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THE CONGRUENCE PROPERTIES OF ROMIK’S SEQUENCE OF

TAYLOR COEFFICIENTS OF JACOBI’S THETA FUNCTION θ3

C. KRATTENTHALER† AND T. W. MÜLLER

Abstract. In [Ramanujan J. 52 (2020), 275–290], Romik considered the Taylor ex-
pansion of Jacobi’s theta function θ3(q) at q = e−π and encoded it in an integer
sequence (d(n))n≥0 for which he provided a recursive procedure to compute the terms
of the sequence. He observed intriguing behaviour of d(n) modulo primes and prime
powers. Here we prove (1) that d(n) eventually vanishes modulo any prime power pe

with p ≡ 3 (mod 4), (2) that d(n) is eventually periodic modulo any prime power
pe with p ≡ 1 (mod 4), and (3) that d(n) is purely periodic modulo any 2-power 2e.
Our results also provide more detailed information on period length, respectively from
when on the sequence vanishes or becomes periodic. The corresponding bounds may
not be optimal though, as computer data suggest. Our approach shows that the above
congruence properties hold at a much finer, polynomial level.

1. Introduction

The focus of this article is on Jacobi’s theta function θ3 defined by (cf. [14, top of
p. 464 with z = 0])

θ3(τ) =
∞
∑

n=−∞
qn

2

, with q = eiπτ .

In [10], Romik considered the Taylor expansion of θ3(τ) at τ = i in the form (cf. [10,
display below Eq. (8)])

θ3

(

i
1 + z

1− z

)

= θ3(i)(1− z)1/2
∞
∑

n=0

d(n)

(2n)!
Φnz2n, (1.1)

where Φ = Γ8(1/4)/(128π4) and, as is well-known (cf. [3, p. 325, Entry 1(i)]), θ3(i) =
π1/4/Γ(3/4). He showed that the sequence

(

d(n)
)

n≥0
is an integer sequence, and he

provided a highly non-trivial recursive procedure for computing the coefficients d(n)
(see Section 2). The first few values turn out to be

1, 1,−1, 51, 849,−26199, 1341999, 82018251, 18703396449,

− 993278479599,−78795859032801, 38711746282537251,−923351332174412751, . . .

The signs of these numbers seem very irregular. (In fact, Problem 5 in Section 8 of [10]
asks for figuring out the pattern of signs. So far, there has been no progress on that
question.) However, computer experiments led Romik [10, Conj. 13] to conjecture that
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2 C. KRATTENTHALER AND T.W. MÜLLER

(

d(n)
)

n≥0
is (eventually) periodic when taken modulo a prime p with p ≡ 1 (mod 4), and

that the sequence eventually vanishes when taken modulo a prime p with p ≡ 3 (mod 4).
More computer experiments suggest (cf. also [13, Conjecture 18(3)]) that analogous
assertions hold modulo any prime power (including powers of 2). To be more precise,
such experiments suggest that:

(1) d(n) eventually vanishes modulo any prime power pe with p ≡ 3 (mod 4);
(2) d(n) is eventually periodic modulo any prime power pe with p ≡ 1 (mod 4);
(3) d(n) is purely periodic modulo any 2-power 2e.

Item (1) was proved for primes (i.e., for e = 1) by Scherer [11]. He also obtained
partial results on Items (2) and (3) by proving that d(n) ≡ (−1)n+1 (mod 5) for n ≥ 1,
and that d(n) is odd for all n. Guerzhoy, Mertens and Rolen [4] claim to have proved
Item (2) in full, as a special case of a more general result for a whole family of modular
forms of half integer weight.1 In [13], Wakhare revisited Item (2) for primes (i.e., for
e = 1). He showed that d(n) is (eventually) periodic modulo any prime number p with

1The authors of the present article admit that they are not able to comprehend what the result(s)

in [4] say about Romik’s sequence
(

d(n)
)

n≥0
. The first problem is that Ω̃ in Theorem 1.3 of [4] is

nowhere defined. One may guess that Ω̃2 = ω, with the ω in the proof of Theorem 1.3 on pages 148/149
of [4]. We assume this guess in the following.

In the Remark on top of page 150 of [4], Romik’s sequence is addressed explicitly. There, ω is
computed as Γ2(1/4)/(8π)1/2.

In Theorem 1.3, the coefficients ∂nf(τ0) are considered. If, in the case of f(τ) = Θ(τ) = θ3(2τ), we
make the comparison of coefficients in (1-1) and (1-3) of [4], then we obtain the relation

(2π)n∂nΘ(i/2) = Θ(i/2)ΦnD(n),

where we write D(n) for the Taylor coefficients in Romik’s series, that is, D(2n) = d(n) and
D(2n+ 1) = 0.

In order to apply Theorem 1.3 to Romik’s sequence, we must choose k = 1 there. In particular, we
should divide the above relation by Ω̃4n+1:

(2π)n∂nΘ(i/2)

Ω̃4n+1
=

Θ(i/2)ΦnD(n)

Ω̃4n+1
.

Now we use the assumption that Ω̃ = ω1/2 and the relation ω2 = 21/2πΦ from the Remark on top of
page 150 of [4]. We substitute and get, after some cancellation,

(2π)n∂nΘ(i/2)

Ω̃4n+1
=

D(n)

2n/2−1/4πn+1/2
.

Here is the first problem: π does not drop out.
This could be easily fixed: just change the normalisation by that power of π. However, that would

create another, equally serious problem. Then the (re)normalised sequence equals Romik’s sequence
(with 0s for odd indexed coefficients) up to some power of 21/2. Then Theorem 1.3, say with A = 0,
predicts a period length of the (re)normalised sequence, taken modulo p, of 2(p − 1). (The factor 2
comes from the period length of 21/2 modulo p.) Translated to Romik’s original sequence

(

d(n)
)

n≥0

(i.e., without 0s), this implies a period length of p− 1. However, this is definitely wrong. For example,
for p = 13, Romik’s sequence, taken modulo 13, begins

1, 1, 12, 12, 4, 9, 9, 3, 10, 10, 12, 1, 1, 9, 4, 4, 10, 3, 3,

1, 12, 12, 4, 9, 9, 3, 10, 10, 12, 1, 1, 9, 4, 4, 10, 3, 3, 1, 12, 12, 4, . . .

