (3)
models a relativistic barotropic fluid in an expanding spacetime. It is a common
matter model in cosmology.

Solutions (ρ, u), where ρ = ρ(t) and u is a time-like unit normal vector field are
referred to as quiet fluid states.

It is known by the work of Christodoulou that in the absence of expansion
(a(t) = 1) fluids generically form shocks (gradient blow-up of the fluid variables) in
finite time [2]. This also holds for solutions which arise from initial data arbitrarily
close to a quiet fluid state. This scenario is referred to in the following as unstable.

In the regime of exponential expansion, i.e. a(t) = et, it was first observed by
Brauer, Rendall and Reula, in a Newtonian setting with gravitational backreaction,
that solutions arising from initial data sufficiently close to a quiet fluid state lead to
future global solutions, which do not form shocks [1]. Following the corresponding
pioneering work in the context of Einstein’s equations by Rodnianski and Speck
[12] a long series of works established similar results in the regime of exponential
expansion [8, 9, 10, 11, 13]. We refer to this behaviour of the fluid as stable. Hence
quiet fluid solutions are stable in spacetimes with fast expansion. The heuristic
interpretation of these results is a dissipating effect in the fluid induced by the
spacetime expansion, which regularizes the fluid.

A natural resulting question connecting the aforementioned results is whether
there exists a critical expansion rate a(t) = tαcrit where the stabilizing effect is
too weak to regularize the fluid. Remarkably, for the case of linear expansion
a(t) = t it was shown by Speck that radiation fluids (K = 1/3) are unstable and
dust (K = 0) is stable [14] (for dust with backreaction cf. [5]), while some of the
present authors showed that fluids with K ∈ (0, 1/3) are stable [4, 6] (even in the
presence of backreaction). These results gave the first hint that the stabilization
effect not only depends on the expansion rate but as well on the speed of sound
of the fluid.

Indeed, in two recent works by the authors it was shown that a non-trivial phase
transition occurs in the regime of decelerated expansion a(t) = tα with α < 1.

A high-precision numerical scaling analysis of (2) for initial data with toroidal
symmetry andM = S

1×S
1×S

1 provides strong evidence that the critical expansion
rate, where the fluid behaviour changes from stable to unstable, is given by
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(4) αcrit =
2

3(1−K)
,

for 0 < K < 1/3 [3]. This is the first evidence of a stability phase transition of this
type for cosmological fluids. In a complementary rigorous result the authors show
that (4) holds with an inequality (≤ instead of =) by proving stability whenever
α > αcrit. The theorem below states the precise result. It requires a rescaling of
the system (2). For that purpose we introduce the expansion-normalized variables

(5) vi =
tαui√

1 + t2αu2
and L = log(t3α(1+K)ρ).

In those variables (2) reads

(6)

∂tv
i = −α(1− 3K)

t
vi − K

1 +K

t1−α

t
(1− v2)∂iL

− t1−α

t
vj∂jv

i +
t1−α

t

(
1− 1−K

1−Kv2

)
vi∂jv

j

+
t1−α

t

1−K

1 +K

(
1− 1−K

1−Kv2

)
vivj∂jL

+
α(1− 3K)

t

1−K

1−Kv2
v2vi

(7)
∂tL = − t

1−α

t

(1 +K)

1−Kv2
∂jv

j − t1−α

t

(1−K)

1−Kv2
vj∂jL

+
α(1 +K)

t

1− 3K

1−Kv2
v2

The main theorem then reads as follows, where v and L0 denote the respective
spatial mean values.

Theorem. ([7]) Let 0 < K < 1/3 and a(t) = tα with α > 2
3(1−K) . Let µ > 0 be

such that α(1 − 3K)− µ > 2(1− α). Let (v0, L0) ∈ H3(T3)×H3(T3) be a vector
field and a function, respectively. Then there exists an ε > 0 such that for

(8) v0 + ‖∇v0‖H2
+ ‖∇L0‖H2

< ε

the solution (v(t), L(t)) to the system (6), (7) with initial data (v0, L0) exists
future-global in time and the following decay rates hold.

(9)

|v(t)| ≤ Cεt(−α(1−3K)+µ)/2

‖L(t)− L0‖L∞ ≤ Cε

‖∇v(t)‖H2
+ ‖∇L(t)‖H2

≤ Cεt(−α(1−3K)+µ)/2

The theorem implies that the expansion-normalized variables remain close to
the background in case of the energy density, while the normalized velocity even
decays, which implies orbital stability of the corresponding homogeneous fluid
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solutions. It constitutes the first result on fluid stabilization in the regime of
decelerated expansion.
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Asymptotics of solutions to silent wave equations

Andrés Franco-Grisales

We study the asymptotics of solutions to systems of linear wave equations on cos-
mological spacetimes. Here the asymptotics refer to the behavior of the solutions
near a cosmological singularity, or near infinity in the expanding direction. The
asymptotics correspond to the heuristics of the BKL conjecture. We present an im-
provement upon the results obtained by Ringström in [1], by obtaining asymptotic
estimates of all orders for the solutions, and showing that solutions are uniquely
determined by the asymptotic data contained in the estimates.

As an application, we then study solutions to the source free Maxwell’s equa-
tions in Kasner spacetimes near the initial singularity. Our results allow us to
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show that the energy density of generic solutions blows up along generic timelike
geodesics when approaching the singularity.
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Decay for the Teukolsky system in Kerr-Newman

Elena Giorgi

The stability problem for the Einstein equation is a well-studied topic of research
in the field of General Relativity, whose goal is to study perturbations of known
solutions to the Einstein equation

Ric(g)− 1

2
R(g)g + Λg = T,

where Ric(g) is the Ricci curvature of a Lorentzian metric g of a 4-dimensional
manifold, R(g) is the scalar curvature of g, Λ is the cosmological constant, and T
is called the stress-energy tensor, and contains information about the matter fields
present in the spacetime.

The asymptotically flat case, for Λ = 0, has been extensively developed as the
problem of stability for Minkowski [5], Schwarzschild [6, 24, 8], Kerr [28, 7, 1, 20, 25]
[26, 27, 30, 19, 31, 32], Reissner-Nordström [12, 11, 13, 14, 3] and Kerr-Newman
[15, 16, 21] spacetimes as solutions to the Einstein equation has been studied in
various levels of difficulties in the past few decades. Stability results in the case of
expanding spacetimes, for Λ > 0, for de Sitter [10], Kerr-de Sitter [23, 9], and Kerr-
Newman-de Sitter [22] have also been obtained. The case of negative cosmological
constant, Λ < 0, presents instabilities properties [29].

Here, we will discuss the stability property of the case of the exterior region
of the Kerr-Newman family of black holes as solutions to the Einstein-Maxwell
equation:

Ric(g) = 2F ·F−1

2
|F |2g, dF = 0, div F = 0

where F is a 2-form, called the electromagnetic tensor, satisfying the Maxwell
equations.

As it is well known, in the case of vacuum solutions the Einstein equation can
be studied through the Teukolsky equations [33] for the components of the Weyl
curvature W

αab :=W (ea, e4, eb, e4), αab :=W (ea, e3, eb, e3),

where e3, e4 are respectively the incoming and outgoing null vectors and ea, eb
denote vectors orthogonal vectors to e3, e4. The scalar version of the Teukolsky
equations are wave equations with first order terms and a potential and energy-
Morawetz estimates for these equations have been obtained in Schwarzschild [6],
in Kerr for |a| ≪M [28, 7] and for |a| < M [31, 32]. In these works, the Teukolsky
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equations are transformed to more treatable equations, called (generalized) Regge-
Wheeler equations, through a transformation now known as Chandrasekhar trans-
formation. The Teukolsky equations then unlock all the other gauge-dependent
quantities [6, 1]. Note that α and α are (quadratically) gauge invariant.

The Maxwell equations dF = 0, div F = 0 on the Kerr background also admit
two decoupled Teukolsky equations for the components of the electromagnetic
tensor

(F )βa := F (ea, e4),
(F )β

a
:= F (ea, e3).

On the other hand, if the background charge is non zero, then (F )β and (F )β
are not (quadratically) gauge invariant. Gauge invariance is related to the gauge
freedom of the Einstein equation due to its tensorial nature, and a quantity is
said (quadratically) gauge invariant if it only changes quadratically with a linear
change of frame.

We are interested in gauge-invariant quantities as they are believed to represent
physical quantities, such as gravitational and electromagnetic waves, which should
not depend on the chosen coordinates or gauge. On the other hand, the coupled
gravitational and electromagnetic perturbations of a charged and rotating black
hole have long known to be problematic due to the coupling of spin and the failure
to find separated equations [4], due to the behavior of spheroidal harmonics with
respect to the adjoint operators appearing on the coupled system.

It is therefore natural to ask what the relevant gauge invariant quantities are in
electrovacuum, what equations they satisfy and if they can be analyzed without
separating in harmonics.

In [15], we define novel gravitational and electromagnetic radiation quantities
f and b, respectively a 2-tensor and a 1-tensor, which are gauge-invariant, and
related to the Weyl curvature α. As a consequence of the Einstein-Maxwell equa-
tion, the quantities b and f satisfy a system of Teukolsky-type equations coupled
between each other through angular operators.

We found [15] that their respective Chandrasekhar transforms p and q in this
case satisfy a symmetric system of generalized Regge-Wheeler equations in Kerr-
Newman spacetime, of the following form:

�gp− V1(r) p− ia
cos θ

r2 + a2 cos2 θ
∇∂t

p = C1[q] + L1

�gq− V2(r) q− 2ia
cos θ

r2 + a2 cos2 θ
∇∂t

q = C2[p] + L2,

where L1, L2 are lower order terms depending on the gauge invariant quantities
f, b, α and C1, C2 are coupling operators involving angular derivatives which satisfy
the following spacetime adjointness property:

(1) ψ1 · C1[ψ2] = −C2[ψ1] · ψ2 +Dα

(
f(r, θ)(ψ1 · ψ2)

α
)
,

for a function f(r, θ), whereD denotes the spacetime covariant derivative. Observe
that since the principal null frame in Kerr-Newman spacetime is not integrable,
the adjointness operator with respect to the spacetime divergence is crucial, as
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the integration upon the spheres as in the case of Minkowski, Schwarzschild or
Reissner-Nordström is not allowed.

In virtue of this property, we are able to prove the following.

Theorem 1 (G.[17], G.-Wan [18]). For |a| ≪M , for |Q| ≪M or for |Q| < M in
axial symmetry, the gauge-invariant quantities p and q satisfy Energy-Morawetz
estimates.

The system admits a combined energy-momentum tensor for the system Qµν [p, q]
as

Qµν [p, q] := Qµν [p] + 8Q2Qµν [q]

where Qµν [ψ] = ∇µψ ·∇νψ− 1
2gµν

(
∇λψ · ∇λψ + V |ψ|2

)
is the energy-momentum

tensor associated to the Regge-Wheeler equation �gψ − V ψ = 0. In virtue of
the spacetime adjointness property (1), the combined energy-momentum tensor
Qµν [p, q] presents cancellation of the highest order terms in its divergence, ef-
fectively decoupling the system, therefore avoiding the issue of decomposition in
spherical harmonics.

By adapting [16] the generalized vectorfield method of Andersson-Blue’s [2]
to the current Qµν [p, q]X

ν for a vectorfield X , we obtain energy estimates and
Morawetz estimates of the system for |a|, |Q| ≪ M [17]. In axial symmetry, a
simple choice of multiplier X = F(r)∂r allows to prove Morawetz estimates for
the system for |a| ≪M and |Q| < M [18].
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Gluing small black holes along timelike geodesics

Peter Hintz

Black holes are fundamental predictions of Einstein’s theory of General Relativity
(GR): they are spacetimes (M, g) which solve the Einstein vacuum equations

(1) Ric(g)− Λg = 0;

here Λ ∈ R is the cosmological constant. (For brevity, we only discuss the case
Λ ≥ 0 in this abstract.) Explicit solutions include the Schwarzschild spacetime

M = Rt × (2M,∞)× S
2, gm,0 := −

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2gS2 ,

where m > 0 is the mass of the black hole, and its generalizations—the Kerr and
(for Λ > 0) Kerr–de Sitter (KdS) spacetimes. We write gm,a for the Kerr metric
with subextremal specific angular momentum a, i.e. |a| < m.

Recent years have seen remarkable progress in the understanding of the linear
and nonlinear stability properties of these black hole solutions under small per-
turbations [HV18, ABBM19, HHV21, DHRT21, KS23, GKS22, She23]. A vague
formulation of the Final State Conjecture asserts that the evolution of arbitrary
(generic) initial data for the Einstein vacuum equations should, at late times, be
described by a collection of Kerr(–de Sitter) black holes moving away from each
other, plus gravitational radiation. The initial stages of the evolution are expected
to be very complicated (e.g. formation of black holes, black hole mergers). In this
context, black hole stability results can be thought of as describing the late stages
of the evolution of a single black hole, far from the influence of any other black
hole. In my talk, I describe very recent work [Hin23b, Hin24a, Hin24b] concern-
ing the rigorous construction and precise description of spacetimes describing the
merger of two black holes with extreme (i.e. very large) mass ratios. The main
result allows for the insertion of a small black hole along a timelike geodesic in
(almost) arbitrary spacetimes:

Theorem A (H.). Let (M, g) denote a smooth, connected, globally hyperbolic
spacetime solving Ric(g)−Λg = 0. Let C ⊂M be an inextendible timelike geodesic,
and let X ⊂M be a spacelike Cauchy hypersurface. Assume that

(I) X is noncompact, or
(II) (M, g) does not have nontrivial Killing vector fields in a neighborhood U

of the point p in X ∩ C.
Write (t, x) for Fermi normal coordinates around C. (In particular, g|(t,0) =

gMink := −dt2 + dx2.) Let K◦ ⊂ M be an open set with compact closure ly-
ing in the future of X. Then for all sufficiently small ǫ > 0, there exists a smooth
solution gǫ of (1) on K ∩Mǫ where Mǫ =M \ {|x| < ǫm} so that

(i) gǫ → g in C∞(V̄ ;S2T ∗M) for all open V ⊂ K with V̄ ∩ C = ∅;
(ii) near C, we have

(2) (gǫ)µν(t, x) = gµν(t, x) − gMink
µν + (gǫm,ǫa)µν(x) + (hǫ)µν(t, x),
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where (hǫ)µν → 0 as ǫ → 0 together with all derivatives along ∂t and

(ǫ2 + |x|2) 1

2 ∂x;
(iii) in the setting (II), we can moreover ensure that gǫ = g outside of the

domain of influence of Ū . This also holds when (M, g) is a neighborhood
of the domain of outer communications (DOC) of a subextremal Kerr(dS)
spacetime, with U being a connected set containing both the point p and a
point in the black hole interior.

The meaning of (2) is that gǫ arises from g by inserting a Kerr black hole with
small mass ǫm (and subextremal angular momentum ǫa) along C: the Minkowski
metric gMink is replaced by the Kerr metric gǫm,ǫa.

As a special case when Λ > 0, take (M, g) to be a neighborhood of the DOC
of a very slowly rotating unit mass KdS black hole, and C to be a maximal time-
like geodesic crossing the future event horizon of M in finite affine time. Split
M = Rt∗ × X where the level sets of t∗ are transversal to the future event and
cosmological horizon, and X = (r− − 3δ, r+ + 3δ) × S2 where r−, resp. r+ is the
radius of the event, resp. cosmological horizon, and δ > 0 is small. Apply then
Theorem A to the subset K = [0, T ]×r−1([r−−δ, r++δ]) where T is large enough
so that C has crossed into r < r− − 2δ by that time. Then on K, the metrics gǫ
describe the merger of a mass ∼ ǫ Kerr black hole with a unit mass KdS black
hole; and the initial data induced by gǫ at t∗ = T are ǫ-close to those of the origi-
nal KdS black hole. Therefore, the KdS stability result proved in [HV18] applies,
and shows that, in an appropriate gauge, gǫ is equal to a final KdS metric, with
parameters close to the original ones, plus an exponentially decaying remainder
term. In short, we have

a complete description of the merger of a very slight Kerr with a
unit mass KdS black hole, followed by the relaxation of the result-
ing single black hole to its stationary (KdS) state.