The period length is visibly 18 (= (p− 1)2/8); see Conjecture 46(1) in Section 13. Despite correspon-
dence with the authors of [4], these concerns were not dispelled.
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p ≡ 1 (mod 4) by proving the refinement (see [13, Theorem 2]2)

d
(

n+ p−1
2

)

≡ (−1)(p−5)/4(3 · 7 · 11 · · · (2p− 3))2d(n) (mod p),

for p ≡ 1 (mod 4) and n ≥ p+1
2
. (1.2)

Since on the right-hand side of this congruence we have a square, p−1
2
-fold iteration

of this congruence in combination with Fermat’s Little Theorem shows that d(n) is

(eventually) periodic modulo p with (not necessarily minimal) period length (p−1)2

4
.3

What all these authors did not notice is that periodicity was already (implicitly)
known. Namely, Rodŕıguez Villegas and Zagier showed in [9, §§ 6, 7] that Taylor coeffi-
cients of entire modular forms at complex multiplication points4 — suitably normalised
— can be computed via a certain recursive (polynomial) scheme, and they indicated that
this scheme can also be adapted to cover half-integral weights.5 Moreover, O’Sullivan
and Risager proved in [8, Theorem 6.1] (in a special case, but the argument is com-
pletely general) that integral number sequences that are produced by such a scheme
are automatically periodic modulo any prime power. On the other hand, this argument
only leads to very crude, super-exponential bounds on the period length, it cannot tell
from when on periodicity occurs, and it also cannot predict whether such a sequence
vanishes eventually modulo a prime power (thus producing a trivial period).

The purpose of the present article is to provide full proofs of all the above items
that do include explicit statements about period lengths, respectively from when on
periodicity or vanishing modulo a prime power holds. The theorem below collects our
corresponding findings (see Theorems 23, 42, and 34).

Theorem 1. (1) Let p be a prime number with p ≡ 3 (mod 4), and let e be an integer

with e ≥ 2. Then d(n) ≡ 0 (mod pe) for n ≥
⌈

(e−1)p2

2

⌉

.

(2) Let p be a prime number with p ≡ 1 (mod 4), and let e be a positive integer. Then
the sequence

(

d(n)
)

n≥e+1
is purely periodic modulo pe with (not necessarily minimal)

period length 1
4
pe−1(p− 1)2.

(3) Let e be a positive integer. The sequence (d(n))n≥0, when taken modulo any
fixed 2-power 2e with e ≥ 3, is purely periodic with (not necessarily minimal) period
length 2e−1. Modulo 4, the sequence is purely periodic with period length 4, the first few
values of the sequence (modulo 4) being given by

1, 1, 3, 3, 1, . . . .

2 Wakhare did not simplify −2(p−1)/2 modulo p on the right-hand side of the displayed congruence
in [13, Theorem 1] to (−1)(p−5)/4.

3Wakhare concludes a period length of only (p−1)2

2 . The reason is probably the missed simplification

pointed out in Footnote 2.
4τ = i is such a “complex multiplication point” for θ3
5We have worked out such a recursive scheme for producing the Taylor coefficients d(n): let the

polynomials pn(t), n ≥ 0, be given by

pn+1(t) = ( 16 − 96t2)p′n(t) + 16(4n+ 1)tpn(t)− n(n− 1
2 )(256t

2 + 4
3 )pn−1(t),

with p−1(t) = 0 and p0(t) = 1. Then p2n+1(0) = 0 and

d(n) = 2−np2n(0)

for all n ≥ 0.
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Our proof of Item (2) in fact generalises the congruence (1.2) to prime powers;
see (12.3). We remark that Larson and Smith [6] prove a result analogous to The-
orem 1(1) for Taylor expansions of modular forms of integral weight at complex multi-
plication points in some imaginary quadratic number field, for primes p ≥ 5.

The proofs of the congruence properties of d(n) listed in Theorem 1 that we provide
here are elementary throughout. They do however reveal that these congruences hold
at a much finer, polynomial level; see Remarks 10, 12, 18, 20, Theorems 31–33, and 41.

More specifically, our proofs require a careful p-adic analysis of the earlier mentioned
recursive procedure of computation of the numbers d(n). This procedure involves two
further sequences, namely

(

u(n)
)

n≥0
and

(

v(n)
)

n≥0
, and a lower triangular matrix

(

r(n, k)
)

n,k≥0
. We refer the reader to Section 2 for the corresponding definitions. In

order to accomplish the proofs of the congruence assertions in Theorem 1, we must first
analyse u(n), v(n), and r(n, k) modulo the three families of prime powers that feature
in the theorem, before we can make conclusions about d(n).

Accordingly, our article is organised as follows. In the next section, we review Romik’s
recursive procedure to compute the Taylor coefficients d(n). This section contains in
fact a notable novelty that is crucial for our proofs. Briefly, Romik defines a sequence
(

v(n)
)

n≥0
and shows that it equals the product of the matrix

(

r(n, k)
)

n,k≥0
— which

in its definition involves the sequence
(

u(n)
)

n≥0
— and the sequence

(

d(n)
)

n≥0
(seen

as column vector). At this point, one wants to invert this relation to have direct
access to the numbers d(n). This requires the computation of the inverse of the matrix
(

r(n, k)
)

n,k≥0
. In all previous papers, this point is somehow by-passed. However, as

it turns out, Lagrange inversion permits one to give a compact formula for the entries
of this inverse matrix, again in terms of the sequence

(

u(n)
)

n≥0
; see (2.11). More

specifically, we extend the matrix
(

r(n, k)
)

n,k≥0
to the larger matrix R =

(

R(n, k)
)

n,k≥0

in which the former matrix is embedded as the submatrix indexed by even labelled rows
and columns; that is, r(n, k) = R(2n, 2k) for all n and k. Our inversion result then
applies to this larger matrix which, in view of the Lagrange inversion formula, is the
one that should be looked at.

In Section 3, we recall the standard results from elementary number theory concerning
the divisibility of factorials and binomial coefficients by prime powers that we use
ubiquitously in our article.

Subsequently, we embark on the p-adic analysis of our sequences. Section 4 is de-
voted to the proof that u(n) vanishes modulo any fixed odd prime prime power pe

for large enough n. It contains two main results: Theorem 9 treats the case where
p ≡ 3 (mod 4), while Theorem 11 contains the (significant) improvement for the case
where p ≡ 1 (mod 4). The corresponding results for v(n) modulo odd prime powers
are presented in Section 5. Again there are two main results: Theorem 17 treats the
“generic case”, while Theorem 19 contains the (significant) improvement for the case
where p ≡ 1 (mod 4). The final preparations for our first main result on d(n) is done
in Section 6, where we prove a p-divisibility result for the matrix entries of the inverse
of the matrix R for primes p with p ≡ 3 (mod 4); see Theorem 22. Theorem 23 in
Section 7 is then our first main result for the sequence

(

d(n)
)

n≥0
. It says that d(n) is

divisible by prime powers pe with p ≡ 3 (mod 4) for n ≥ ⌈(e− 1)p2/2⌉ and e ≥ 2, thus
establishing Part (1) of Theorem 1.
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The next sections are devoted to the analysis of our sequences and our matrix R

modulo powers of 2. The subject of Section 8 is to show that the sequence (v(n))n≥0 is
purely periodic modulo any fixed power of 2, together with a precise statement concern-
ing the period length. As a matter of fact, Theorems 31 and 32 contain a polynomial
refinement of these assertions. In Section 9 we establish a periodicity result for the
entries of the inverse of the matrix R modulo powers of 2; see Theorem 33. These find-
ings are then put together to obtain our second main result for the sequence

(

d(n)
)

n≥0
.