A similar construction, now using [KS23, GKS22, She23] and relying on part (iii)
of Theorem A, applies for Λ = 0 in the case that (M, g) is a neighborhood of the
DOC of a very slowly rotating Kerr black hole.

Theorem A is optimal in the following two senses. First, metrics with the
stated regularity (2) can only exist if C is a geodesic. This is a rigorous version
of the statement that small bodies must move along geodesics as a consequence
of the Einstein vacuum equations ; previous arguments to this effect are due to a
variety of authors including, in the recent literature, [EG04, GW08]. (The motion
of small bodies in GR was studied for an Einstein–Klein–Gordon toy model in
[Stu04, Yan14].) Second, if in (2) we tried to replace gǫm,ǫa(x) = gm,a(x/ǫ) by
ĝ(t, x/ǫ) for some another, possibly t-dependent, metric ĝ, then necessarily ĝ would
need to be asymptotically flat (so as to fit into M as a replacement for gMink

near C) and Ricci-flat (as a consequence of gǫ satisfying the field equations); and
for the purpose of guaranteeing the well-posedness of the evolution problem for
the Einstein equations, ĝ would need to contain any event horizons (if present).
According to the black hole uniqueness conjecture [CCH12, Conjecture 3.4], this



26 Oberwolfach Report 36/2024

forces ĝ to be the Kerr metric for each time t. One can moreover show that the
rescaled Kerr mass m must be constant, and a must be parallel, along C.

The only prior work on gluing constructions for many-black-hole spacetimes is
the author’s work [Hin21a] in which KdS black holes are glued into neighborhoods
of points on the conformal boundary of de Sitter space. Gluing methods have
previously been successful for constructing special types of initial data sets ; besides
the proof that the spacetime evolving from the many-Kerr initial data of [CD03]
has a disconnected black hole region as seen from a finite point along null infinity
[CM03], the control of spacetimes evolving from initial data gluing constructions
has, however, remained elusive. By contrast, Theorem A accomplishes a gluing
construction directly on the level of the spacetime metric.

References
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[HHV21] Dietrich Häfner, Peter Hintz, and András Vasy. Linear stability of slowly rotating
Kerr black holes. Inventiones mathematicae, 223:1227–1406, 2021.

[Hin21a] Peter Hintz. Black hole gluing in de Sitter space. Communications in Partial Differ-
ential Equations, 46(7):1280–1318, 2021.

[Hin23b] Peter Hintz. Gluing small black holes along timelike geodesics I: formal solution.
Preprint, arXiv:2306.07409, 2023.

[Hin24a] Peter Hintz. Gluing small black holes along timelike geodesics II: uniform analysis
on glued spacetimes. Preprint, arXiv:2408.06712, 2024.

[Hin24b] Peter Hintz. Gluing small black holes along timelike geodesics III: construction of
true solutions and extreme mass ratio mergers. Preprint, arXiv:2408.06715, 2024.

[HV18] Peter Hintz and András Vasy. The global non-linear stability of the Kerr–de Sitter
family of black holes. Acta mathematica, 220:1–206, 2018.

[KS23] Sergiu Klainerman and Jérémie Szeftel. Kerr stability for small angular momentum.
Pure and Applied Mathematics Quarterly, 19(3):791–1678, 2023.

[She23] Dawei Shen. Construction of GCM hypersurfaces in perturbations of Kerr. Annals
of PDE, 9(1):1–112, 2023.



Mathematical Aspects of General Relativity 27

[Stu04] David M. A. Stuart. Geodesics and the Einstein nonlinear wave system. Journal de
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Radiation in General Relativity

Sven Hirsch

(joint work with Yiyue Zhang)

In Special Relativity, massless objects are characterized as either vacuum states or
as radiation propagating at the speed of light. We confirm in [1] that an analogous
result also holds in General Relativity:

Theorem 1. Let (Mn, g, k) be a C2,a-asymptotically flat initial data set with decay
rate q ∈ (n−2

2 , n−2] satisfying the dominant energy condition. Suppose that Mn is
spin and that E = |P |. Then (Mn, g) isometrically embeds into Minkowski space

of a pp-wave spacetime (M
n+1

, g) with second fundamental form k.

Here Minkowski space models vacuum and a pp-wave models radiation. More

precisely, a Lorentzian manifold (M
n+1

, g) is called a pp-wave spacetime ifM
n+1

=
Rn+1 and

g = −2dudt+ Fdu2 + gRn−1 ,

where F is a function on Rn = Rn−1×R, independent of t, which is superharmonic
on Rn−1 × {u} for all u ∈ R.
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Extremal Black Hole Weather

Stefan Hollands

Highly spinning Kerr black holes are known to possess a tower of long-lived (“zero
damped”) quasi normal modes (QNMs). Conveniently denoting the extremality
parameter of the black hole by

(1) ǫ =
r+ − r−
2r+

> 0,

where r+, r− are the radii of the outer and inner horizons, the long-lived QNM
frequencies scale as ω ∼ [m− iǫ(N + hℓm)]/(2r+), where m, ℓ are standard labels
of the solution to the angular Teukolsky equation, h is a parameter called the
conformal weight, and N = 0, 1, 2, . . . is an additional label called the overtone
number. The mode label m is an integer, which, as has been observed previously,
is opening up the possibility of a (near) resonant interaction between long-lived
QNMs once non-linear effects in perturbation theory are taken into account. It
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has therefore been speculated, see e.g., [1, 2], that some interesting energy transfer
processes between modes of different energy might occur, possibly leading to a sort
of cascade. So far, however, it has been impossible to analyze this idea concretely
beyond the highly simplified analysis of [1] which does not provide a self-consistent
framework of the non-linear effects, does not consider the Einstein equations but a
linear scalar model equation on a perturbed background, and furthermore restricts
attention to a finite number (triplet) of modes, which is hard to justify if all modes
are resonant.

In this work [4], we develop this idea in a new framework in the context of the
Einstein equations, keeping the leading non-linearities (“three wave interactions”).
Our framework is partly based on prior work [2] showing that, up to a so-called
“corrector tensor” which can be dealt with straightforwardly, non-linear metric
perturbations of Kerr can be written in so-called “reconstructed form”, i.e. in
terms of a Hertz potential, Φ, solving a sourced Teukolsky equation. Starting
from this formalism, we have derived [4] a dynamical system for the QNM mode
amplitudes cq(t), q = (N, ℓ,m), assuming that

(2) Φ =
∑

q

cq(t)Υq

can be accurately described by a superposition of QNMs with time-dependent
coefficients cq. Our analysis of this dynamical system then proceeds by going
to the so-called nNHEK approximation of the near zone of the near extremal
(ǫ ≪ 1) Kerr geometry. We also consider a range of QNM parameters such that
ℓ ≫ m, in which case the long-lived QNM spectrum becomes doubly resonant,
ω ∼ [m− iǫ(N + ℓ+1)]/(2r+). Using also prior work on “QNM mode projection”
[3], it turns out that in these limits, our dynamical system simplifies drastically,
being of the schematic form

(3) ċ1 =
∑

2,3

δℓ1,ℓ2+ℓ3(δm1,m2+m3
U123c2c3 + δm1,−m2+m3

V123c
∗
2c3).

Here, the overdot indicates a time derivative with respect to a “slow time” (given
by ǫ times Boyer-Lindquist time), And U123, V123 are certain homogenous functions
of ℓ1, ℓ2, ℓ3 that are of the order O(σ) in the approximation considered when m1 =
0. Furthermore, V123 vanishes unless one of the angular momenta is small. From
this system, we pass to a phase randomized version of the system in the spirit of
[5], assuming that, the QNM amplitude ensemble average behaves as

(4) 〈c∗q1cq2〉 = δq1q2nq1 ,

imposing conditions on the higher order cumulants identical to [5]. From our dy-
namical system, and a corresponding dynamical system for the “number densities”
nq, one can draw the conclusions that, in the approximation considered [4]:

(1) The QNM amplitudes associated with the axisymmetric mode are essen-
tially constant on the time-scale 1/ǫ.

(2) The dynamical system possesses an equilibrium solution (on the time-scale
1/ǫ) neq

Nℓm sharply peaked at m = N = 0, with a power-law tail in ℓ.
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1) and 2) indicate that a kind of inverse cascade might be possible, from high to
low values of m, hence a kind of “weather of QNMs” around the black hole.
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Linear Stability of Schwarzschild-Anti de Sitter spacetimes

Gustav Holzegel

(joint work with Olivier Graf)

The study of stability of black hole spacetimes is a classical subject in general rel-
ativity. While satisfactory non-linear stability results have recently been obtained
for Schwarzschild and slowly rotating Kerr black holes both in the case of vanish-
ing [2, 3] and positive cosmological constant [9], the case of negative cosmological
constant (which is that of asymptotically anti-de Sitter (AdS) black holes) is much
less understood. The PDE nature of the problem is quite different as the presence
of the conformal boundary requires studying a boundary initial value problem with
the boundary located at infinity [4].

About ten years ago, in joint work with Jacque Smulevici [7, 8] we established
the following result:

Theorem 1. Let α < 9
4 . Solutions to the linear wave equation �gψ + αψ = 0

for (M, g) the exterior of a Kerr-AdS black hole with parameters satisfying the
Hawking-Reall bound, and Dirichlet boundary conditions for ψ imposed at the con-
formal boundary, decay inverse logarithmically and not better in time.

This slow decay of waves on asymptotically AdS black holes is rooted in a stable
trapping phenomenon for these spacetimes and lead to the conjecture that these
spacetimes should be non-linearly unstable. See the related talk of Christoph
Kehle for recent progress on non-linear instability.

In joint work with Olivier Graf [5, 6] we recently established that the slow
logarithmic decay remains valid for the full linearised Einstein equations:

Theorem 2. Solutions to the linearisation of the Einstein equations Ric(g) = Λg
with Λ < 0 around a Schwarzschild-AdS metric arising from regular initial data
and with standard Dirichlet-type boundary conditions imposed at the conformal
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boundary (inherited from fixing the conformal class of the non-linear metric) re-
main globally uniformly bounded on the black hole exterior and in fact decay inverse
logarithmically in time to a linearised Kerr-AdS metric.

The proof employs a double null gauge and exploits a hierarchical structure
of the equations of linearised gravity in this gauge, a strategy analogous to the
corresponding result in the asymptotically flat case [1]. In particular, a key step is
to first establish boundedness and inverse logarithmic decay results for the Teukol-
sky variables, which – contrary to the asymptotically flat case – now couple to one
another at the boundary. (This is a consequence of fixing the conformal class of
the non-linear metric on the boundary, which is the perhaps most natural bound-
ary condition in this problem.) To prove decay for the Teukolsky quantities, we
rely on (1) a physical space transformation theory between the Teukolsky equa-
tions and the Regge-Wheeler equations on Schwarzschild-AdS backgrounds (which
requires the construction of new quantities and coercive energies) and (2) novel
energy and Carleman estimates handling the coupling of the two Teukolsky equa-
tions through the boundary conditions thereby generalising earlier work of [7] for
the covariant wave equation. Specifically, we also produce purely physical space
Carleman estimates.

In a second step, the aforementioned hierarchical structure in the system of
linearised Einstein equations in double null gauge is exploited by integrating (red-
shifted) transport equations, which inherit the decay established for the Teukolsky
quantities. Contrary to the asymptotically flat case [1], addition of a residual
pure gauge solution to the original solution is not required to prove decay of all
linearised null curvature and Ricci coefficients. Roughly speaking this is because
the non-decaying quantities in the asymptotically flat case, now inherit decay
from the decaying quantities through the boundary conditions relating the two
quantities. However, one may in addition normalise the solution at the conformal
boundary to be in standard AdS-form by adding such a pure gauge solution, which
is constructed dynamically from the trace of the original solution at the conformal
boundary and quantitatively controlled by initial data.

Applications of these results to the rigidity problem for black holes and gener-
alisations to the Kerr-AdS case will be discussed elsewhere.
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Local structure theory of Einstein manifolds with boundary

Lan-Hsuan Huang

(joint work with Zhongshan An)

The existence of Einstein metrics and the structure of their moduli space are cen-
tral topics in geometry and theoretical physics. While significant progress has
been made for closed or complete manifolds without boundary, understanding the
moduli space of Einstein metrics, particularly in higher dimensions, remains chal-
lenging. A potential step toward this understanding is to study Einstein metrics
on compact manifolds with boundary, focusing on the boundary value problem. A
natural choice of boundary condition is the induced metric. However, this bound-
ary condition is not elliptic in general [3, 10]. M. Anderson proposed an elliptic
boundary condition by specifying the conformal geometry of the boundary and the
mean curvature [3, 4]. For a compact Riemannian manifold (Ω, g) whose boundary
is Σ with induced metric g⊺, we denote the boundary mean curvature by Hg and
the (pointwise) conformal class of (Σ, g⊺) by [g⊺]. The pair ([g⊺], Hg) is referred
to as the Anderson boundary data of (Ω, g). We investigate the moduli space of
(Riemannian) Einstein metrics under this boundary condition in dimensions three
and higher [2].

The Anderson boundary condition has been studied in various contexts. P. Gi-
anniotis [8] established short-time existence and uniqueness of the Ricci-DeTurck
flow with prescribed Anderson boundary data. Z. An and Anderson have ex-
amined the well-posedness of the initial boundary value problem for Lorentzian
Einstein metrics with a generalized form of Anderson boundary data in the context
of Cauchy problem [1]. There is also growing interest in Anderson boundary data
due to its potential applications in Euclidean quantum gravity (see [10, 11, 9]).
Another motivation to study Anderson boundary data is its possible connection to
the existence of conformally compact Einstein metrics with prescribed conformal
infinity boundary. There are some partial existence results (see, for example, the
survey [7]). Our boundary value problem might be viewed as an analogy on a
bounded region.

Let n ≥ 3, and let Ω be a compact, connected n-dimensional manifold with a
smooth nonempty boundary Σ. Assume the relative fundamental group π1(Ω,Σ) =
0. For k ≥ 2 and α ∈ (0, 1), we denote the space of Ck,α Riemannian metrics on
Ω by Mk,α(Ω). We focus on the following subsets:
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• The subset consisting of Einstein metrics with the fixed Einstein constant

Mk,α
Λ (Ω) =

{
g ∈ Mk,α(Ω) : Ricg = (n− 1)Λg

}
.

• The subset consisting of negative Einstein metrics

Mk,α
− (Ω) =

{
g ∈ Mk,α(Ω) : Ricg = λg for some λ < 0

}
.

LetDk+1,α(Ω) be the space of Ck+1,α diffeomorphisms of Ω that restrict to the iden-

tity on Σ. Both the moduli spaces Mk,α
Λ (Ω)/Dk+1,α(Ω) or Mk,α

− (Ω)/Dk+1,α(Ω)
are infinite-dimensional smooth Banach manifolds.

For each fixed k, α, define the boundary map Π : Mk,α(Ω)/Dk+1,α(Ω) →
Sk,α
1 (Σ)× Ck−1,α(Σ) by

Π(g) = ([g⊺], Hg)

where Sk,α
1 (Σ) denotes the space of conformal classes [γ] of Ck,α Riemannian met-

rics on Σ. We consider the boundary map restricted to either the moduli space

Mk,α
Λ (Ω)/Dk+1,α(Ω) or Mk,α

− (Ω)/Dk+1,α(Ω), and the boundary map Π is smooth.
Since an Einstein metric is of constant sectional curvature in dimension 3 and

thus is more rigid, Anderson made the following conjecture.