Namely,
(

d(n)
)

n≥0
is purely periodic modulo 2e with (not necessarily minimal) period

length 2e−1 for e ≥ 3, while modulo 4 it starts with 1, 1, 3, 3 and then repeats itself; see
Theorem 34 in Section 10. These results establish Part (3) of Theorem 1.

The purpose of Sections 11 and 12 is to prove periodicity of
(

d(n)
)

n≥0
modulo prime

powers pe with p ≡ 1 (mod 4), accompanied by a precise statement on the period
length. The preparatory work in the former section concerns the analysis of the entries
of the inverse of the matrix R modulo these prime powers; see Theorem 41. Again,
this theorem actually contains a polynomial refinement. This is then used to prove
our third main result on d(n), namely that

(

d(n)
)

n≥e+1
is purely periodic modulo pe

with p ≡ 1 (mod 4) with (not necessarily minimal) period length 1
4
pe−1(p − 1)2, thus

establishing Part (2) of Theorem 1; see Theorem 42 in Section 12.
The final section, Section 13, addresses the question of whether our results can be

improved concerning period length, respectively point of vanishing. As is reported in
that section, (computer) data suggest that our results are not far from being optimal,
but that it may be possible to improve them by — roughly — a factor of 2. (Our
result on d(n) modulo powers of 2 in Theorem 1(3) seems to be optimal, though.) A
proof of such strengthenings would however require considerable effort involving highly
technical considerations.

2. Romik’s recursive procedure for the computation of d(n)

In order to prove integrality of the coefficients d(n) in (1.1), Romik sets up a recursive
scheme to compute these numbers from which it is immediate that it produces integers.
This scheme involves two further sequences,

(

u(n)
)

n≥0
and

(

v(n)
)

n≥0
, and a lower

triangular matrix
(

r(n, k)
)

n,k≥0
, which we are going to define next.

Let (u(n))n≥0 be the sequence defined by an exponential generating function U(t) via
(cf. [10, Eq. (9) and Lemma 5]6)

U(t) :=
∑

n≥0

u(n)

(2n+ 1)!
t2n+1 = t

2F1

[

3
4
, 3
4

3
2

; 4t2
]

2F1

[

1
4
, 1
4

1
2

; 4t2
] . (2.1)

Here, 2F1[. . . ] is the usual Gauß hypergeometric series. The reader is referred to any
standard book on special functions for the definition, such as e.g. [2, Eq. (2.1.2)]. It

6The reader should be warned that our definitions of the series U(t) and the later defined series V (t)
slightly deviate from Romik’s definitions; one gets Romik’s series from ours by dividing our U(t) by t,
and by then replacing t by t1/2. Our convention is crucial for the application of Lagrange inversion in
Proposition 2.
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is not difficult to see (cf. [10, Eq. (17)]) that an equivalent definition of u(n) is by the
recurrence

u(n) =
n
∏

j=1

(4j − 1)2 −
n−1
∑

m=0

(

2n+ 1

2m+ 1

)

(

n−m
∏

j=1

(4j − 3)2

)

u(m), with u(0) = 1. (2.2)

The first few values turn out to be

1, 6, 256, 28560, 6071040, 2098483200, 1071889920000, 758870167910400,

711206089850880000, 852336059876720640000, 1271438437097485762560000, . . .

For convenience, we shall later frequently use the short notations

Π1(N) :=
N
∏

j=1

(4j − 1)2 and Π3(N) :=
N
∏

j=1

(4j − 3)2. (2.3)

Then, using these, the above recurrence can be rewritten as

u(n) = Π1(n)−
n−1
∑

m=0

(

2n+ 1

2m+ 1

)

Π3(n−m)u(m), with u(0) = 1. (2.4)

The sequence (v(n))n≥0 is also defined via an exponential generating function, namely
by (cf. [10, Eq. (10) and Lemma 6])

∑

n≥0

v(n)

2n(2n)!
t2n = 2F1

[

1
4
, 1
4

1
2

; 4t2
]1/2

=

(

∑

j≥0

∏j
ℓ=1(4ℓ− 3)2

(2j)!
t2j

)1/2

. (2.5)

Again, it is not difficult to see (cf. [10, Eq. (20)]) that an equivalent definition of v(n)
is by the recurrence

v(n) = 2n−1Π3(n)−
1

2

n−1
∑

m=1

(

2n

2m

)

v(m)v(n−m), with v(0) = 1. (2.6)

The first few values turn out to be

1, 1, 47, 7395, 2453425, 1399055625, 1221037941375, 1513229875486875,

2526879997358510625, 5469272714829657020625, 14892997153152592003359375, . . .

The lower triangular matrix
(

r(n, k)
)

n,k≥0
is defined via the generating function U(t)

for the u(n)’s in (2.1), namely by

r(n, k) := 2n−k (2n)!

(2k)!

〈

t2n
〉

U2k(t). (2.7)

The matrix is indeed lower triangular since r(n, k) = 0 for n < k, due to the fact that
U(t) has zero constant term. For the convenience of the reader, we display the table of
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numbers r(n, k) with 0 ≤ n, k ≤ 6:

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 48 1 0 0 0 0
0 7584 240 1 0 0 0
0 2515968 97664 672 1 0 0
0 1432498176 63221760 560448 1440 1 0
0 1247557386240 60299053056 628024320 2141568 2640 1

Romik showed that the Taylor coefficients d(n) in (1.1) are related to the num-
bers v(n) via the triangular system of equations

v(n) =
n
∑

k=0

r(n, k)d(k), for all n ≥ 0. (2.8)

This may be “turned around” to obtain a recursion for the d(n)’s (cf. [10, Theorem 7]),

d(n) = v(n)−
n−1
∑

k=0

r(n, k)d(k), and d(0) = 1. (2.9)

Without any doubt, Equation (2.9) does provide a recursive way to compute the
coefficients d(n). Indeed, Scherer [11] and Wakhare [13] used it for the proof of their
results. However, in our opinion the suitability of (2.9) for the proof of congruence rela-
tions satisfied by the d(n)’s using inductive arguments is limited. It is more conceptual
to invert the relation (2.8) and express the d(n)’s entirely in terms of the v(n)’s and
the inverse of the matrix

(

r(n, k)
)

n,k≥0
.