Conjecture 1 (Anderson [5, p. 2]). Let Ω be a 3-dimensional manifold with
smooth boundary Σ and π1(Ω,Σ) = 0. For each fixed Λ, the boundary map

Π : Mk,α
Λ (Ω)/Dk+1,α(Ω) → Sk,α

1 (Σ)× Ck−1,α(Σ)

is regular for generic metrics.

Anderson noted that the genericity condition cannot be removed [6]. Specifi-
cally, a round ball is a critical point of Π. We confirm Conjecture 1 in a stronger
form, proving that Π is generically a local diffeomorphism.

Theorem 1. Let Ω be a 3-dimensional manifold with smooth boundary Σ and
π1(Ω,Σ) = 0.The boundary map Π is a local diffeomorphism on an open dense
subset.

For higher-dimensional manifolds, we introduce non-degenerate boundary con-
ditions and prove that the boundary map is regular on an open dense subset
under these conditions. We refer to [2, Definition 1.1] for the definition of the
non-degenerate boundary conditions and just note that in special cases that the
induced scalar and mean curvatures RΣ, Hg on Σ are non-zero constants, they
become equivalent to the induced metric g⊺ being a strictly stable critical point of
the normalized total scalar curvature functional among non-homothetic conformal
transformations on the boundary.

We first consider the space of Ricci flat metrics Mk,α
0 (Ω). Define M̂k,α

0 (Ω) as

the open subspace of Mk,α
0 (Ω) where the boundary is non-degenerate.

Theorem 2. Let n ≥ 4 and Ω be an n-dimensional manifold with smooth bound-

ary Σ satisfying π1(Ω,Σ) = 0. The boundary map Π : M̂k,α
0 (Ω)/Dk+1,α(Ω) →

Sk,α
1 (Σ)× Ck−1,α(Σ) is a local diffeomorphism on an open dense subset.
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Consider the space of negative Einstein metrics Mk,α
− (Ω). Define M̂k,α

− (Ω) as

the open subspace of Mk,α
− (Ω) where the boundary is non-degenerate.

Theorem 3. Let n ≥ 4 and Ω be an n-dimensional manifold with smooth bound-

ary Σ satisfying π1(Ω,Σ) = 0. The boundary map Π : M̂k,α
− (Ω)/Dk+1,α(Ω) →

Sk,α
1 (Σ)× Ck−1,α(Σ) is regular on an open dense subset.
Furthermore, at a regular point g, for (γ, φ) sufficiently close to its Anderson

boundary data ([g⊺], Hg), there exists a family of Einstein metrics gs, for |s| small,
such that gs realizes the same Anderson boundary data (γ, φ).

The Einstein constant of gs depends on the volume of gs, which we do not
have control over. As a result, gs might have the same Einstein constant for
different values of s, preventing us from improving the boundary map Π to a
local diffeomorphism when restricted to the smaller space with a fixed Einstein
constant. This subtlety differentiates negative Einstein metrics from the Ricci
flat case. It remains an open question whether a similar result holds for positive
Einstein constants.
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Turbulent instabilities for quasilinear waves

on Schwarzschild–AdS black holes

Christoph Kehle

(joint work with Georgios Moschidis)

In the presence of a negative cosmological constant Λ < 0, the Einstein vacuum
equations take the form

(1) Ric[g] = Λg

and the Schwarzschild–Anti-de Sitter (AdS) metrics

(2) gM = −
(
1− 2M

r
− 1

3
Λr2

)
dt2+

(
1− 2M

r
− 1

3
Λr2

)−1

dr2+r2
(
dθ2+sin2 θ dϕ2

)

give rise to a 1-parameter family, parametrized byM ≥ 0, of spherically symmetric
solutions to (1). ForM = 0, the metric (2) reduces to the Anti-de Sitter spacetime,
the maximally symmetric solution to (1). For M > 0, the metric describes a black
hole spacetime with the event horizon located at r = r+, the positive root of
1 − 2M

r − Λ
3 r

2. The cosmological constant Λ introduces a length scale which we
assume without loss of generality to be Λ = −3. A conformal boundary I can be
naturally attached to Schwarzschild–AdS at r = ∞, with I having the conformal
structure of a timelike hypersurface diffeomorphic to R×S2. Since the boundary I
is timelike, boundary conditions must be imposed to ensure well-posedness. In the
following, we will only consider the case of reflecting Dirichlet boundary conditions
imposed at I.

In the remarkable works [7, 8] Moschidis showed that the Anti-de Sitter space-
time is unstable for the Einstein-null dust system and the Einstein–Vlasov sys-
tem. He showed that there exist arbitrarily small spherically symmetric perturba-
tions of the exact AdS initial data giving rise to solutions which eventually form
Schwarzschild–AdS black holes. While within spherical symmetry the exterior re-
gion of Schwarzschild–AdS is stable [3], the stability problem is much more delicate
for non-spherically symmetric perturbations. Indeed, even solutions to the linear
Klein–Gordon equation

(3) �gMφ+ 2φ = 0

merely decay at an inverse logarithmic rate [4]. Moreover, in [5] this decay rate
has been proven to be sharp using high-frequency quasimode solutions supported
near I. The existence of such quasimodes is intimately tied to the presence of
stably trapped null geodesics near I. This weak stability and the sharp decay
were generalized to the full system of linearized gravity [1, 2], and we refer to the
talk of Gustav Holzegel for a more detailed discussion.

Motivated by the question of the nonlinear stability of the Schwarzschild–AdS

exterior as a solution to (1), we study solutions φ : M(M)
ext → C to the initial-

boundary value problem for the cubic quasilinear defocusing wave equation on the
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exterior region M(M)
ext = Rt × (r+,∞)r × S2

θ,ϕ of Schwarzschild–AdS:

(4)





�gMφ+ 2φ−N [φ] = 0,

(φ, ∂tφ)|t=0 = (f0, f1),

rφ|r=∞ = 0,

where

N [φ] = r−6
(
|∂tφ|2φ+ |φ|2∂2t φ

)
.

The nonlinearityN [φ] can be seen as a defocusing quasilinear cubic interaction and
the weight r−6 arises as the natural r-weight for cubic terms by a formal analysis of
(1) in generalized harmonic coordinates. Our main result below establishes a proof
of principle that Schwarzschild–AdS exhibits the phenomenon of weak turbulence,
namely the growth of higher-order Sobolev norms as a consequence of nonlinear
mode interactions.

Theorem 1 (K.–Moschidis [6], forthcoming). For any s > 0 sufficiently large
and any ε > 0, there exists an open and dense set Jε,s ⊆ (0,∞) such that the
following statement holds: For any black hole mass parameter M ∈ Jε,s, there
exists a smooth initial data set (f0, f1) for the initial–boundary value problem (4)
with

‖f0‖Hs + ‖f1‖Hs−1 ≤ ε and suppf0, suppf1 ⊂ {r > 3M}
and a time T1 > 0 such that the smooth solution for (4) exists for t ≤ T1 and
satisfies

‖φ|t=T1
‖Hs >

1

ε
.

The Sobolev norm growth instability of Theorem 1 is a consequence of non-
linear quasimode interactions and energy transfer from low to high frequencies.
More precisely, by fine-tuning the Schwarzschild–AdS mass parameter M , we can
ensure that three dominant high-frequency quasimodes φ0, φ+, φ− have resonant
frequency space (and physical space) support while at the same time being quanti-
tatively non-resonant to all other quasimodes. As a result of this, we show that for
initial data (f0, f1) supported on these dominant quasimodes, the corresponding
solution to (4) remains suitably close up to time t = T1 to the sum of dominant
modes

(5) φk(t, r, θ, ϕ) =
∑

k∈{0,+,−}

ak(t)

r
eimkϕRnkℓk(r)Ymkℓk(θ)e

±kiωkt,

where the weights ak(t) satisfy a nonlinear ODE system. In addition to ensuring
the resonant conditions, the frequencies ω0, ω+, ω− are chosen such that 1 ≪
|ω±|
|ω0|

≪ L holds, where |ω0|, |ω+|, |ω−| ∼ L≫ 1. We show that the initial data can

be chosen such that the solution of the ODE system for ak(t) has the property
that mass is transferred from a0(t) to a+(t) and a−(t) and thereby causing the
Sobolev norm to grow. To close our argument, we have to estimate the error
term, i.e. the difference between the approximate solution consisting of weighted
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quasimodes and the true solution. For this, we use energy estimates based on the
redshift and ∂t multiplier. We also introduce the helical vector field

V =
(
1 + L−1

)
∂t + ∂ϕ

which has good commutation properties when acting on functions with physical
space and frequency support as in (5).

Our proof also extends to other types of nonlinearities satisfying the null condi-
tion but does not apply to power nonlinearities such as N (φ) = |φ|2φ. It would be
interesting to identify a suitable structure in the nonlinearity which ensures that
the proof method applies. Another interesting problem is reducing the value of s
in Theorem 1 because a value of s = 3/2 could be interpreted as an indication of
trapped surface formation for (1).
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BKL bounces outside homogeneity

Warren Li

Due to the Hawking–Penrose singularity theorems, see for instance [1], it is known
that “singularities” are a robust prediction of Einstein’s equations on a spacetime
(M,g):

(1) Ricµν − 1

2
Rgµν = 2Tµν

However, it remains a wide open problem to understand the dynamical description
of spacetimes near their singularities.

One approach towards this goal in the physics literature is the heuristics of
Belinski, Khalatnikov and Lifshitz (BKL), who proposed the following leading
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order ansatz for near-singularity solutions of the Einstein equations (in vacuum),
based on the Kasner metric discovered in [2]:

(2) g = −dt2 +
3∑

I=1

t2pI (x)ωI(x) ∧ ωI(x) + · · · ,

where the spacetime manifold is M = {(t, x) : t ∈ (0, T ), x ∈ Σ3}, and the pI
and ωI are functions and one-forms on the spatial slices Σ. In [3], via a formal
power series expansion, it is suggested that (2) is a valid ansatz provided: (1) the
Kasner relations

∑
pI(x) =

∑
p2I(x) = 1 hold, as well as asymptotic momentum

constraints and (2) whenever pI < 0, the associated one-form ωI is integrable in
the sense of Frobenius: ωI ∧ dωI = 0. Furthermore, in this case the metric (2) is
singular in the sense that the Kretschmann scalar blows up as O(t−4).

Since the Kasner relations force pI ≤ 0 for some I ∈ {1, 2, 3}, it is exactly this
condition (2), along with a function counting argument, that leads the authors
of [3] to suggest that singularities of the form (2) are non-generic i.e. are not in
one-to-one correspondence with Cauchy initial data for the Einstein equations.
This was revisited together with Belinski in [4], where they propose that generic
spacelike singularities are such that (this is often called the BKL conjecture):

(1) (AVTD behaviour) For two different points on the singularity, say (0, x1),
(0, x2) ∈ ∂M with x1, x2 ∈ Σ, the dynamics in the future of (0, x) and
the future of (0, y) quantitatively decouple in the sense that close to the
singularity: |∂x-derivatives| ≪ |∂t-derivatives|.

(2) (Mixmaster) As a result, the dynamics in the future of any (0, x) are well-
approximated by that of a spatially homogeneous spacetime, and thus by
a finite dimensional, autonomous system of ODEs. All fixed points in
this ODE system are unstable, and general orbits of this ODE system
are approximately a cascade of heteroclinic orbits (called BKL bounces)
joining pairs of these fixed points.

Treating the exponents pI as part of the ODE variables (so that now they also
depend on time), these heteroclinic orbits change the pI via the Kasner map: when
p1 < 0:

(3) p1 7→ ṕ1 = − p1
1 + 2p1

, p2 7→ ṕ2 = −p2 + 2p1
1 + 2p1

, p3 7→ ṕ3 = −p3 + 2p1
1 + 2p1

.

The question remains to understand the extent to which BKL’s heuristics apply
in the rigorous study of solutions to Einstein’s equation (1) arising from (regular)
initial data away from the singularity. There are some results in the spatially
homogeneous class, where the ODE system is exact, see [5, 6, 7]. The difficulty
in the non-homogeneous case is that one must prove the AVTD behaviour in the
process of showing singularity formation.

One setting in which this is better understood is the Einstein–scalar field system
where φ : M → R solves �gφ = 0 and Tµν = ∇µφ∇νφ − 1

2g(∇φ,∇φ)gµν .
According to [8], here the ansatz (2) is supplemented with the leading order ansatz
φ = A log t+ · · · , and the Kasner relations become

∑
pI =

∑
p2I + 2A2 = 1. The
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benefit is that for A 6= 0 one can have min pI > 0, and thus one does not require the
additional integrability assumption for ωI . In the ODE picture, this corresponds
to the existence of stable fixed points in the dynamical system; in fact generic orbits
will converge to one of these points. Mathematically, there are recent results such
as:

Theorem 1 (Fournodavlos–Rodnianski–Speck [9]). Consider initial data for the
Einstein–scalar field system which are perturbations of that of a subcritical general-

ized Kasner spacetime (these spacetimes have Σ = T3, g = −dt2+∑3
i=1 t

2pi(dxi)2

and φ = A log t with pi, A constants satisfying
∑
pi =

∑
p2i +2A2 = 1 and pi > 0).

Then the maximal past development arising from such data terminates in a Big
Bang singularity in the sense that near the singularity one can foliate by spacelike
hypersurfaces Σt, t > 0 such that the Kretschmann scalar is O(t−4) on Σt, and
moreover the spacetime exhibits AVTD behaviour and g roughly takes the form (2)
near t = 0.

See the report of O. Petersen for another recent extension of this theorem. The
major difficulty of these results is proving the AVTD behaviour; in particular in
the proof of AVTD it is essential that the subcritical generalized Kasner spacetimes
correspond to stable fixed points of the associated ODE system. To get closer to
the full BKL conjecture the next step is to prove AVTD behaviour even in the
presence of nonlinear BKL bounces.

We now introduce our new results, which apply to solutions of the Einstein
equations in various symmetry classes. The first concerns the Einstein vacuum
equations in Gowdy symmetry, where the metric takes the form:

(4) g = −t−1/2eλ/2(−dt2 + dθ2) + t
[
eP (dθ +Qdδ)2 + e−Pdδ2

]
,

where λ, P,Q are functions of (t, θ) ∈ (0,+∞) × S
1 and the Einstein vacuum

equations take the form of a (semilinear) wave-transport system for P,Q, λ.
According to the monumental Strong Cosmic Censorship result of Ringström in

Gowdy symmetry [10], for an open and dense set of initial data, solutions to these
equations exist up to t = 0 and moreover are such that for all but finitely many
θ ∈ S1, one has the convergence −t∂tP (t, θ) → V (θ) ∈ (0, 1) as t → 0. Further,
this roughly corresponds to Kasner exponents:

(5) p1(θ) =
V 2 − 1

V 2 + 3
, p2(θ) =

2(1− V )

V 2 + 3
, p3(θ) =

2(1 + V )

V 2 + 3
.

Note that the condition V < 1 arises since the 1-form ω2 = dθ + Qdδ is not
(generically) integrable in the sense of Frobenius and one therefore requires p2(θ) >
0.

However, this result concerns only the eventual asymptotics, and leaves open
the question of the intermediate dynamics that could occur between initial data at
t = t0 > 0 and the eventual singularity at t = 0. Our new result is the following,
exhibiting the existence of Gowdy spacetimes with (a) up to one BKL bounce
along causal curves but (b) AVTD behaviour in spite of such bounces.
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Theorem 2 (L.[11]). There exists an open set of smooth initial data for the Gowdy
symmetric Einstein vacuum equations at t = t0 satisfying:

V0(θ)
.
= −t∂tP (t0, θ) ∈ (0, 2),

such that t0 is sufficiently small, then: The solution exists in t ∈ (0, t0) and that
for “most” θ ∈ S1, one has the convergence:

−t∂tP (t, θ) → V́ (θ) ≈ min{V0(θ), 2− V0(θ)} as t→ 0,

noting that via (5), the transition V (θ) 7→ 2−V (θ) is exactly the Kasner map (3),
The solution remains AVTD in t ∈ (0, t0), in the sense that for instance:

|∂θP |+ |t∂t∂θP |+ · · · . t−σ for some 0 < σ < 1.

We remark that we call this last point AVTD because while a ∂t-derivatives
costs an entire power of t−1, a spatial ∂θ-derivative costs only t

−σ. As well as this
result in Gowdy symmetry, we prove a similar result for the spherically symmetric
(or more generally surface symmetric) Einstein–Maxwell–scalar field system in the
gauge g = −e2µdr2 + e2λdx2 + r2dσS2 . Here, the role of −t∂tP is replaced by the
derivative r∂rφ of the scalar field.

Theorem 3 (L.[12]). There exists an open set of smooth initial data for the spher-
ically symmetric Einstein–Maxwell–scalar field equations at r = r0 satisfying:

Ψ0(θ)
.
= r∂rφ(r0, x) ∈ (0,+∞),

such that r0 is sufficiently small, then: The solution exists in r ∈ (0, r0) and that
for x ∈ S1, one has the convergence:

r∂rφ(r, x) → Ψ́(x) ≈ max{Ψ0(x),Ψ
−1
0 (x)} as r → 0,

and the transition Ψ(x) 7→ Ψ−1(x) is exactly the Kasner map (3), The solution
remains AVTD in t ∈ (0, t0), in the sense that for instance:

|∂xµ|+ |∂xφ|+ |r∂r∂xφ|+ · · · . t−σ for some 0 < σ < 1.

While Theorem 1 and Theorem 2 apply to symmetric systems that reduce to
1 + 1-dimensional PDEs, the method of proof is insensitive to the dimension and
one would hope that in future similar results can apply to full 1 + 3-dimensional
problems.
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Intrinsic rigidity of extremal horizons and black hole uniqueness

James Lucietti

(joint work with Alex Colling, Maciej Dunajski, David Katona)

The no-hair theorem states that, under certain global assumptions, any stationary
(analytic) vacuum spacetime that contains a black hole must be a Kerr solution [1].
This celebrated result rests on several remarkable theorems that constrain the
topology, symmetry and geometry of such black hole spacetimes. Notably, Hawk-
ing’s rigidity theorem establishes that the event horizon of a stationary analytic
spacetime must be a Killing horizon, and if the black hole is rotating, the space-
time is axially symmetric [2]; this has subsequently been generalised to extremal
black holes and to higher dimensional spacetimes [3, 4, 5].

On the other hand, the Einstein equation restricted to a Killing horizon implies
that the intrinsic geometry decouples from the extrinsic geometry precisely if the
horizon is extremal (i.e. the surface gravity vanishes). The intrinsic geometry of a
cross-section of an extremal horizon in an (n+ 2)-dimensional Einstein spacetime
corresponds to a quasi-Einstein structure: an n-dimensional manifold M (a cross-
section of the horizon), a Riemannian metric g onM and a vector field X ∈ X(M),
which satisfy a quasi-Einstein equation,

(1) Ric(g) =
1

2
X♭ ⊗X♭ − LXg + Λg ,

where Ric(g) is the Ricci tensor of g, LX is the Lie-derivative, the one-form X♭ is
the g-dual of X and Λ ∈ R is the cosmological constant [6]. This quasi-Einstein
structure also describes the intrinsic geometry of extremal isolated horizons [7].
It is also equivalent to the Einstein equation for the near-horizon geometry, an
associated (n + 2)-dimensional spacetime that can be obtained by a near-horizon
scaling limit of the original spacetime [6]. Motivated by applications to black hole
spacetimes, we will assume M is a compact manifold (without a boundary). We
refer to a quasi-Einstein structure as trivial if X vanishes identically.

Numerous classification results have been obtained for the quasi-Einstein equa-
tion (1) under a variety of symmetry assumptions [6]. For instance, solutions with
X♭ closed, which is equivalent to the near-horizon geometry being static, are triv-
ial if n = 2 (four spacetime dimensions), or either trivial or the product of a circle
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with an Einstein metric if Λ ≤ 0 [8, 9, 10]. Interestingly, if Λ ≥ 0 and n ≥ 3, the
classification of static near-horizon geometries remains an open problem.

Perhaps the most notable result is that the general solution to (1) on M = S2

that admits an axial Killing field (which preserves X) is isometric to the horizon
geometry of the extremal Kerr black hole [11, 7, 12]. It has been an open problem to
determine whether spherical topology of M together with the equations (1) imply
the existence of a Killing vector field. If so, this would be an intrinsic version of
Hawking’s rigidity theorem; furthermore, it would imply that all solutions to (1)
on M = S2 arise from an extremal Kerr horizon. Recently, we have solved this
problem and, in fact, proven much more: the existence of a Killing field holds in
any dimension and also with a cosmological constant, as follows.

Theorem 1 ([13]). Any n-dimensional compact Riemannian manifold (M, g) with
a non-gradient vector field X that satisfies (1), must admit a Killing vector field
K such that [K,X ] = 0.

The proof makes use of the existence of a positive function Γ > 0 that ensures
that K♭ := ΓX♭+dΓ is divergence-free, together with a remarkable tensor identity
which reduces the g–norm |LKg|2 to a total divergence. Thus its integral over a
closed manifold M vanishes which implies that K is a Killing vector field. It is
worth emphasising that the validity of the identity is based on several cancellations
which depend crucially on the precise numerical coefficient of the term quadratic
in X of the quasi-Einstein equation (1). The identity then implies that the vector
field X is also invariant under the Killing field provided Λ ≤ 0; for Λ > 0 a further
argument employing the Fredholm alternative establishes this [14] (recently a more
general identity which unifies these proofs has been derived [15]). The symmetry
inheritance of X is significant because it implies that K extends to a Killing field
of the associated spacetime near-horizon geometry.

Theorem 1 is complementary to the aforementioned classification of static hori-
zons which correspond to X♭ closed. Furthermore, taken together with triviality of
solutions to (1) on higher genus surfaces M (which by the Gauss-Bonnet theorem
can only occur for Λ < 0) [16], this establishes the following.

Corollary 1. The extremal Kerr horizon, possibly with cosmological constant, is
the unique non-trivial solution to (1) on a compact surface M .

This completes the classification of extremal horizons with a compact cross-
section, and their near-horizon geometry, in four-dimensional vacuum spacetimes.
Recently, an analogous result has been proven for Einstein-Maxwell theory [17].

An important application of the classification of extremal horizons is to the clas-
sification of extremal black hole spacetimes [6]. In the presence of a cosmological
constant, analogues of the no-hair theorem are not known (even for non-extremal
black holes), apart from a few limited cases. For instance, a uniqueness theorem
for non-extremal Schwarzschild de Sitter black holes has been established under
an assumption on the level sets [18]; remarkably, numerical evidence has been pre-
sented for the existence of static binary black holes in de Sitter that evades this
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assumption [19], so even the classification of static black holes in de Sitter is incom-
plete. On the other hand, for negative cosmological constant, the uniqueness of
spherical Schwarzschild-AdS remains a notable open problem. In the extremal case
such classification problems should be more tractable due to the above uniqueness
theorems for extremal horizons, which are also valid with a cosmological constant.
To this end, we have established the following theorem.

Theorem 2 ([20]). Any d ≥ 4-dimensional analytic Einstein spacetime with Λ >
0, that contains a static extremal Killing horizon with a maximally symmetric
compact cross-section, must be locally isometric to the extremal Schwarzschild de
Sitter spacetime or its near-horizon geometry (the Nariai solution).

The proof is elementary and starts by noting that the first transverse derivative
of the metric at the horizon is unique (up to scale) and if non-vanishing corresponds
to the extremal Schwarzschild-de Sitter solution [21]. We showed this persists for
the second transverse derivative and via an inductive argument for all transverse
derivatives. The key fact is that the nth transverse derivative of the Einstein
equation reduces to an eigenvalue equation of the laplacian, on a cross-section
of the horizon M = Sd−2, for the traceless part of the nth transverse derivative
of the metric, which is sourced by the lower order transverse derivatives of the
metric. If Λ > 0 these eigenvalues are strictly negative and hence the solution
is unique at each order. Therefore, for analytic spacetimes, the full metric is
determined by the transverse derivatives of the metric at the horizon. This proof
was inspired by a similar analysis due to Isenberg and Moncrief which showed
that four-dimensional vacuum spacetimes with an extremal toroidal horizon must
be a plane wave spacetime [22]. If Λ < 0 an analogous result can be established
for the extremal hyperbolic Schwarzschild-AdS horizon where M is a hyperbolic
surface, however, the corresponding eigenvalues are now positive so there are other
solutions at non-generic points in the moduli space of hyperbolic surfaces; it would
be interesting to determine the spacetime interpretation of these solutions.

Theorem 2 is the first uniqueness theorem for extremal black holes with a cosmo-
logical constant. In contrast to typical black hole uniqueness theorems, this result
does not make any global assumptions on the spacetime such as asymptotics or
topology. Indeed, somewhat surprisingly, the full spacetime is determined by the
intrinsic geometry of the extremal horizon! Furthermore, since d = 4 static near-
horizon geometries with compact cross-sections are unique [8], Theorem ?? implies
that any analytic spacetime containing a static extremal horizon with a compact
cross-section, must be (locally) isometric to an extremal Schwarzschild-de Sitter
spacetime or its near-horizon geometry. This solves the classification problem for
d = 4 static extremal vacuum black holes in de Sitter (assuming analyticity); in
particular, it rules out the possibility of extremal multi-black holes in de Sitter.
An analogous result has been proven for four-dimensional Einstein-Maxwell the-
ory [23]. It would be interesting to determine if such transverse uniqueness results
persist for the extremal Kerr-(A)dS horizons.
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[1] P. T. Chruściel and J. Lopes Costa, On uniqueness of stationary vacuum black holes, As-
terisque 321 (2008), 195–265

[2] S. W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972), 152–166
[3] S. Hollands, A. Ishibashi and R. M. Wald, A Higher dimensional stationary rotating black

hole must be axisymmetric, Commun. Math. Phys. 271 (2007), 699–722
[4] V. Moncrief and J. Isenberg, Symmetries of Higher Dimensional Black Holes, Class. Quant.

Grav. 25 (2008), 195015
[5] S. Hollands and A. Ishibashi, On the ‘Stationary Implies Axisymmetric’ Theorem for Ex-

tremal Black Holes in Higher Dimensions, Commun. Math. Phys. 291 (2009), 403–441
[6] H. K. Kunduri and J. Lucietti. Classification of near-horizon geometries of extremal black

holes, Living Rev. Rel. 16 (2013), 8
[7] J. Lewandowski and T. Paw lowski, Extremal isolated horizons: A Local uniqueness theorem,

Class. Quant. Grav. 20 (2003), 587–606
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Late time tails

Jonathan Luk

(joint work with Sung-Jin Oh)

1. Motivation

Our main motivation concerns the stability of the smooth Cauchy horizon in ro-
tating Kerr black holes. It has been proven by Dafermos–Luk that the Cauchy
horizon is stable in C0. However, consistent with the strong cosmic censorship
conjecture, it is expected that the Cauchy horizon is unstable in the C0,1 topol-
ogy, and that generic perturbations lead to black hole interiors where the Cauchy
horizon is a so-called weak null singularity.

With the progress in the past decade, it is now well-understood that the key to
the aforementioned conjecture is a precise rate that a generic dynamical black hole
settles down to Kerr. In order to study this problem, we first consider a slightly
simpler question of the precise asymptotic behavior nonlinear waves on possibly
dynamical backgrounds. We stress that in view of the intended application, it is
important to allow for both nonlinearity and nonstationarity.

2. Examples

Example 1 (Price’s law). The best-known example of late-time tail is the Price
law rate predicted by Price’s heuristics. Though originally only proposed only for
Schwarzschild, it applies also to Kerr, and the expected rates for solutions φ to the
linear wave equation �gφ = 0 is ≃ t−3. In the Schwarzschild case, one can further
decompose into spherical harmonics and the ℓ-spherical modes decay as ≃ t−3−2ℓ.

Price’s predictions are now established theorems. As upper bounds, this was
proven by [6, 7, 10, 11]. More recently, it is proven that they hold as generic
precise asymptotics [1, 2, 9]. The proofs in [1, 2] and [9] used independent methods
but both rely on stationary in a crucial way.

Example 2 (Higher dimensional Schwarzschild black holes). For general spatial
dimension d, the Schwarzschild metric takes the form

g = −(1− 2m

rd−2
)dt2 + (1− 2m

rd−2
)−1dr2 + r2gSd−1 .

For generic stationary metric in (d+ 1) dimensions with d ≥ 3 odd and decaying
as r−k as r → ∞, considerations as Price suggest a decay rate of solutions to wave
equation φ ≃ t−d−(k−1). In the specific case of Schwarzschild, however, the decay
rate is faster, consistent with previous heuristic and numerical works [3, 5]:

Theorem. (L.–O. (2024)) When d = 5, φ ≃ t−10.

Example 3 (Dynamical black holes). Consider generic dynamical black holes
settling down to d-dimensional Schwarzschild. The generic decay rate of solutions
to the wave equation is slower than the stationary case. (Compare the rates to
those in Examples 1, 2.) See also the numerical and heuristic works [8, 4].
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Theorem. (L.–O. (2024)) When d ≥ 5, φ ≃ t−6. When d = 3, if we assume
the background is spherically symmetric and decompose the solution into spherical

harmonics, then φ(ℓ) ≃
{
t−3 ℓ = 0

t−2−2ℓ ℓ ≥ 1
.

3. Main result

The vast array of possibilities can in fact be understood in a unified manner.

Theorem 1 (L.–O. (2024)). Let the spatial dimension d ≥ 3 be odd. Consider a
nonlinear wave equation

Pφ
.
= �gφ+Bµ∂µφ+ V φ = N (φ, ∂φ, ∂2φ)

such that

(1) φ and its vector field derivatives satisfy some weak decay bounds,
(2) g, B, V are asymptotically flat,
(3) P0 (the “elliptic” part of P ) is invertible, and
(4) the nonlinearity N obeys the null condition when d = 3.

Then the following holds:

(1) The solution admits an expansion in Bondi-type coordinates for r & u:

r
d−1

2 φ(u, r, ϑ) = Φ0(u, ϑ) + r−1Φ1(u, ϑ) + · · ·+ r−JΦJ (u, ϑ) + ρJ ,

where J ≥ d−1
2 , limu→∞ Φj(u, ϑ) = 0 for 0 ≤ j ≤ J − 1, and ρJ is error.

(2) The precise asymptotics is given by

φ(u, r, ϑ) = η(r, ϑ)u−J− d−1

2 +Or(u
−J− d−1

2
−δ), δ > 0,

where the profile η(r, ϑ) is given by solving an “elliptic” equation associated
to P0 with boundary condition determined by L(ϑ) = limu→∞ ΦJ (u, ϑ).

4. Application to (5 + 1)-dimensional Schwarzschild

As an illustration of how Theorem 1 gives the precise rates, consider (5 + 1)-
dimensional Schwarzschild and reduce to spherical symmetry for simplicity. The
expansion of r2φ when r & u implies that the following recurrence equations hold:

∂uΦ1 = c1Φ0, ∂uΦ2 = 0,

∂uΦ3 = 0, ∂uΦ4 = c2Φ3 + c3Φ0,

∂uΦ5 = c4Φ4 + c5Φ1, ∂uΦ6 = c6Φ5 + c7Φ2,

∂uΦ7 = c8Φ6 + c9Φ3, ∂uΦ8 = c10Φ7 + c11Φ4.