In order to carry out this programme, we need an explicit formula for the entries
of this inverse matrix. It turns out that this can best be achieved if one defines the
(larger) infinite matrix R = (R(n, k))n,k≥0 by

R(n, k) = 2(n−k)/2n!

k!
〈tn〉Uk(t). (2.10)

Since U(t) is a power series in which even powers of t do not occur, the matrix R has
a “checkerboard pattern”; more precisely, R(n, k) 6= 0 if, and only if, n and k have
the same parity. The entries R(n, k) are in fact all integers. This follows from this
checkerboard pattern of R (implying that 2(n−k)/2 on the right-hand side of (2.10) is
always an integer) and from the exponential formula of combinatorics as Romik explains
in [10, Proof of Theorem 7] in a special case (namely in the case where both n and k are
even; the general case can be treated in the same manner). The matrix

(

r(n, k)
)

n,k≥0

is a submatrix of R since R(2n, 2k) = r(n, k) for all n and k (compare with (2.7)).

Proposition 2. The inverse R−1 of R is given by (R−1(n, k))n,k≥0 with

R−1(n, k) = 2(n−k)/2 (n− 1)!

(k − 1)!

〈

t−k
〉

U−n(t). (2.11)

Here, the case k = 0 has to be interpreted as R−1(0, 0) = 1 and R−1(n, 0) = 0 for n ≥ 1.
Moreover, R−1 has integer entries and R−1(n, k) 6= 0 only if n and k have the same
parity.
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Proof. That R−1 has integer entries is obvious since it is the inverse of a triangular
matrix with integer entries (cf. [10, Theorem 7]) and 1’s on the main diagonal.

The first assertion is a consequence of Lagrange inversion (cf. [12, Theorem 5.4.2]):
if F (t) is a formal power series with F (0) = 0 and F ′(0) 6= 0, and F (−1)(t) is its
compositional inverse, then

〈tn〉
(

F (−1)(t)
)k

=
k

n

〈

t−k
〉

F−n(t).

In order to apply this theorem to our situation, it must be observed that under the

above conditions the matrix
(

〈tn〉F k(t)
)

n,k≥0
is inverse to

(

〈tn〉
(

F (−1)(t)
)k)

n,k≥0
. If

one applies this observation with F (t) = U(t), then the assertion of the proposition
follows upon little manipulation.

With the formula (2.11) established, the parity condition follows again from the fact
that U(t) is a power series in which only odd powers of t occur. �

Using the entries of the matrix R, the system of equations (2.8) can be rewritten as

v(n) =
n
∑

k=0

R(2n, 2k)d(k), for all n ≥ 0.

If we invert this relation using the inverse matrix R−1, then we obtain

d(n) =
n
∑

k=0

R−1(2n, 2k)v(k). (2.12)

We are going to use this formula in the proofs in Sections 10 and 12.

3. Classical criteria for divisibility of factorials and binomial
coefficients by prime powers

Here and in the sequel, for a prime number p, let vp(α) denote the p-adic valuation of
the integer (or rational number) α, defined as the maximal exponent e such that α/pe

is an integer (respectively a rational number with numerator and denominator coprime
to p).

There are essentially two formulae for the p-adic valuation of a factorial. The one
that we need in this article is Legendre’s formula.

Lemma 3 (Legendre’s formula [7, p. 12]). Let N be a positive integer and p a
prime number. Then

vp(N !) =
N − sp(N)

p− 1
,

where sp(N) denotes the sum of digits in the p-adic representation of N .

Similarly, there are essentially two formulae for the p-adic valuation of a binomial
coefficient, one in terms of the number of carries when adding the involved numbers,
the other in terms of digit sums; we shall need the former one.

Lemma 4 (Kummer’s theorem [5, pp. 115–116]). Let N and K be positive integers
and p a prime number. Then vp

((

N
K

))

equals the number of carries when K and N −K
are added in terms of their p-adic representations.
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The following relation forms the link between the previous two lemmas, and it pro-
vides, at the same time, the previously mentioned alternative in computing the p-adic
valuation of a binomial coefficient.

Lemma 5. Let A and B be positive integers and p a prime number. Then

1

p− 1

(

sp(A) + sp(B)− sp(A+ B)
)

= #(carries when adding A and B in their p-adic representations).

4. The sequence (u(n))n≥0 modulo odd prime powers

In this section, we analyse the numbers u(n) modulo odd prime powers pe. The first
result is Theorem 9 which states that, for primes p congruent to 3 modulo 4 and all
integers e ≥ 2, the number u(n) vanishes modulo pe for n ≥ ⌊(e− 1)p2/2⌋. The proof of
the theorem is inductive, the start of the induction being given in Proposition 8, which
is itself based on auxiliary results in Lemma 7. In case the prime p should be congruent
to 1 modulo 4, however, a much stronger result holds; see Theorem 11. The proof of
that theorem requires two auxiliary results which we state and prove separately; cf.
Lemmas 13 and 14.

We begin by providing lower bounds on the p-adic valuations of the products Π1(N)
and Π3(N) defined in (2.3) that will be ubiquitously used in this and the next section.

Lemma 6. For all odd primes p and non-negative integers N, we have

vp
(

Π1(N)
)

≥ 2
⌊

N
p

⌋

and vp
(

Π3(N)
)

≥ 2
⌊

N
p

⌋

. (4.1)

If p ≡ 1 (mod 4), then we even have

vp
(

Π3(N)
)

≥ 2
⌊

N+ 3
4
(p−1)

p

⌋

. (4.2)

Next we state and prove the announced auxiliary results, which afterwards lead to
Proposition 8.

Lemma 7. Let p be an odd prime number, and let (u(n))n≥0 be defined by the recurrence
(2.2). Then we have

u(ap+ b) ≡ 0 (mod p), for 1 ≤ a ≤ p−1
2

and 0 ≤ b ≤ a− 1, (4.3)

and

u
(

ap+ p−1
2

+ b
)

≡ 0 (mod p), for 1 ≤ a ≤ p−1
2

and 0 ≤ b ≤ a. (4.4)

Moreover, if p ≡ 3 (mod 4), the second congruence also holds for a = 0, that is,
u
(

p−1
2

)

≡ 0 (mod p) for primes p with p ≡ 3 (mod 4).

Proof. We prove the assertions by induction on the size of ap + b and of ap + p−1
2

+ b,
simultaneously. The induction is based on the recurrence (2.2).

Now let first n = ap + b with a and b satisfying the conditions in (4.3). We want to
prove that u(n) ≡ 0 (mod p).

It is clear that the first term on the right-hand side of (2.2), the product Π1(n) =
Π1(ap+ b), is divisible by p because of (4.1).
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From Lemma 4 we infer that the binomial coefficient
(

2n+1
2m+1

)

=
(

2ap+2b+1
2m+1

)

is divisible
by p, except when 2m = cp + d with both 0 ≤ c ≤ 2a and 0 ≤ d ≤ 2b. It is important
to note that at this point the upper bounds of p−1

2
for a and b enter crucially.