Here, all constants cj 6= 0 are explicitly computable and all Φj(−∞) = 0. By

Theorem 1 (since J ≥ d−1
2 = 2) we have Φ0, Φ1 → 0 as u→ +∞, and we need to

find the first J for which ΦJ 6→ 0. In the process, we have the freedom to perturb
Φ1 on any compact u-interval to make statements about generic solutions.

Clearly, the equations imply Φ2, Φ3 ≡ 0. Combining ∂uΦ4 with ∂uΦ1 we get
∂u(Φ4− c3

c1
Φ1) = 0 so that Φ4 = c3

c1
Φ1 → 0. The ∂uΦ5 equation and information so

far give ∂u(Φ5−( c3c4c1
+c5)Φ1) = 0. Specific (and highly non-generic) Schwarzschild
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calculations give c3c4
c1

+c5 = 0 so that Φ5 ≡ 0. Then Φ6 ≡ Φ7 ≡ 0. Finally, ∂uΦ8 =
c3c11
c1

Φ1, which gives Φ8 6→ 0 generically so that decay rate is t−(8+2) = t−10.
Notice, however, that in the nonstationary setting, the conclusion is completely

different. The difference in the equations is only that the coefficients cj may now

depend on u. Thus, Φ4 =
∫ u

−∞
c3(u

′)
c1(u′)∂uΦ1(u

′) du′. As long as c3(u)
c1(u)

is non-constant,

we can now prescribe Φ1 in a way that Φ4 6→ 0. Hence, one obtains the much
slower decay rate of t−6 in the dynamical setting.

5. Comments on the proof

The proof is based on an iteration argument in physical space: starting with weak
decay bounds, we slowly improve the rate until we reach an identifiable obstruction
that gives the leading order term.

An important ingredient of the proof is the use of the strong Huygen’s principle
of�m by rewriting the equation as�mφ = error (�m = Minkowski wave operator):

(1) This allows one to say that the main contribution comes from the wave
zone, and thus the tails is completely determined by the higher radiation
fields Φj .

(2) This also captures explicit Minkowski cancellations: for instance Φj never

contributes to the late-time tail when j ≤ d−3
2 .

(3) The error terms have extra r decay due to asymptotic flatness. This allows
for improving the estimates in terms of r-decay. There are then standard
techniques to upgrade r-decay to t-decay when r . t [1, 10].
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Flexibility of initial data sets via solution operators with prescribed

support properties

Sung-Jin Oh

(joint work with Philip Isett, Yuchen Mao and Zhongkai Tao)

The subject of this talk is initial data sets in general relativity. For simplicity, we
focus on vacuum initial data sets on R3, i.e., symmetric two-tensors (gij , kij) on
R3 that solve the Einstein vacuum constraint equations

(1)

{
R+ (trgk)

2 − |k|2g = 0,

∇ikij −∇itrgk = 0.

When trgk = 0 also holds, we say (g, k) is in maximal gauge.
I will discuss some new results from [6, 7, 8] concerning flexibility of the nonlin-

ear set of objects that solve (1) (resp. (1) and trgk = 0), such as extension, gluing,
etc. The main focus of the talk, however, will be to explain our new approach to
this problem based on construction of solution operators with prescribed support
properties. This method was already used in [6, 7, 8]; moreover, in the upcoming
work [5], we will provide a systematic development of our approach.

Linearized constraint equations. Like prior works in the subject, our approach
is based on the understanding of the linearization of (1). Specifically, consider

a perturbation of the flat data gij = δij + ġij and kij = k̇ij , where δij is the
Euclidean metric on R3, and also introduce the change of variables (hij , πij) =

(ġij − δijtrġ, k̇ij − δijtrk̇). Then (1) becomes

(2) P
(
h
π

)
:=

(
∂i∂jh

ij

∂iπ
ij

)
=

(
O(h, ∂2h) +O(∂h, ∂h) +O(π, π)

O(h, ∂π) +O(∂h, π)

)
.

Moreover, (1) in maximal gauge also takes the form (2), but with π replaced by
its traceless part π̂ = π − 1

3δtrπ.
Here, we are working with the following conventions: (i) repeated upper and

lower indices are summed, (ii) indices are lowered (and raised) using the flat metric
δij (and δij); and (iii) tr is defined using δij . On the right-hand side, O(h1, h2)
refers to an expression that is bilinear in h1 and h2, whose coefficients are smooth
functions of ġ (at least for ġ small, where such an expansion is relevant).

Solution operator with prescribed support properties, take 1. Our ap-
proach is based on the construction of solution operators for the underdetermined
differential operator P with prescribed support properties. To demonstrate the
ideas in a simpler setting, let us first consider the divergence operator on R3, i.e.,
Pu := ∂iu

i. We break down our approach into two steps:

Step 1. To solve the equation Pu = f , we look for a Green’s function for this
problem, i.e., for y ∈ R3, a solution K(·, y) to PK(·, y) = δy. This is an un-
derdetermined problem; the point is not finding one solution (as we will see,
there are plenty), but rather finding a useful one. To this end, we also con-
sider a ray x(y, ·) : [0,∞) → R3 emanating from y (i.e., x(y, 0) = y) that is
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non-trapped (i.e., exits every compact set), and require the support property
suppK(·, y) ⊆ x([0,∞)).

Our simple but key first observation is that finding such a K is straightforward
if we consider the dual problem. Indeed, observe that the equation for K is
equivalent to ϕ(y) = 〈K,P ∗ϕ〉 for every ϕ ∈ C∞

c (R3). Hence, the existence of a
distribution solution K with the prescribed support properties amounts to:

(RC)
There exists a way to recover ϕ(y) from P ∗ϕ

on x(y, [0,∞)) in a linear continuous manner.

We will refer to this as the Recovery on Curves condition. Phrased in this way,
and noting that P ∗ is simply the differential (i.e., P ∗ϕ = −∂iϕ), we see that the
desired K ∈ D′(R3) is given by

〈K(·, y), ϕ〉 =
∫ ∞

0

ẋ(y, t) · P ∗ϕ(x(y, t)) dt.

Step 2. The Green’s function obtained in Step 1 has the advantage of having
precisely prescribed support properties on curves; however, it is too singular to
be useful in solving nonlinear problems. Our next key idea is that this can be
remedied by taking a (suitable) smooth average.

To demonstrate, let us consider straight rays x(y, ω, t) = y+ tω, where ω ∈ S2,
and denote by Kω(·, y) the corresponding Green’s function from Step 1. We fix
η ∈ C∞(S2) with

∫
η dA = 1 and define

〈Kη(·, y), ψ〉 :=
∫
〈Kω(·, y), ψ〉η(ω) dA(ω).

The following properties of the smoothly averaged Green’s function Kη can be easily
verified: (1) Sηf(x) :=

∫
Kη(x, y)f(y) dy defines a right-inverse for P , which is

furthermore a singular integral operator that is regularizing of maximal order (i.e.,
of order −1 for the order 1 operator P ); and (2) if f is supported in a cone C
whose angles contain supp η, then so is Sηf . Such an operator was first obtained
in Oh–Tataru [9]; we will refer to it as a conic operator.

Application: sharp Carlotto–Schoen gluing. Our presentation should make
it clear that the same ideas can be applied to the operator P , as long as we can
verify (RC)! For P1h := ∂i∂jh

ij , this is obvious since P ∗
1 ϕ = ∂i∂jϕ. For P2π :=

∂iπ
ij , P ∗

2 u = − 1
2 (∂iuj+∂jui) is (essentially) the Killing operator, and (RC) follows

by the standard proof of the rigidity of Killing vector fields. Interestingly, (RC)
may also be verified for P3π̂ := ∂iπ̂

ij with trπ̂ = 0; in this case, P ∗
3 is the conformal

Killing operator, and one may follow the rigidity argument of Reshetnyak [10].
Note that P1, P2 and P3 are the constituents of P .

As a result, we obtain a conic solution operator Sη for P . Using this solution
operator and setting up a simple Picard iteration for (2), the gluing theorem of
Carlotto–Schoen [2] on conic regions immediately follows. Thanks to the simplicity
of the method, this proof is sharp in a number of ways, including giving the |x|−1

asymptotics as |x| → +∞ that was conjectured in [2]. By tweaking the solution
operator, a gluing theorem in a degenerate region of the form {(x1)2 + (x2)2 <
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(x3)2α} for some α < 1 may also be established. For more details, see [6] (non-
maximal case) and [7] (maximal case)

Solution operator with prescribed support properties, take 2. We now re-
turn to Pu = ∂iu

i and discuss the construction of solution operators that preserve
compact support. We modify the above construction as follows.

Step 1. We consider a segment x(y, y1, ·) : [0, 1] → R3 such that x(y, y1, 0) = y
and x(y, y1, 0) = y1, and look for Ky1

(·, y) that is supported in x(y, y1, [0, 1]) and
solves PKy1

(·, y) = δy − by1
, where by1

is some distribution supported in {y1}.
Instead of (RC), we need P to satisfy:

(RC’)
There exists a way to recover ϕ(y) from P ∗ϕ on x(y, y1, [0, 1])

and (the jet of) ϕ at y1 in a linear continuous manner.

Step 2. We now consider η ∈ C∞
c (R3) with

∫
η(y1) dy1 = 1 and define (formally)

Kη(·, y) =
∫
Ky1

(·, y)η(y1) dy1. As before, it can be checked that Kη defines a
singular integral operator Sη that this regularizing of maximal order. Furthermore,
Sη preserves any set U that is star-shaped with respect to supp η. Finally, Sη solves
as long as

∫
f dy = 0, which is in fact a necessary condition for the existence of a

compactly supported solution since 1 ∈ kerP ∗.
In fact, this operator coincides with the classical Bogovskii operator [1]. Nev-

ertheless, from our presentation, it should be clear that this construction can be
generalized to any P satisfying (RC’). See [6] (non-maximal) and [7] (maximal)
for the case of P , and see [5] for more general cases (such as linearized constraints
on a non-flat background).

Application: sharp Corvino–Schoen and obstruction-free gluing. Using
Bogovskii-type operators for P and setting up a simple Picard iteration for (2),
we may now immediately deduce a gluing theorem similar to Corvino–Schoen [3].
Combined with further ideas for locally manipulating the linear obstructions in
Corvino–Schoen gluing, we also obtain the following obstruction-free gluing result
à la Czimek–Rodnianski [4]:

Theorem 1. Let s > 3
2 and α > 1

2 . Let (gin − δ, kin), (gout − δ, kout) ∈
Hs

α × Hs−1
α+1(B

c
R0

) be pairs solving (1) (resp. and trgk = 0). Assume the positiv-
ity condition ∆E > |∆P|, where ∆E is the difference between the ADM energies
of (gout, kout) and (gin, kin), and ∆P is the difference between the ADM linear
momenta. Then there exists (g − δ, k) ∈ Hs

α ×Hs−1
α+1(B

c
R0

) solving (1) (resp. and
trgk = 0) and r ≥ R0 such that (g, k) = (gin, kin) on B2r and (g, k) = (gout, kout)
on Bc

32r.

Here, Hs
α is the weighted Sobolev space consistent with decay r−α. This result

improves upon [4] in a number of ways: first, we attain the sharp constant in the
positivity condition (namely, 1 in front of |∆P |), second, we extend the result to the
maximal gauge, and third, the decay and regularity assumptions are sharpened.
Our proof is also purely spacelike, as opposed to [4] that employed characteristic
gluing. For details, see [6] (non-maximal case) and [7] (maximal case).
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Formation of quiescent big bang singularities

Oliver Petersen

(joint work with Hans Oude Groeniger and Hans Ringström)

The purpose of this talk is to present a condition on initial data ensuring the
formation of a big bang singularity (in the sense of curvature blow-up at the sin-
gularity). The condition does not refer to any particular background solution.
In particular, the main goal is not to prove a stability result of some particular
solution. In order to describe our condition, it is however natural to start with a
simple explicit example:

Example 1. For an integer n ≥ 2, consider the spacetime

M := (0,∞)× (S1)n, g := −dt2 +

n∑

i=1

t2pi
(
dxi

)2
,

φ := a ln(t) + b,
n∑

i=1

pi =
n∑

i=1

p2i + a2 = 1.

For fixed (a, b, p1, . . . , pn), the triple (M, g, φ) will in this talk be called the gen-
eralized Kasner spacetime and can easily be checked to satisfy the Einstein-scalar
field equations

Ric(g) = dφ⊗ dφ,

�φ = 0.
(1)
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It is straightforward to check that the Kretschmann scalar

RαβγδR
αβγδ =

4

t4




n∑

j=1

p2i (1− pi)
2 +

∑

i<j

p2i p
2
j


 .

Consequently, (M, g, φ) has a big bang singularity in the sense of curvature blow-up
as t → 0 unless all pi vanish or one pi equals one and the rest vanish. The case
that all pi vanish is the Minkowski metric and the case that one pi equals one and
the rest vanish is called the flat Kasner metric.

The following remarkable result was recently proven by Fournodavlos-Rodnianski-
Speck in [3], building on previous work by Rodnianki-Speck in [6], [7], [8] and
Speck in [9].

Theorem 1 (Fournodavlos-Rodnianski-Speck). Assume that

max
i,j,k,i6=j

(pi + pj − pk) < 1.

Then the generalized Kasner spacetime (M, g, φ) presented in Example 1 is CMC-
stable under the evolution of the Einstein-scalar field equations (1) toward the big
bang singularity, i.e. as t→ 0.

Fournodavlos-Rodnianski-Speck do assume that the initial data has to be CMC,
but it expected that the CMC assumption should not be too hard to remove. We
also mention the important related results by Beyer-Oliynyk in [1], where a local
gauge is used, and the result by Fajman-Urban in [2], where simultaneous non-
linear stability in both the future and the past direction is proven.

Remark 1. One can interpret Theorem 1 as a formation of big bang singularity
result, since it in particular says that any CMC initial data close to the induced
initial data on any constant t-Cauchy hypersurface in (M, g, φ) produces a maximal
global hyperbolic spacetime with a big bang singularity (in the sense of curvature
blow-up).

Our condition, presented below, has (the big bang formation interpretation of)
Theorem 1 as a special case. However, the main point is that our condition does
not refer to any background solution to Einstein’s equations. In order to formulate
our main theorem, we need to introduce four expansion-normalized quantities,
closely related to the objects used by Ringström to formulate initial data at the
singularity in [5]:

Definition 1. Let M be a spacetime of dimension n + 1 ≥ 3, let Σ ⊂ M be a
spacelike hypersurface and let φ : M → R be a smooth function. Let (h, k) be the
first and second fundamental forms and let φ0 := φ|Σ and φ1 := ν(φ), where ν
is the future pointing unit normal on Σ. We assume that the mean curvature is
positive, i.e. trhk > 0. The expansion-normalized Weingarten map is given by

K(X) :=
k(X, ·)♯
trhk

,
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for any vector X ∈ TΣ. The expansion-normalized first fundamental form is given
by

H(X,Y ) := h
(
(trhk)

K (X), (trhk)
K (Y )

)
,

for any vectors X,Y ∈ TpΣ and any p ∈ Σ. The expansion-normalized normal
derivative of the scalar field is given by

Φ1 :=
φ1
trhk

,

and the expansion-normalized induced scalar field is given by

Φ0 := φ0 +Φ1 log(trhk).

Example 2. If (M, g, φ) is the generalized Kasner spacetime, introduced in Ex-
ample 1, then the expansion-normalized quantities are easily verified to be

K =
n∑

i=1

pi∂xi ⊗ dxi, H =
n∑

i=1

(
dxi

)2
,

Φ1 = a, Φ0 = b

and the mean curvature is given by trhk = 1
t .

Note that the expansion-normalized quantities in the generalized Kasner space-
times are in fact independent of time. Loosely speaking, we think in this talk of
quiescent big bang singularities as those where we find a CMC foliation of Cauchy
hypersurfaces up to the singularity for which the mean curvature goes to inifinity
while the eigenvalues p1, . . . , pn of K stay bounded (as is obviously the case in the
generalized Kasner spacetimes). Our main theorem in [4] is the following:

Theorem 2 (Oude Groeniger - P. - Ringström ’23). Fix first a margin σ > 0 and
integers n ≥ 2,

k0 ≥ n+ 1

2
,

k1 ≥ c1k0 + c2
σ

,

where c1 and c2 are some (explicitly computable) combinatorial constants indepen-
dent of n and σ. Let Σ be a parallelizable closed manifold. For every ζ0 > 0,
there is a ζ1 > 0, such that if (h̄, k̄, φ̄0, φ̄1) are CMC-initial data on Σ to the
Einstein-scalar field equations (1) with expansion-normalized quantities satisfying

• maxi,j,k,i6=j (p̄i + p̄j − p̄k) < 1− σ,
• ||H̄−1||C0 + ||H̄||Hk1 + ||K̄||Hk1 + ||Φ̄0||Hk1 + ||Φ̄1||Hk1 < ζ0,
• |p̄i − p̄j | > ζ−1

0 for all i 6= j,
• trh̄k̄ > ζ1,

then the corresponding maximal globally hyperbolic development with respect to the
Einstein-scalar field equations (1) has a big bang singularity towards the past (in-
cluding curvature blow-up) and there is a foliation by CMC Cauchy hypersurfaces
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such that the mean curvature goes to infinity and the expansion-normalized quan-
tities p1, . . . , pn (i.e. the eigenvalues of the expansion-normalized Weingarten map
K on the leaf) and Φ0,Φ1 converge to limits

pi → p̊i, Φ0 → Φ̊0, Φ1 → Φ̊1

in Ck0 towards the singularity.

We refer to [4, Thm. 12] for a more precise version, including the possibility of a
potential (in particular allowing for a cosmological constant). This result can then
be used to prove stability of any solution to Einstein-scalar field equations with
non-degenerate robust Ringström initial data on the singularity, see [4, Sec. 1.4].
In particular, we recover Theorem 1 as a special case. However, the main point
of Theorem 2 is not to prove a stability result of a background solution, but to
provide a general condition ensuring big bang formation without reference to a
background solution.
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A definition of the mass aspect function for weakly regular

asymptotically hyperbolic manifolds

Anna Sakovich

(joint work with Romain Gicquaud)

Let (Hn, b) denote the hyperbolic space of dimension n ≥ 3, that is

H
n = B1(0), b = ρ−2δ, ρ =

1− |x|2
2

,

where B1(0) denotes the open unit ball in R
n, δ is the Euclidean metric, and

|x| =
√
(x1)2 + . . .+ (xn)2 where x1, . . . , xn are Cartesian coordinates on Rn.
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A complete Riemannian manifold (M, g) is said to be asymptotically hyperbolic
of order τ > 0 if there exist compact subsets K ⊂ M and K ′ ⊂ Hn, a diffeomor-
phism Φ :M \K → Hn \K ′ and a constant C > 1 such that 1

C b ≤ Φ∗g ≤ Cb and
e = Φ∗g − b satisfies

∫

Hn\K′

ρ−2τ
(
|e|2b + |De|2b

)
dµb <∞.

Φ is then called a chart at infinity for (M, g).
Assuming additionally that g ∈ C1, and ρ−1Scal ∈ L1, Chruściel and Her-

zlich [1] defined for asymptotically hyperbolic manifolds of order τ ≥ 1/2 a mass
functional

(1) p(e, V ) = lim
r→1

∫

Sr(0)

[V (div(e)− d tr(e)) + tr(e)dV − e(DV, ·)] (ν)dµb

where ν is the outward pointing unit normal to Sr(0) = {|x| = r} →֒ (Hn, b) and

(2) V ∈ N := span

{
1− ρ

ρ
,
x1

ρ
, . . . ,

xn

ρ

}
.

This notion can be seen as the closest analogue of the notion of ADM mass for
asymptotically Euclidean manifolds in the asymptotically hyperbolic setting, and
Chruściel and Herzlich [1] showed that the limit (1) is well-defined under the
above conditions. They also showed that the mass functional depends covariantly
on the chart at infinity in the following sense: if Φi, i = 1, 2, are two asymptotically
hyperbolic charts at infinity such that ei := (Φi)∗g−b satisfy |ei|+ |Dei| = o(ρn/2)
then there exists an isometry A of the hyperbolic space such that

(3) p(e2, V ) = p(e1, V ◦A) for any V ∈ N .

The mass functional of Chruściel and Herzlich [1] generalizes an earlier notion
of mass for asymptotically hyperbolic manifolds given by Wang in [2]. This notion
requires more stringent assumptions on geometry near infinity, namely that e =
ρne + o(ρn), where e is a smooth tensor on B1(0) which is transverse, meaning
that its components satisfy

∑n
j=1 eijx

j = 0 for all i, j = 1, . . . , n. The components
of Wang’s mass vector p are then given by

p0 =

∫

S1(0)

m(x)dµσ(x), pi =

∫

S1(0)

xim(x)dµσ(x), i = 1, . . . , n,

where σ denotes the round metric on S1(0) and m := trσe is the so-called mass
aspect function.

Note that both e and m have covariance properties under a change of chart
at infinity, see Cortier, Dahl and Gicquaud [3], so the idea that the mass of an
asymptotically hyperbolic manifold should be encoded by the mass aspect function
is geometrically very appealing. However, when passing from e to m and then to p
we drastically loose information about the asymptotic geometry of (M, g). In our
upcoming work [4] we remedy this by showing that the mass aspect function admits
an ADM-style definition similar to (1) that applies in very low regularity. To
achieve this, we first show that the definition of mass functional (1) can be extended
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to encompass metrics with local regularity L∞∩W 1,2 and with distributional scalar
curvature as follows:

p(e, V ) = lim
k→∞

∫

Hn

[V (div(e)− dtr(e)) + tr(e)dV − e(DV, ·)] (−Dχk)dµ
b.(4)

Here (χk)k is a sequence of compactly supported functions over Hn with bounded
C1-norm and such that the sets Ωk = χ−1

k (1) is an increasing sequence of compact
sets with Hn =

⋃
k Ωk. We observe that the limit (4) is well-defined not only for

V ∈ N as in (1) but more generally for functions V : Hn → R satisfying

(5) ∆V = nV, |HessV − V b| = O(ρ)

provided that (M, g) is asymptotically hyperbolic of order τ > n−3
2 which imposes

a mild additional restriction in dimensions n > 3. Based on this observation, we
prove that given v ∈ C2(S1(0)) there is a unique V ∈ Hn such that ρV ≡ v on
S1(0) satisfying (5), and that the map v 7→ p(e, V ) is continuous. This defines
mass aspect function as a distribution on S1(0) and one can show that this notion
agrees with the aforementioned definition of Wang whenever his more restrictive
asymptotic assumptions are satisfied. Furthermore, by suitably adapting the argu-
ment used by Bartnik in [5] to show that the ADM mass is a coordinate invariant,
we confirm that our definition (4) transforms covariantly under changes of the
chart at infinity in the sense that (3) holds. For this, we additionally requre that
e ∈ W 1,p

τ with p > n and τ > 1 such that 2 ≤ τ + n−1
p < n.

We also show that the integral at infinity (4) can be expressed in terms of the
Ricci tensor of the metric, similar to Herzlich [6]. This approach has the merit of
being more geometric, but nevertheless requires additional regularity assumptions.
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Lipschitz inextendibility of weak null singularities from

curvature blow-up

Jan Sbierski

This talk presented forthcoming work by the author [14] which gives a criterion for
the Lipschitz inextendibility of weak null singularities in terms of curvature blow-
up. Since weak null singularities are expected to form in the interior of generic
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(vacuum) black holes, this result provides one of the ingredients needed for an

eventual resolution of the C0,1
loc -formulation of the strong cosmic censorship conjec-

ture, which asserts that the maximal globally hyperbolic development (MGHD) of

generic asymptotically flat initial data is C0,1
loc -inextendible.

1

Let us illustrate this by considering the future MGHD of generic one-ended
asymptotically flat initial data which is sufficiently close to sub-extremal Kerr
exterior initial data outside some compact set. Then by Kerr stability (cf. [4])
we expect to obtain region I in the Penrose diagram below and by [2] we expect
to obtain a Cauchy horizon in the black hole interior II to which the metric
extends continuously. Moreover, it is anticipated that this Cauchy horizon is
weakly singular. This goes back to heuristics by Penrose [8], see also the recent
work [12]. We call this piece of the boundary of the MGHD a weak null singularity.
Nothing definite is known yet about the remaining structure of the boundary in
the black hole interior in Figure 1.

weak null singularity
?

I

II

Figure 1. An example of a future MGHD

Now, in order to show that the future MGHD, let’s call it (M, g), cannot be

extended as a C0,1
loc -regular Lorentzian manifold towards the future, it suffices to

show that no future inextendible timelike geodesic τ in M can have a future limit
point in a C0,1

loc -extension of M , see [3], [10], [7]. This reduces the global problem
of inextendibility to finding local obstructions in the vicinity of timelike geodesics.
For example the timelike geodesic τ1 will not be able to enter a C0,1

loc -extension of
M since it is already future complete ([3], [11]). The result presented here shows
that if we assume that curvature blows up suitably at the weak null singularity
then the timelike geodesic τ2 will not be able to enter a C0,1

loc -extension. In this way,
by piecing together these local results, a global inextendibility result is obtained.

Before we state the main result, we summarise in some more detail what is
already known about the structure of the weak null singularity. Going back to
the interior of exact sub-extremal Kerr and using Boyer-Lindquist coordinates

1Recall that a C
0,1

loc
-extension of a Lorentzian manifold (M,g) consists of a smooth isometric

embedding ι : M →֒ M̃ of M into another Lorentzian manifold (M̃, g̃) of the same dimension as

M̃ with g̃ being C
0,1

loc
-regular and such that ∂ι(M) 6= ∅. If no such extension exists, then we say

that (M, g) is C
0,1

loc
-inextendible.
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(t, r, θ, ϕ), it was shown in [9] how to construct a function r∗(r, θ) such that u :=
1
2 (r

∗−t) and ũ := 1
2 (r

∗+t) are null coordinates. We also introduce the Kruskal-like

coordinate u := 1
2κ−

e2κ−ũ which is regular at the right Cauchy horizon. Here, 0 >

κ− is the surface gravity of the Cauchy horizon. Moreover, one can introduce new
angular coordinates θA, A = 1, 2, such that the metric in (u, u, θ1, θ2) coordinates
takes the form

(1) g = −2Ω2(du⊗ du+ du ⊗ du) + γAB(dθ
A − bAdu)⊗ (dθB − bBdu)

and extends smoothly to the right Cauchy horizon at {u = 0}. The result of
Dafermos and Luk in [2] can now be roughly stated as follows:

Theorem 1 (Dafermos-Luk ’17 (rough version)). Consider the hypersurface Σ =
{u + ũ = const} with the induced exact sub-extremal Kerr initial data (gK , kK).
Let (g, k) be initial data on Σ for the vacuum Einstein equations such that |g −
gK |, |k − kK | decay sufficiently fast for ũ → ∞. Then there exists a uf ∈ R such
that the future evolution exists in the gauge (1) in the shaded region in Figure 2
and extends continuously to {u = 0}. Moreover, the metric remains C0-close to
that of exact sub-extremal Kerr.

Figure 2. The spacetime constructed in [2].

The result in [2] only gives a stability result; no instability result for the vacuum
Einstein equations is available yet that would ensure that {u = 0} is actually sin-
gular. For the linearised Einstein equations, in the form of the Teukolsky equation,
instability results are given in [6] and [12]. The later result, in combination with
[5], gives that for solutions of the linearised Einstein equations, arising from generic
compactly supported initial data on a global Cauchy hypersurface for sub-extremal
Kerr, we have

(2)

∫

{u=const}∩{−ε0≤u<0}

|u|3(log |u|)14|
(1)

R (X1, X2, X3, X4)|2 volS2du = ∞ ,
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where ε0 > 0,
(1)

R denotes linearised curvature, and Xi, i = 1, . . . , 4 are particular
vector fields which extend continuously to the Cauchy horizon {u = 0}.

In order to state the main theorem, given a metric of the form (1), we introduce
the null vector fields e3 = −2Ω2(du)♯ = ∂

∂u and e4 = −2(du)♯ = 1
Ω2

(
∂
∂u + bA ∂

∂θA

)

which are normalised by g(e3, e4) = −2 and the angular vector fields eA = ∂
∂θA .

We define the connection coefficients χ
AB

= g(∇eAe3, eB), ηA = − 1
2g(∇e4eA, e3),

ω = − 1
4g(∇e3e4, e3) and χ, η, ω are defined analogously with e3 and e4 inter-

changed. Given now a timelike geodesic τ approaching the weak null singularity
as in Figure 2, we phrase the theorem only in terms of a local piece (M, g) of the
global spacetime as depicted in the above figure.

Theorem 2 (S. (forthcoming)). Let M = (−1, 1) × (−1, 0) × S2 with (u, u, θA)
coordinates, g as in (1) which extends continuously to M = (−1, 1)× (−1, 0],×S2

and assume

(3)

sup
M

(
|ω|+ |η|γ + |η|γ + |χ|γ) ≤ C

∫ 0

−1

(
sup

(u,θ)∈(−1,1)×S2

|χ|γ(u, u, θ)
)
du ≤ C

∫ 0

−1

(
sup

(u,θ)∈(−1,1)×S2

|∂θBbA|(u, u, θ)
)
du ≤ C .

Suppose for any p ∈ ∂M and any neighbourhood W of p, there exists q ∈W ∩ ∂M
and a compact neighbourhood V ⊆ W of q and continuous vector fields X i on
V , i = 1, 2, 3, 4 and ε > 0 such that for any continuous vector fields Xi on V ,
i = 1, 2, 3, 4, with ||Xµ

i −Xµ
i ||R4 < ε we have

(4)
∣∣∣

∫

V ∩{u≤uk}

R(X1, X2, X3, X4)volg

∣∣∣ → ∞

along a sequence uk ր 0.2 Then there is no C0,1
loc -extension ι : M →֒ M̃ and a fu-

ture directed timelike geodesic τ : [−1, 0) →M with lims→0 τ
u(s) = 0, lims→0 τ

u(s)

< 1, such that lims→0(ι ◦ τ)(s) exists in M̃ .

Let us make a few remarks: i) the first two conditions on the connection coeffi-
cients in (3) are proven in [2]. ii) While the analogue of (4) for linearised curvature
is not implied by (2), it is not difficult to slightly strengthen the result in [12] such
that it is. This is unpublished work by the author and may appear as part of
forthcoming work. iii) The advantage of the curvature-based approach presented
here compared to the holonomy-based approach to Lipschitz inextendibility from
[11] is that here we only need lower bounds on curvature and not on the connection

2To be quite precise, we assume that the third condition in (3) as well as the closeness

condition of the coordinate components of X
µ

i − X
µ

i
hold restricted to two coordinate charts

which cover S2 and, moreover, that V ∩ {u ≤ u′} is also a smooth manifold with corners for
u′ ≤ 0 close enough to 0.
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coefficients and also that we only need integrated lower bounds and not pointwise
bounds. As a consequence, the assumptions presented here are easier to establish
analytically.