If c = 0 (and hence d even since 2m = cp+d = d), then Π3(n−m) = Π3

(

ap+ b− d
2

)

is divisible by p according to (4.1). From now on we may assume that c ≥ 1.
We distinguish whether c and d are both even or both odd. (There are no other cases

since 2m = cp+ d is even.)
If both c and d are even, then, provided c > d, we may use the induction hypothe-

sis (4.3) to infer that u(m) = u
(

c
2
p+ d

2

)

is divisible by p. On the other hand, if c ≤ d,
then we have

n−m =
(

a− c
2

)

p+ b− d
2
.

Since, by assumption, we have a > b, we have

a− c
2
> b− d

2
≥ 0.

Consequently, again using (4.1), we obtain that Π3(n−m) is divisible by p.
Now let both c and d be odd. Here we may rewrite m = c

2
p+ d

2
as

m = c−1
2
p+ p−1

2
+ d+1

2
.

Furthermore, we may write

n−m =
(

a− c+1
2

)

p+ p−1
2

+ b− d−1
2
.

It should be noted that, if c ≤ d, we have a − c+1
2

> b − d+1
2

≥ 0. As a consequence,
by (4.1), we have Π3(n −m) ≡ 0 (mod p). If, on the other hand, we have c > d, then
u(m) ≡ 0 (mod p), again by the induction hypothesis (4.4).

Next we discuss the case where n = ap+ p−1
2
+b with a and b satisfying the conditions

in (4.4). We want to prove that u(n) ≡ 0 (mod p).
Again it is clear that the first term on the right-hand side of (2.2), the product

Π1(n) = Π1(ap+
p−1
2

+ b), is divisible by p because of (4.1).
In the current case, the binomial coefficient on the right-hand side of (2.2) becomes

(

2n+1
2m+1

)

=
(

(2a+1)p+2b
2m+1

)

. Here it must be observed that, because of the upper bounds on a

and b in (4.4), we have 2a+ 1 ≤ p and 2b ≤ p− 1. If a = p−1
2
, so that 2a+ 1 = p, then

by Lemma 4
(

2n+1
2m+1

)

=
(

p2+2b
2m+1

)

is divisible by p, except when 1 ≤ 2m + 1 ≤ 2b. In this
exceptional case, we have Π3(n−m) ≡ 0 (mod p) by (4.1).

We assume from now on that a < p−1
2
. From Lemma 4 we infer that the binomial

coefficient
(

2n+1
2m+1

)

=
(

(2a+1)p+2b
2m+1

)

is divisible by p, except when 2m = cp + d with both
0 ≤ c ≤ 2a+ 1 and 0 ≤ d ≤ 2b− 1.

We distinguish whether c and d are both even or both odd. (There are no other cases
since 2m = cp+ d is even.)

If both c and d are even, then, provided c > d, we may use the induction hypothe-
sis (4.3) to infer that u(m) = u

(

c
2
p+ d

2

)

is divisible by p. On the other hand, if c ≤ d,
then we have

n−m =
(

a− c
2

)

p+ p−1
2

+ b− d
2
.

Since, by assumption, we have a ≥ b, we have

a− c
2
≥ b− d

2
≥ 1.

Consequently, again using (4.1), we obtain that Π3(n−m) is divisible by p.
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Now let both c and d be odd. We may again rewrite m = c
2
p+ d

2
as

m = c−1
2
p+ p−1

2
+ d+1

2
.

Furthermore, we may write

n−m =
(

a− c−1
2

)

p+ b− d+1
2
.

Hence, according to the induction hypothesis (4.4), we have u(m) ≡ 0 (mod p) if c > d.
Otherwise we have

a− c−1
2

> b− d+1
2

≥ 0.

Hence, Π3(n−m) ≡ 0 (mod p) due to (4.1).

Finally, the congruence for u
(

p−1
2

)

in the case where p ≡ 3 (mod 4) holds because, as
is seen by inspection, the first term on the right-hand side of (2.2), the product Π1(n) =
Π1(

p−1
2
), is divisible by p2 (here, the condition p ≡ 3 (mod 4) enters crucially). �

Proposition 8. Let (u(n))n≥0 be defined by the recurrence (2.2). Then, given a prime

p ≡ 3 (mod 4) and a positive integer e, the number u(n) is divisible by p2 for n ≥
⌊

p2

2

⌋

.

Proof. Let n ≥
⌊

p2

2

⌋

= p2−1
2

. As in the proof of Lemma 7, we use again induction on n.

Also here, the induction will be based on (2.2), and it proceeds by showing that each
summand on the right-hand side is divisible by p2.

For the start of the induction, we consider n = p2−1
2

, so that 2n + 1 = p2. In that
case, there are two carries when adding 2m+1 and 2(n−m) for 0 ≤ m ≤ n− 1, except
when both of 2m + 1 or 2(n − m) are divisible by p. In the former case, Lemma 4
implies that the binomial coefficient

(

2n+1
2m+1

)

is divisible by p2. In the latter case, there

is only one carry and so the binomial coefficient
(

2n+1
2m+1

)

is only divisible by p. In its
turn, we see that u(m) is divisible by p due to (4.4) with b = 0 and the last assertion
in Lemma 7. In either case, each summand on the right-hand side of (2.2) is divisible
by p2. Furthermore, it is again clear that the first term on the right-hand side, the

product Π1(n), is divisible by p for all n ≥
⌊

p2

2

⌋

because of (4.1).

We will assume n ≥ p2+1
2

from now on.

We may restrict our attention to n ≤ p2 because otherwise either m ≥ p2+1
2

or

n − m ≥ p2+1
2

; whence, either u(m) ≡ 0 (mod p2) or Π3(n − m) ≡ 0 (mod p2).
Consequently, in this case each term on the right-hand side of (2.2) would be divisible
by p2.

To summarise the discussion so far: we may write 2n as 2n = p2 + ap+ b for some a
and b not of the same parity and with 0 ≤ a, b ≤ p− 1.

If there are two carries when adding 2m + 1 and 2(n − m), then by Lemma 4 the
binomial coefficient

(

2n+1
2m+1

)

is divisible by p2. Hence the corresponding summand on the

right-hand side of (2.2) is divisible by p2.

Now let us assume that there is only one carry when adding 2m + 1 and 2(n −m).

As earlier, if either m or n−m are larger than p2

2
, then u(m) or Π3(n−m) are divisible

by p2, and thus as well the corresponding summand on the right-hand side of (2.2). We
may therefore assume without loss of generality that 2m = cp + d with c ≤ p−1

2
. We
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may furthermore assume that d ≤ b since, otherwise, there would be two carries when
adding 2m+ 1 and 2(n−m).

We distinguish again whether c and d are both even or both odd.
Let first c and d be even. We write m = c

2
p + d

2
. If c > d, then by (4.3), we infer

u(m) ≡ 0 (mod p). If c ≤ d, then we may write

n−m =
(

p+a−c
2

)

p+ b−d
2

=
(

p+a−c−1
2

)

p+ p−1
2

+ b−d+1
2

and, depending on the parities of a and b, use the alternative which has an integer
coefficient in front of p. By our assumptions, we have

p+a−c
2

> b+a−c
2

≥ b−c
2

≥ b−d
2

≥ 0.

If a = 0 then b must be odd, implying that the last inequality is strict so that p+a−c−1
2

=
p−c−1

2
is also positive. By (4.1), regardless whether a = 0 or not, this implies that

Π3(n − m) ≡ 0 (mod p). In total, in both cases this shows that the corresponding
summand in (2.2) is divisible by p2.

Now let c and d be odd. Here we write m = c−1
2
p+ p−1

2
+ d+1

2
. If c > d, then by (4.4),

we infer u(m) ≡ 0 (mod p). If c ≤ d, then we may again write

n−m =
(

p+a−c
2

)

p+ b−d
2

=
(

p+a−c−1
2

)

p+ b−d+1
2

.

Arguing as before, we conclude that Π3(n − m) ≡ 0 (mod p). This shows again that
the corresponding summand in (2.2) is divisible by p2.

If there is no carry when adding 2m+1 and 2(n−m), then necessarily one of 2m+1
or 2(n −m) is at least p2 + 1. So, again, one of u(m) or Π3(n −m) is divisible by p2

due to the induction hypothesis, respectively due to (4.1).

This completes the proof of the proposition. �

The following theorem proves Conjecture 18(1) in [13] for u(n).

Theorem 9. Let (u(n))n≥0 be defined by the recurrence (2.2). Then, given a prime

p ≡ 3 (mod 4) and an integer e ≥ 2, the number u(n) is divisible by pe for n ≥
⌊

(e−1)p2

2

⌋

.

Proof. We proceed by a double induction on e and n, the outer induction being on e.
For the start of the induction, we use Proposition 8 which proves the assertion of the
theorem for e = 2. From now on let e ≥ 3.

We assume that
⌊

(e−1)p2

2

⌋

≤ n <
⌊

ep2

2

⌋

. We claim that the first term on the right-hand

side of (2.2), namely Π1(n), is always divisible by pe under this assumption. Indeed, by
(4.1) we have

vp (Π1(n)) ≥ 2
⌊

n
p

⌋

≥ 2
⌊

1
p

⌊

(e−1)p2

2

⌋⌋

≥ 2
⌊

(e−1)p
2

− 1
2p

⌋

≥ 2
(

3(e−1)
2

− 1
)

≥ e (4.5)

for e ≥ 3. The conclusion vp (Π1(n)) ≥ e holds however as well for e = 2 as shown by a
modification of the final part of the estimation:

vp (Π1(n)) ≥ 2
⌊

n
p

⌋

≥ · · · ≥ 2
⌊

p
2
− 1

2p

⌋

= 2
(

p
2
− 1

2

)

≥ 2. (4.6)

Next we consider the summand on the right-hand side of (2.2) for
⌊

(f−1)p2

2

⌋

≤ m <
⌊

fp2

2

⌋

with 2 ≤ f ≤ e − 2. By the induction hypothesis applied to u(m), we have
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vp(u(m)) ≥ f . Furthermore we have

n−m >
⌊

(e−1)p2

2

⌋

−
⌊

fp2

2

⌋

≥
⌊

(e−f−1)p2

2

⌋

.

Therefore, by replacing n by n−m and e by e− f in (4.5) and (4.6), we get

vp (Π3(n−m)) ≥ e− f (4.7)

since e − f ≥ 2. We infer that vp
(

u(m)Π3(n −m)
)

≥ f + (e − f) = e, and hence the
corresponding summand in (2.2) is divisible by pe.

Let now 0 ≤ m <
⌊

p2

2

⌋

. In that case, the previous argument yields that n − m >
⌊

(e−2)p2

2

⌋

, with the consequence that we only have vp(Π3(n−m)) ≥ e−1. It may be that

actually n−m ≥
⌊

(e−1)p2

2

⌋

. Then the estimation (4.7) implies that vp(Π3(n−m)) ≥ e,

so that the corresponding summand in (2.2) is divisible by pe. On the other hand,

if
⌊

(e−2)p2

2

⌋

≤ n − m <
⌊

(e−1)p2

2

⌋

, then we may write 2n = (e − 1)p2 + ap + b and

2(n − m) = (e − 2)p2 + cp + d for some a, b, c, d with 0 ≤ a, b, c, d ≤ p − 1. Since
2m+1 < p2, there is (at least) one carry when adding 2(n−m) and 2m+1. Therefore, by
Lemma 4, the binomial coefficient

(

2n+1
2m+1

)

is divisible by p. Together with the previously
observed fact that vp(Π3(n−m)) ≥ e− 1 this shows that the corresponding summand
in (2.2) is divisible by pe.

Finally, let
⌊

(e−2)p2

2

⌋

≤ m <
⌊

(e−1)p2

2

⌋

. The induction hypothesis (in n) implies that

in this case we have vp(u(m)) ≥ e − 1. We write 2n + 1 = (e − 1)p2 + ap + b and

2m+1 = (e−2)p2+cp+d for some a, b, c, d with 0 ≤ a, b, c, d ≤ p−1. If n−m ≥
⌊

p2

2

⌋

,

then by (4.6) we obtain vp(Π3(n−m)) ≥ 1. If, on the other hand, we have n−m <
⌊

p2

2

⌋

,

then there is (at least) one carry when adding 2m + 1 and 2(n − m) in their p-adic
representations. Therefore, by Lemma 4, the binomial coefficient

(

2n+1
2m+1

)

is divisible
by p. In either case, together with the previously observed fact that vp(u(m)) ≥ e− 1
this shows that the corresponding summand in (2.2) is divisible by pe.

This concludes the induction step, and, thus, the proof of the theorem. �

Remark 10. An examination of the above arguments reveals that the products Π1(n)
and Π3(n) in the definition (2.4) could have been replaced with any functions f(n) and
g(n) that satisfy the p-divisibility properties in (4.1).

Theorem 11. Let (u(n))n≥0 be defined by the recurrence (2.2). Then, given a prime
p ≡ 1 (mod 4) and a positive integer e, the number u(n) is divisible by pe for n ≥

⌈

ep
2

⌉

.

Moreover, the number u
(

p−1
2

)

is a quadratic residue modulo p and relatively prime to p.

Proof. We begin with the second assertion. Setting n = p−1
2

in (2.2)/(2.4), we obtain

u
(

p−1
2

)

= Π1

(

p−1
2

)

−
(p−3)/2
∑

m=0

(

p

2m+ 1

)

Π3

(

p−1
2

)

u(m).