The proof is by contradiction and proceeds in three steps: assume that there
is a C0,1

loc -extension ι : M →֒ M̃ together with a timelike geodesic τ as in the
statement of the theorem. In the first step one shows that one can go over from
the timelike geodesic τ that leaves M to a null geodesic σ, an integral curve of e4,
that also approaches {u = 0} and leaves M for M̃ . This is done by verifying the
assumptions of Proposition 5.1 in [13]. The second step is crucial: one shows that

the C1-structures of the two extensions M̃ and M are the same at the boundary.
This is achieved by verifying the assumptions of Proposition 5.11 in [13]. Now, in
the final step, one uses the equivalence of the C1-structures of the extensions to
push forward the vector fields Xi to M̃ and to smooth them out with respect to
the smooth structure of M̃ to obtain vector fields Xi. Since the C1-structures are
equivalent, this can be done in such a way that with respect to the coordinates on
M , the components of Xi are arbitrarily close to those of Xi. Then starting with
the assumption (4) and pushing it forward via ι to M̃ one can do an integration
by parts and use Stokes’ theorem to obtain an expression which only contains
first covariant derivatives of the smoothed out vector fields which are all uniformly
bounded and which then concludes the proof.

As a final remark we point out that one can also write down a blow-up condi-
tion on curvature, analogous to (4), which ensures that if the C1-structure of an

extension ι : M →֒ M̃ is the same as that of M at the boundary, that then M̃
cannot have locally square integrable Christoffel symbols. However, as is shown in
[1], if ι : M →֒ M̃ is only a continuous extension (i.e. not locally Lipschitz), then
there is no rigidity of the C1-structure. See [14] for more details.
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Polynomial decay for the Klein-Gordon equation on the

Schwarzschild spacetime

Yakov Shlapentokh-Rothman

(joint work with Maxime Van de Moortel, Fedrico Pasqualotto)

In this talk we reported on the two works [1] and [2] which concern the long time
behavior of solutions to the Klein–Gordon equation on the Reissner–Nordström
spacetime. For the sake of exposition, we shall restrict attention in this abstract
to the Schwarzschild spacetime.

In the work [1] we studied solutions ψ to the Klein–Gordon equation on the
Schwarzschild spacetime which arise from compactly supported initial data and
which are also supported on a single spherical harmonic. Letting (t∗, r, θ, φ) de-

note ingoing Eddington–Finklestein coordinates on Schwarzschild and ψ̃(t∗, r) the
projection of ψ onto the spherical harmonic, the main result then states that there
exists a function u(r) (depending only on the spherical harmonic) so that when r
ranges over a compact set,

(1) ψ̃ (t∗, r) ∼ u(r)(t∗)−5/6f(t∗).

Here f(t∗) satisfies |f | ≤ C and is a certain explicit oscillating function
In the work [2] we studied the long time dynamics of solutions ψ to the Klein–

Gordon equation on the Schwarzschild spacetime without any restriction on the
spherical harmonic support of ψ. Assuming that the initial data for ψ is compactly
supported, we show that there exists δ ∈ (0, 1/23) so that when r ranges over a
compact set,

(2) |ψ| ≤ C(t∗)−5/6+δ,

for a constant C which depends only on the initial data. The proof of (2) requires
us to estimate a certain exponential sum; assuming that the famous “exponent
pair conjecture” holds, we would obtain a sharp bound on this exponential sum
and would be able to show that for every ǫ > 0,

(3) |ψ| ≤ Cǫ(t
∗)−5/6+ǫ.

In view of (1), we see that this estimate is essentially sharp.
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The Maxwell equations on the full |a| ≤ M Kerr family of black

hole spacetimes

Rita Teixeira da Costa

(joint work with Gabriele Benomio)

The Kerr family of black hole spacetimes is a family of (1 + 3) dimensional
Lorentzian manifolds (M, g) satisfying the vacuum Einstein equations

Ric(g) = 0,(1)

which is described by two parameters, M > 0 and |a| ≤ M . For instance, in
Boyer–Lindquist coordinates (t, r, θ, φ) ∈ R× (r+,∞)× S2, we have

g = −∆

ρ2
(dt− a sin2 θdφ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
(adt− (r2 + a2)dφ)2,

∆
.
= (r − r+)(r − r−), r±

.
=M ±

√
M2 − a2; ρ2

.
= r2 + a2 cos2 θ.

The Kerr family has a fundamental role in the theory of General Relativity, as it
is thought to describe the endstate of generic gravitational collapse under (1).

The goal of the talk is to describe the propagation of electromagnetic waves on
Kerr black holes, both in the subextremal |a| < M range and in the extremal case
|a| = M . Concretely we investigate the boundedness and decay properties of the
Maxwell equations

dF = 0, d ⋆ F = 0,(2)

where F is an antisymmetric 2-tensor on (M, g), given initial data on a suitable
spacelike hypersurface in (M, g). To do so, it is convenient to choose a null frame
(e1, e2, e3, e4) in which to decompose F and, therefore, (2). Following [5, 6], we
choose (e3, e4) to be the principal null vectors of Kerr and take (e1, e2) to be any
frame on the horizontal distribution D

.
= span{e3, e4}⊥. We set1

α(eA)
.
= F (eA, e4), α(eA)

.
= F (eA, e3),

ρ
.
=

1

2
F (e3, e4), σ

.
=

1

2
/εABF (eA, eB).

With respect to (α,α,ρ,σ), the Maxwell equations (2) can be rewritten as a
system of first order partial differential equations. One can also derive, from this

1In this geometric language, the well-known Newman–Penrose formalism [19] for Maxwell is
obtained by making a particular choice of (e1, e2) and then introducing three complex scalars
from particular combinations of the six real functions α(e1), α(e2), α(e1), α(e1), ρ and σ.
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(first order) system, wave-type (second order) equations for the so-called extremal
Maxwell components α and α, cf. [23], which are completely decoupled from
each other and from the rest of the system. These independent equations, called
Teukolsky equations, were studied recently in [21, 22], where it was shown:

Theorem 1 (Extremal components, |a| < M). Fix M > 0, and let |a| < M .
Solutions α and α to the Teukolsky equations on (M, g) arising from suitably
regular initial data satisfy energy boundedness (without derivative loss) and energy
decay estimates, with explicit constants depending only on the initial data and the
black hole parameters (a,M). These estimates imply the pointwise decay of α and
α (at a sufficiently fast inverse polynomial rate) on a suitable folliation of the Kerr
black hole exterior, including the future event horizon H+.

We direct the reader to [17, 18] for sharp pointwise decay results.
In the case |a| = M , based on the heuristic works [8, 12] and the recent proof

of scalar azimuthal instabilities by Gajic [10], one may conjecture:

Conjecture 1 (Extremal components, |a| ≤ M). Fix M > 0 and let |a| ≤ M .
Solutions α and α to the Teukolsky equations on (M, g) arising from suitably
regular initial data supported on a fixed azimuthal mode m ∈ Z satisfy energy
boundedness and energy decay estimates, with explicit constants depending only
on m, the initial data, and the black hole parameter M . These estimates are
consistent with the pointwise decay of α and α on a suitable foliation of the Kerr
black hole exterior away from future event horizon H+, decay of α along H+, and
generic (in m) growth of α along H+.

We note that, in the non-generic case m = 0, α is expected to decay along H+,
though its transverse derivatives to H+ are not, see [3, 4, 15].

The main result presented in the talk states that, starting from the above
theorem and conjecture, one can control the remaining Maxwell components ρ
and σ):

Theorem 2 (Remaining components). FixM > 0. Consider solutions (α,α,ρ,σ)
to the Maxwell equations (2) on (M, g) arising from suitably regular initial data.
Assume that either

(i) |a| < M , or
(ii) |a| ≤ M , the initial data is supported on a fixed azimuthal mode m ∈ Z,

and Conjecture 1 holds.

Then, ρ and σ satisfy energy boundedness (without derivative loss) and, after sub-
tracting a teleologically-determined stationary solution (αstat = 0,αstat = 0,ρstat,
σstat), to (2), energy decay estimates, with explicit constants depending only the
initial data and the black hole parameters (a,M) in case (i), and m, the initial
data and the black hole parameter M in case (ii). These estimates imply the point-
wise decay of ρ−ρstat and σ−σstat (at a sufficiently fast inverse polynomial rate)
on a suitable folliation of the Kerr black hole exterior, including the future event
horizon H+.
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We emphasize that decay along H+ holds in spite of the azimuthal instabilities
allowed by Conjecture 1 and conjectured in the aforementioned works [8, 12].

In the subextremal |a| < M setting, where our Theorem 2 is unconditional,
combining it with Theorem 1 yields a full energy boundedness (without derivative
loss) and decay result for the Maxwell equations (2), cf. [1, 7, 16, 20]. Given the
similarities between the Maxwell equations and the linearized gravity equations
on Kerr spacetimes, we view this result as a toy problem to understand the orbital
and asymptotic stability of the subextremal |a| < M Kerr subfamily to (linearized)
gravitational perturbations, cf. other works on this topic [2, 9, 11, 13, 14].
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Extremal critical collapse

Ryan Unger

(joint work with Christoph Kehle)

One of the most spectacular predictions of general relativity is the existence and
formation of black holes. Solutions of the Einstein field equations,

Ric(g)− 1
2R(g)g = 2T,

can undergo gravitational collapse to form a black hole dynamically, starting
from regular, one-ended Cauchy data. In contrast, for reasonable matter mod-
els, solutions with “small” initial data disperse without a black hole forming (i.e.,
Minkowski space is stable). It is a fundamental problem in classical general rel-
ativity to understand how these different classes of spacetimes—collapsing and
dispersing—fit together in the moduli space of solutions. The interface between
collapse and dispersion is known as the black hole formation threshold and families
of solutions crossing this threshold are said to exhibit critical collapse.

Critical collapse has been extensively studied numerically (see the survey [3]),
starting with the influential work of Choptuik [2] on the spherically symmetric
Einstein-scalar field model, in a regime where the critical solutions are believed to
be naked singularities. The regimes of the black hole formation threshold that have
been numerically studied so far remain out of reach of mathematical techniques.

At first glance, the Reissner–Nordström family of metrics (indexed by the mass
M > 0 and charge e) appears to exhibit a type of critical behavior: the solution
contains a black hole when |e| < M (subextremal) or |e| =M (extremal) and does
not contain a black hole when |e| > M (superextremal). However, the Reissner–
Nordström black holes are eternal and arise from two-ended Cauchy data, while
the superextremal variants contain an eternal “naked singularity” that has histor-
ically caused much confusion. Moreover, it was long thought that extremal black
holes could not form dynamically, a consideration closely related to the recently
disproved third law of black hole thermodynamics [1, 4, 5, 9].

In my talk, I discussed recent work with C. Kehle in which we show that this
formal critical behavior gives rise to genuine examples of critical behavior in gravi-
tational collapse, which is a new phenomenon that we call extremal critical collapse.
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Theorem. There exist smooth one-parameter families of spherically symmetric
Cauchy data for the Einstein–Maxwell–charged Vlasov system on R3 such that the
resulting maximal developments {Dλ}λ∈[0,1] have the following properties:

(1) D0 is Minkowski space and there exists λ∗ ∈ (0, 1) such that for λ < λ∗, Dλ

is future causally geodesically complete and disperses towards Minkowski
space. No black hole or naked singularity forms.

(2) If λ = λ∗, an extremal Reissner–Nordström black hole forms. The space-
time contains no trapped surfaces.

(3) If λ > λ∗, a subextremal Reissner–Nordström black hole forms. The space-
time contains an open set of trapped surfaces.

In addition, for every λ ∈ [0, 1], Dλ is past causally geodesically complete and
is isometric to Minkowski space near the center r = 0 for all time.

As a direct consequence, we obtain:

Corollary. The very “black hole-ness” of an extremal black hole arising in gravi-
tational collapse can be unstable: There exist one-ended asymptotically flat Cauchy
data for the Einstein–Maxwell–Vlasov system, leading to the formation of an ex-
tremal black hole, such that an arbitrarily small smooth perturbation of the data
leads to a future causally geodesically complete, dispersive spacetime.

This is in stark contrast to the subextremal case, where formation of trapped
surfaces behind the event horizon—and hence stable geodesic incompleteness [8]—
is expected. Despite this inherent instability of the critical solution, we expect
extremal critical collapse itself to be a stable phenomenon: We conjecture that
there exists a teleologically determined “hypersurface” in moduli space which con-
sists of asymptotically extremal black holes, contains Dλ∗

, and locally delimits the
boundary in moduli space between future complete and collapsing spacetimes.

In my talk, I outlined the proof of our theorem, which has two main steps:

(1) Construct examples of extremal critical collapse in Ori’s “charged null
dust” model [7] which consists of an ingoing radial charged null dust
“beam” glued to an outgoing radial charged null dust beam along a space-
like “bounce” hypersurface. This model is quite singular but the solutions
are more or less explicit.

(2) Show that Ori’s model arises as a certain hydrodynamic radial limit of
Einstein–Maxwell–Vlasov and therefore the examples in Ori’s model can
be desingularized to give examples for Einstein–Maxwell–Vlasov. These
spacetimes contain Vlasov matter which is smoothly “turning around”
near the old dust bounce hypersurface.

To solve step (1), we found a new way to parametrize solutions of Ori’s model
via the geometry of the bounce hypersurface itself, which lets us control which
Reissner–Nordström solution is formed and exactly where the beam bounces. The
proof of step (2) involves a careful analysis of the electromagnetic geodesic flow
near a bounce in order to control the energy-momentum tensor and particle cur-
rent. As this hydrodynamic limit is very singular (the fluid density ρ in Ori’s
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model is not bounded at the bounce), the analysis of the phase space volume ne-
cessitates introducing several scales and an “auxiliary beam” which bounces due
to its angular momentum. This analysis uses the structure and monotonicities of
the spherically symmetric Einstein equations in several crucial ways.

The charged Vlasov model seems to be the simplest setting of an impeccable
matter model where extremal critical collapse can be mathematically observed,
and so our result gives the first rigorous example of a critical solution in general
relativity. It would be very interesting to understand if extremal critical collapse
can occur for extremal Kerr black holes, possibly already in vacuum.
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Waves on Kerr–de Sitter space

András Vasy

(joint work with Peter Hintz, Oliver Petersen)

In Einstein’s theory of General Relativity, a vacuum spacetime with cosmological
constant Λ ∈ R is a (1 + 3)-dimensional manifold M equipped with a Lorentzian
metric g satisfying the Einstein vacuum equation

(EVE) Ric(g) + Λg = 0.

There are some particular ‘simple’ solutions such as de Sitter or Kerr-de Sitter
(KdS) spacetimes, in these cases with Λ > 0. A fundamental question is whether
(EVE) can be solved globally if we perturb the initial conditions of this spacetime
and whether the global solution can be described asymptotically. In order to even
make sense of this question, recall that after suitable modifications, namely gauge
fixing, EVE is a tensorial wave equation.

This talk focuses on Λ > 0. Much recent progress has been made on Λ = 0,
see especially the work of Klainerman–Szeftel, Giorgi, Shen, [KS23] and references
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therein, and Dafermos–Holzegel–Rodnianski–Taylor [DHRT21], but we cannot de-
tail this due to the limitations of this abstract. In Λ > 0 the classical result is de
Sitter stability, due to Friedrich [Fri86] in 3 + 1 dimensions, in the mid-80’s; later
Anderson [And05] extended this to even dimensions, Ringström [Rin08] gave an
even more general and furthermore localized treatment.

The gauge issue arises as EVE is diffeomorphism invariant: if g solves it, so
does Ψ∗g, Ψ a diffeomorphism, hence one has infinite dimensional non-uniqueness.
While this may not sound worrisome for existence, since the general existence
theory for linearizations is via duality, and the adjoint carries the infinitesimal
version of this invariance, there are indeed problems. (Cf. linear algebra: surjec-
tivity implies that the adjoint is injective.) The gauge conditions used here are the
harmonic/wave/DeTurck’s gauge: one fixes a background metric g0, and requires
that the identity map (M, g) → (M, g0) be a wave map (solve a wave equation).