Due to the range of the sum on the right-hand side, the binomial coefficient is always
divisible by p. Therefore, we have

u
(

p−1
2

)

≡ Π1

(

p−1
2

)

(mod p). (4.8)
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The assertion now follows by observing that Π1

(

p−1
2

)

is a square not divisible by p.

For the proof of the first assertion, we proceed again by a double induction on e
and n, the outer induction being on e. The theorem is trivial for e = 0, which serves
as the start of the induction.

We divide the proof into subtasks. At many places, the argument depends on the
parity of e and/or on the distance of n from its lower bound

⌈

ep
2

⌉

.

Task 1: The first term on the left-hand side of (2.4) vanishes modulo
pe for even e. By (4.1), we have

vp
(

Π1(n)
)

≥ 2
⌊

n
p

⌋

≥ 2

⌊

⌈ ep
2 ⌉
p

⌋

≥ 2
⌊

e
2

⌋

= e,

as desired, since e is even.

Task 2: The assertion holds for n ≥
⌈

(e+1)p
2

⌉

. Under this assumption we have

vp
(

Π1(n)
)

≥ 2
⌊

n
p

⌋

≥ 2

⌊

⌈ (e+1)p
2 ⌉
p

⌋

≥ 2
⌊

e+1
2

⌋

≥ e,

which shows that the first term on the right-hand side of (2.4) vanishes modulo pe.
Next we consider the summand on the right-hand side of (2.4). For m ≥

⌈

ep
2

⌉

, the
term u(m) is divisible by pe by the inductive hypothesis (with respect to n), hence

the corresponding summand vanishes modulo pe. Now let
⌈

(f−1)p
2

⌉

≤ m <
⌈

fp
2

⌉

with

1 ≤ f ≤ e. Our conditions imply that

n−m ≥
⌈

(e+ 1)p

2

⌉

−
⌈

fp

2

⌉

+ 1 ≥
⌈

(e+ 1− f)p

2

⌉

.

Therefore, by using (4.2) we obtain

vp
((

Π3(n−m)
)

u(m)
)

≥ 2

⌊

⌈ (e+1−f)p
2 ⌉+ 3

4
(p−1)

p

⌋

+ f − 1 ≥ (e− f + 1) + f − 1 = e,

which shows that also in this case the corresponding summand vanishes modulo pe.

From now on we assume that n <
⌈

(e+1)p
2

⌉

or, more precisely, integrating the overall

assumption, that
⌈

ep
2

⌉

≤ n <
⌈

(e+1)p
2

⌉

.

Task 3: p-adic analysis of the summand in (2.4) for
⌈

ep
2

⌉

≤ n <
⌈

(e+1)p
2

⌉

.

As before, by the induction hypothesis of the induction on n, the term u(m) in the sum
in (2.4) is divisible by pe for m ≥

⌈

ep
2

⌉

, and thus is the corresponding summand.

Next we consider the summand on the right-hand side of (2.4) for
⌈

(f−1)p
2

⌉

≤ m <
⌈

fp
2

⌉

with 1 ≤ f ≤ e. Our conditions imply n − m ≥
⌈

ep
2

⌉

−
⌈

fp
2

⌉

+ 1 ≥
⌈

(e−f)p
2

⌉

.

Therefore, by using (4.2) we obtain

vp
((

Π3(n−m)
)

u(m)
)

≥ 2

⌊

⌈ (e−f)p
2 ⌉+ 3

4
(p−1)

p

⌋

+ f − 1 ≥ (e− f) + f − 1 = e− 1.
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Our goal is to show that the summand is divisible by pe. We claim that this is indeed
the case as long as e is even, or e is odd and m 6= fp−1

2
for odd f . We must therefore

prove that the binomial coefficient in (2.4) is divisible by p in these cases.
To see this, we consider the p-adic representations of 2m + 1 and 2n − 2m. Since

m 6= fp−1
2

, (this condition is essential for the first line below), these are

(2m+ 1)p = (f − 1)p ∗
(

2n− 2m
)

p
= (e− f)p ∗ (4.9)

Here, (α)p denotes the p-adic representation of the integer α, and the stars on the
right-hand sides indicate the right-most digits of (2m + 1)p and (2n − 2m)p whose
precise values are irrelevant. The sum of 2m + 1 and 2n − 2m is 2n + 1 whose p-adic
representation has the form (e)p ∗. Hence, when adding the two numbers on the right-
hand sides of (4.9), at least one carry must occur — namely one from the p0-digit to
the p1-digit. By Kummer’s theorem in Lemma 4, the consequence is that the binomial
coefficient

(

2n+1
2m+1

)

is divisible by p. Therefore the corresponding summand is divisible
by pe.

In order to summarise our findings so far:

(1) By Task 2 the assertion of the theorem holds for n ≥
⌈

(e+1)p
2

⌉

.

(2) For even e and
⌈

ep
2

⌉

≤ n <
⌈

(e+1)p
2

⌉

we have shown that all summands of the

sum on the right-hand side of (2.4) are divisible by pe. Since in Task 1 we have
proved that also the first term on the right-hand side of (2.4) is divisible by pe,
this establishes the assertion of the theorem for even e.

(3) For odd e and
⌈

ep
2

⌉

≤ n <
⌈

(e+1)p
2

⌉

we have shown that all summands of the

sum on the right-hand side of (2.4) vanish modulo pe except for those where m
is of the form p−1

2
+ ip for some non-negative integer i.

Hence, it remains to discuss the case where e is odd and
⌈

ep
2

⌉

≤ n <
⌈

(e+1)p
2

⌉

.

Task 4: e is odd and
⌈

ep
2

⌉

≤ n <
⌈

(e+1)p
2

⌉

. By Item (3) above, the relation (2.4)

reduces modulo pe to

u(n) ≡ Π1(n)−
(e−1)/2
∑

i=0

(

2n+ 1

(2i+ 1)p

)

Π3

(

n− p−1
2

− ip
)

u
(

p−1
2

+ ip
)

(mod pe). (4.10)

By the induction hypothesis, we know that

vp
(

u
(

p−1
2

+ ip
))

≥ 2i. (4.11)

Furthermore, by (4.1) we have

vp
(

Π3

(

n− p−1
2

− ip
))

≥ 2
⌊

1
p

(

n− p−1
2

− ip
)

⌋

≥ 2
⌊

1
p

(

(e−2i−1)p
2

)⌋

≥ e− 2i− 1, (4.12)

since e is odd. In particular, the inequalities (4.11) and (4.12) together imply that

vp
(

Π3

(

n− p−1
2

− ip
)

u
(

p−1
2

+ ip
))

≥ e− 1.
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Consequently, we may consider the binomial coefficient in (4.10) modulo p. Now we
use the elementary congruence

(

ap+ r

bp

)

≡
(

ap

bp

)

(mod p)

for positive integers a, b, r with 1 ≤ r < p. Since the assumptions of the case in which
we are imply that ep+ 2 ≤ 2n+ 1 ≤ (e+ 1)p− 1, we infer that

(

2n+ 1

(2i+ 1)p

)

≡
(

ep

(2i+ 1)p

)

(mod p).