The implementation of gauge fixing for EVE is to solve

(GE) Ric(g) + Λg − Φ(g, g0) = 0, where

Φ(g, g0) = δ∗gΥ(g, g0), Υ(g, g0) = gg−1
0 δgGgg0;

here δg is the (negative) divergence (adjoint of the symmetric gradient δ∗g), and

Ggr = r − 1
2 (trg r)g. Note that (g−1

0 δgGgg0)
k = gij(Γk

ij − g0Γk
ij). To relate to

EVE, apply δgGg to (GE), use the 2nd Bianchi identity: δgGgRic(g) = 0 for
all g, obtain an equation for �CP = 2δgGgδ

∗
g , a one-form wave operator, and

use vanishing Cauchy data (needs arrangement from the geometric data using
the constraint equations) to conclude Υ = 0. Using this Choquet-Bruhat [CB52]
proved local well-posedness. There are global issues though which often require
first a modification of the implementation, namely δ∗g , which is done via constraint

damping, a zeroth order modification of δ∗g to δ̃∗, and secondly of the gauge, which
for Kerr-de Sitter space is done via fixing a suitable finite dimensional space Θ of
smooth compactly supported one forms and requiring Υ(g, g0) = θ ∈ Θ. This is
achieved by a global nonlinear iteration that finds both g and θ.

We now describe global results for KdS, which are black holes in de Sitter space.
For this Σ0 = {t∗ = 0} is the initial Cauchy surface, gm,a a KdS metric on

Ω = [0,∞)t∗ × [re − δ, rc + δ]r × S
2, r = re, rc horizons;

m > 0 is the mass, a ∈ R the angular momentum of the metric. The ‘black hole’
nature corresponds to the presence of certain null-hypersurfaces (horizons), lying
at certain values of r. These are given by roots of a quartic polynomial

µ(r) :=
(
r2 + a2

)(
1− Λr2

3

)
− 2mr.

The metric gm,a is subextremal if µ has four distinct real roots r− < rC < re <
rc, with the latter two giving the event and cosmological horizons respectively;
this is equivalent to a discriminant condition that can be expressed in terms the
dimensionless quantities Λm2 and a

m . Here in terms of the well-known Boyer-
Lindquist (B-L) coordinates (t, r, φ, θ), valid in (re, rc)r (away from the poles of
the sphere), t∗ = t − Φ(r), φ∗ = φ − Ψ(r), where Φ and Ψ remove the apparent
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coordinate singularity of the B-L form of the metric: Φ′ = b r
2+a2

µ(r) f(r), Ψ′ =

b a
µ(r)f(r), f smooth, f(re) = −1, f(rc) = 1, and f is such that dt∗ is timelike, so

the constant t∗ hypersurfaces are spacelike.
In the slowly rotating case, a few years ago, Hintz and the author [HV18]

proved stability of the KdS family. Namely for initial data on Σ0, satisfying the
constraint equations (which are easy to satisfy in black hole spacetimes) close, in

a high regularity norm, to the data of gm0,a0
, with |a0|

m0
small, [HV18] showed that

there is a global solution g decaying exponentially, in t∗, to a nearby member of
the KdS family. During the workshop Fournodavlos-Schlue [FS24] posted a paper
showing that this implies stability of the cosmological region, r > rc, extending
the stability picture.

The purpose of this talk was to explain recent advances towards extending
this to the full subextremal range of KdS parameters. For orientation, recall the
analytic framework of [HV18], itself based on an extended version of the smooth
linear one introduced in [Vas13]. The framework of [HV18] combines non-elliptic
linear global analysis with coefficients of finite Sobolev regularity and a simple
global Nash-Moser iteration to deal with the loss of derivatives corresponding to
non-ellipticity and trapping (there are alternatives: Fang [Fan21]), to yield global
solvability for quasilinear wave equations like (GE) provided two conditions hold.
First, certain dynamical assumptions are satisfied, namely the only trapping is
normally hyperbolic trapping, with an appropriate subprincipal symbol condition.
Second, there are no exponentially growing modes (with a precise condition on non-
decaying ones), i.e. non-trivial solutions of the linearized equation at gm0,a0

of the
form e−iσt∗ times a function of the “spatial” (radial and spherical) variables r, ω
only, with Imσ > 0. While the nonlinear and finite Sobolev regularity coefficients
require a careful treatment, this is relatively straightforward at the current stage of
analytic developments, so we focus on the linear analysis with smooth coefficients.

First, for the dynamical assumptions of [Vas13], recently Petersen and the au-
thor proved in [PV24b] that these are indeed satisfied in the full subextremal range.
Second, we would like to make sense of “there are no exponentially growing modes
(with a precise condition on non-decaying ones)”. This depends on the choice
of a(n asymptotic) Killing vector field T and the quasinormal modes (QNM) are
(distributional) eigenfunctions of T , i.e. Tu = −iσu, as well as elements of KerP .
We take T = ∂t∗ + a

r2
0
+a2 ∂φ∗

, where r0 ∈ [re, rc] is arbitrarily chosen, which is

different from T = ∂t∗ chosen in [HV18], though for a small (the case there) they
are close. The main result of [PV24a] is that for T as above, the set of quasinor-
mal frequencies is discrete and the space of quasinormal modes for each is finite
dimensional. Moreover, for sufficiently small ǫ > 0, and for forcing decaying (in
a Sobolev sense) as e−ǫt∗, the solutions of the forced wave equations have a finite
asymptotic expansion in quasinormal modes. This shows that the only obstacle
to exponential decay of solutions of wave equations is QNMs. For the non-linear
problem the latter is an issue; one would want solvability in decaying spaces hence
the need for gauge modifications, which we briefly discuss. This completes the
analytic discussion in the full subextremal range, modulo the mode analysis, which
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is an important open problem. (Cf. recent work of Casals and Texeira da Costa
[CTdC22], as well as of Hintz [Hin24]!) In particular, Hintz has shown mode sta-
bility in the scalar setting (with a tensorial version expected) in the subextremal
‘physical regime’, i.e. when Λm2 is small.

Unfortunately, in the harmonic/wave/DeTurck gauge, while the dynamical as-
sumptions are satisfied, there are growing modes, although only a finite dimen-
sional space of these. The key to proving stability (given the analytic background)
is to overcome this issue. One might then expect that the other non-decaying
(including growing!) modes come from the diffeomorphism invariance, i.e. gauge
issues, (plus KdS parameters) but this is not true at this stage. Constraint damp-
ing (Gundlach et al [GCHMG05], Pretorius [Pre05]... see also Ringström [Rin08])
modifies δ∗g by a 0th order term in Φ, as already mentioned, so that �CP only
has decaying mode solutions. Thanks to this the a priori non-geometric QNMs
of gauge-fixed Einstein become geometric modes of Einstein, and thus there is a
chance to show that they are pure gauge or infinitesimal change of KdS family
parameters, which is the form of mode stability in this (ungauged Einstein) case.
Constraint damping depends on the choice of a certain timelike one-form c as well
as a large parameter γ. Small a of [HV18] uses c = dt∗ with a particular choice
of t∗ based on the a = 0 case. The last, in progress, development reported here
is on joint work with Hintz and Petersen: in the full subextremal range constraint
damping can be arranged using c that is precisely tuned to the geometry of subex-
tremal KdS spacetimes. The proof of the theorem still uses semiclassical analysis
in γ−1, just as [HV18]. As a corollary:

Theorem 1 (Hintz-Petersen-V., in progress, hopefully ’24). If ungauged Einstein
mode stability holds for any subextremal KdS parameter, then nonlinear stability
also holds nearby.
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A geometric choice of asymptotically Euclidean coordinates via

STCMC-foliations

Olivia Vicanek-Martinez

(joint work with Annachiara Piubello)

Asymptotically Euclidean 3-dimensional initial data sets were shown to carry as-
ymptotic foliations of closed hypersurfaces with constant spacetime mean curva-
ture (Cederbaum-Sakovich, 2021). In order to prove the inverse implication of this
result and hence the geometric characterization of being asymptotically Euclidean,
we start from the purely geometric foliation and construct asymptotic coordinates
from it, exploiting the properties of the induced Laplacian of the foliation leaves
via a delicate analysis. We show that these coordinates are asymptotically Eu-
clidean, and moreover seem well-adapted to the center of mass. This is joint work
with A. Piubello.
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Foliations of asymptotically Schwarzschildean lightcones by surfaces of

constant spacetime mean curvature

Markus Wolff

(joint work with Klaus Kröncke)

Consider a codimension-2 surface Σ in an ambient 4-dimensional spacetime (M, g)

with codimension-2 mean curvature vector ~H. The spacetime mean curvature H2

of Σ is defined as the Lorentzian length of the mean curvature vector ~H, i.e.,

H2 := g
(
~H, ~H

)
,

and we say Σ is a surface of constant spacetime mean curvature (STCMC) if H2

is constant along Σ.
In the case that Σ is contained in an initial data set (M, g,K), i.e., a spacelike

hypersurface (M, g) with second fundamental form K with respect to a future
timelike unit normal ~n, we have

H2 = H2 − (trΣK)2,

where H denotes the mean curvature of Σ in (M, g).

Theorem 1 (Cederbaum–Sakovich ’21 [1]). If (M, g,K) is an asymptotically flat
initial data set with EADM 6= 0, there exists an asymptotic foliation of STCMC
surfaces.

The above foliation is unique within a suitable a-priori class of surfaces and
therefore allows to define a notion of center of mass in general relativity. Theorem
1 reflects the state of the art and is preceeded by decades of various contributions,
in particular in time symmetry (K ≡ 0), i.e., in the CMC case, see e.g. Ye [13],
Metzger [8], Huang [5] and many more. In particular, Huisken–Yau [6] construct
an asymptotic foliation of CMC surfaces using volume preserving mean curvature
flow.

Motivated by both the work of Cederbaum–Sakovich and Huisken–Yau, we
employ a geometric flow to prove a corresponding statement in the null case:

Theorem 2 (Kröncke–W. (in preparation)).
Let N be an asymptotically Schwarzschildean lightcone (m > 0). Given suitable
initial data, the solution to area preserving null mean curvature flow (APNMCF )
exists for all times and converges to an STCMC surface. Moreover, the limiting
STCMC surfaces form an asymptotic foliation of N .

Similar to the work of Huiken–Yau [6], we assume that N is close to the
Schwarzschild lightcone up to 4-th order. Hence, we assume much stronger decay
assumptions compared to an asymptotically flat null hypersurface, cf. Mars–Soria
[7]. Recall that a null hypersurface N is ruled by affine null geodesics that are the
integral curves of a choice of null generator L, which is a tangent null vector field
of N that is normal to all tangent directions. In particular, L is perpendicular to
any spacelike cross section Σ of N (Σ ⊆ N is spacelike and intersects any integral
curve of L exactly once), and there exists a unique null vector field L normal to Σ
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such that g(L,L) = 2. Then, the null second fundamental forms of Σ are defined
as

χ(V,W ) := −g
(
∇VW,L

)
, χ(V,W ) := −g

(
∇VW,L

)
,

for X,Y ∈ Γ(TΣ). Note that the mean curvature vector ~H satisfies

~H = −1

2
θL− 1

2
θL,

where θ := trΣ χ, θ := trΣ χ are the null expansions of Σ. Note that χ, χ, θ, θ
depend on the choice of null frame, i.e., the choice of null generator L. We find

H2 = θθ,

and we further define the scalar second fundamental form A as

A := θχ.

Observe that trΣA = H2 and both A and H2 are independent of the choice of L.
Additionally, as every spacelike cross section Σ intersects the integral curves of L
precisely once, Σ can be written as a graph Σ = graphS ω of a function ω with
respect to a given (fixed) spacelike cross section S.

We say a family x : [0, T )× Σ → N is a solution of area preserving null mean
curvature flow (APNMCF) if

d

d t
x = − 1

2θ

(
H2 − 1

|Σ|

∫

Σ

H2

)
L.

Note that the flow is gauge invariant, i.e., independent of the choice of L. It is
easy to see that STCMC surfaces are the stationary points of the flow. Moreover,
as

d

d t
|Σ| =

∫

Σ

θϕdµ

for a general variation d
d tx = ϕL, the flow is indeed area preserving. Lastly,

observe that the flow is equivalent to the following scalar parabolic equation

d

d t
ω = − 1

2θ

(
H2 − 1

|Σ|

∫

Σ

H2

)
.

In the Minkowski lightcone, this flow is equivalent to Hamilton’s Ricci flow for
topological spheres in 2-dimensions, cf. [11], where it arises as a rescaling of 2d-
Ricci flow in this special setting. Moreover, 2d-Ricci flow in this special case is
equivalent to the corresponding null mean curvature flow, which was first studied
by Roesch–Scheuer [9] in a more general setting.

In the context of Theorem 2 initial data for APNMCF is contained in a suitably
defined a-priori class: For σ > 0, and constants B1, B2, B3 ≥ 0, we define

Bσ(B1, B2, B3) := {Σ ⊆ N : |ω − σ| ≤ B1, |
◦

A| ≤ B2

σ4
, |∇

◦

A| ≤ B3

σ5
}.

Note that any spacelike cross section in the Schwarzschild lightcone can be isomet-
rically embedded in a canonical way (via the graph function ω) into the standard
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Minkowski lightcone such that
◦

ASchw =
◦

AMink. Furthermore,
◦

AMink ≡ 0 if and
only if Σ has constant scalar curvature. In particular,

ω = bρ,~a :=
ρ√

1 + |~a| − ~a · ~x
for some positive constant ρ > 0 and 3-vector ~a, cf. [7, Proposition 6]. For a
spacelike cross section Σ in the Minkowski lightcone, we can define a associate

future timelike 4-vector ~Z via

~Z :=
1

|Σ|

(∫
Σ t dµ∫
Σ ~xdµ

)
= |~Z|

(√
1 + |~a|2
~a

)
,(1)

cf. [12]. See also [2]. It was shown in [12] that if
◦

AMink is sufficiently small
in an L2-sense then ω is close to bρ,~a in W 2,2, where ρ is chosen as the area
radius of Σ and ~a is determined by (1). Adapting a corresponding C1 estimate
by Shi–Wang–Wu [10] and embedding Σ ⊆ N into the Minkowski lightcone via ω
(not necessarily isometrically), we obtain the following a-priori estimates (omitting
some mild additional assumptions for simplicity):

Proposition 1. Let N be asymptotically Schwarzschildean, Σ be in Bσ(B1, B2, B3).
Then

|~a| ≤ C(B1)

σ
(2)

for σ sufficiently large. Moreover

||ω − bρ,~a||C2,α(S2) ≤
C(B1, B2, B3)

σ2
,

∣∣∣∣∣H
2 − 4

ρ2
+

8m

b3ρ,~a

∣∣∣∣∣ ≤
C(B1, B2, B3)

σ4
.

Using Proposition 1, one can show that that spacelike cross sections Σ in
Bσ(B1, B2, B3) are strictly stable, which allows to conclude the convergence in
Theorem 2 once the long-time existence is shown.

We expect that the foliation in Theorem 2 is unique at least within the a-
priori class Bσ(B1, B2, B3). In fact, we conjecture that (under suitable asymptotic
assumptions) there is a unique asymptotic foliation of stable STCMC surface (that
agrees with the foliation constructed in Theorem 2). In particular, this would yield
a unique asmyptotic background foliation at infinity (suitable to discuss energy,
mass and momentum) that is formulated purely with respect to the geometry
of the given lightcone. Note that in spherical symmetry, uniqueness of STCMC
surfaces (without a stability assumption) already follows by work of Chen–Wang
[3] assuming the null energy condition.

By Equation (2), we note that the constructed foliation has vanishing Bondi-
momentum and is thus centered in the sense that the Bondi energy of this foliation
agrees with the Bondi mass of the lightcone (which is m in the asymptotically
Schwarzschildean setting). At this point, it is unclear if such an STCMC foliation
is suitable to also discuss center of mass in the null setting. This is subject of
future research.
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Universidad de la República
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