Thus, we see that the congruence (4.10) is equivalent with

u(n) ≡ Π1(n)−
(e−1)/2
∑

i=0

(

ep

(2i+ 1)p

)

Π3

(

n− p−1
2

− ip
)

u
(

p−1
2

+ ip
)

(mod pe). (4.13)

On the other hand, the inequality (4.12) also implies that we may consider the term
u
(

p−1
2

+ ip
)

in (4.13) modulo p2i+1. This allows us to use Lemma 14 with e replaced by
2i+ 1. The corresponding substitution in (4.13) gives

u(n) ≡ Π1(n)−
(e−1)/2
∑

i=0

(

ep

(2i+ 1)p

)

Π3

(

n− p−1
2

− ip
)

·
∑

k≥0

∑

i=α0>α1>···>αk≥0

(−1)kΠ1

(

p−1
2

+ αkp
)

·
k−1
∏

j=0

(

(2αj + 1)p

(2αj+1 + 1)p

)

Π3

(

(αj − αj+1)p
)

(mod pe). (4.14)

We have

Π3

(

n− p−1
2

− ip
)

= Π3

(

ep−2i−1
2

)

n− p−1
2

−ip
∏

j=
(e−2i−1)p

2
+1

(4j − 3)2. (4.15)

Moreover, by (4.1), and remembering that i = α0, we get

vp

(

Π3

(

(e−2i−1)p
2

)

Π1

(

p−1
2

+ αkp
)

k−1
∏

j=0

Π3

(

(αj − αj+1)p
)

)

≥ (e− 2i− 1) + 2αk +
k−1
∑

j=0

2(αj − αj+1) = e− 1.
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This allows us to consider the product on the right-hand side of (4.15) modulo p, once
that equation is substituted in (4.14). The result then is

u(n) ≡ Π1(n)−
( n− ep−1

2
∏

j=1

(4j − 3)2
) (e−1)/2
∑

i=0

(

ep

(2i+ 1)p

)

Π3

(

(e−2i−1)p
2

)

·
∑

k≥0

∑

i=α0>α1>···>αk≥0

(−1)kΠ1

(

p−1
2

+ αkp
)

·
k−1
∏

j=0

(

(2αj + 1)p

(2αj+1 + 1)p

)

Π3

(

(αj − αj+1)p
)

(mod pe). (4.16)

Here we see that, in the sum, for k ≥ 1 the term for

i = e−1
2

= α0 > α1 > · · · > αk ≥ 0

cancels with the term for
e−1
2

> α′
0 > α′

1 > · · · > α′
k−1 ≥ 0,

where α′
j = αj+1 for j = 0, 1, . . . , k − 1. After this cancellation, the only remaining

term in the sum is the one for k = 0 and α0 =
e−1
2
. In this regard, we have

( n− ep−1
2

∏

j=1

(4j − 3)2

)

Π1

(

p−1
2

+ α0p
)

≡
( n− ep−1

2
∏

j=1

(4j + 2p+ 4α0p− 3)2

)

Π1

(

p−1
2

+ α0p
)

≡ Π1(n) (mod pe)

since, again using (4.1),

vp
(

Π1

(

p−1
2

+ α0p
))

= vp
(

Π1

(

p−1
2

+ e−1
2
p
))

≥ e− 1.

Consequently, this term cancels with the first term on the right-hand side of (4.16).

This concludes the induction step, and hence the proof of the theorem is now com-
plete. �

Remark 12. An examination of the above arguments (including the proofs of Lemmas 13
and 14 which are used in the above proof) reveals that the products Π1(n) and Π3(n)
in the definition (2.4) could have been replaced with any functions f(n) and g(n) that
satisfy the p-divisibility properties in (4.1) and (4.2), and where f(n) is a quadratic
residue modulo p not divisible by p.

Lemma 13. We assume that, given a prime p ≡ 1 (mod 4) and an odd positive inte-
ger e, the number u(n) is divisible by ph for n ≥

⌈

hp
2

⌉

and h < e. Then

u
(

ep−1
2

)

≡ Π1

(

ep−1
2

)

−
(e−1)/2
∑

i=1

(

ep

2ip

)

Π3(ip) u
(

ep−1
2

− ip
)

(mod pe). (4.17)

Proof. We put n = ep−1
2

in (2.4) and consider the summand indexed by m on the

right-hand side for
⌈

(f−1)p
2

⌉

≤ m <
⌈

fp
2

⌉

with 1 ≤ f ≤ e. By our assumption on the

divisibility of u(m) by powers of p and by (4.2), we have

vp
((

Π3

(

ep−1
2

−m
))

u(m)
)

≥ 2
⌊ ep−1

2
−m+ 3

4
(p−1)

p

⌋

+ f − 1.
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Our conditions imply ep−1
2

−m ≥ ep−1
2

−
⌈

fp
2

⌉

+ 1 ≥
⌈

(e−f)p
2

⌉

. Therefore, we obtain

vp
((

Π3

(

ep−1
2

−m
))

u(m)
)

≥ 2

⌊

⌈ (e−f)p
2 ⌉+ 3

4
(p−1)

p

⌋

+ f − 1 ≥ (e− f) + f − 1 = e− 1.

In order to show that the summand is indeed divisible by pe for m not of the form
ep−1
2

−ip = p−1
2
+ e−2i−1

2
p for some i, we must therefore prove that the binomial coefficient

in (2.4) is divisible by p in this case. To see this, we consider the p-adic representations
of 2m + 1 and ep − 1 − 2m. Since m is not of the form p−1

2
+ sp (this condition is

essential for the first line below), these are

(2m+ 1)p = (f − 1)p ∗
(

ep− 1− 2m
)

p
= (e− f)p ∗ (4.18)

As before, (α)p denotes the p-adic representation of the integer α, and the stars on the
right-hand sides indicate the right-most digits of (2m + 1)p and (ep− 1− 2m)p whose
precise values are irrelevant. The sum of 2m + 1 and ep − 1 − 2m is ep whose p-adic
representation has the form (e)p ∗. Hence, when adding the two numbers on the right-
hand sides of (4.18), at least one carry must occur — namely one from the p0-digit to
the p1-digit. By Kummer’s theorem in Lemma 4, the consequence is that the binomial
coefficient

(

ep
2m+1

)

is divisible by p. Therefore the corresponding summand is divisible
by pe.

This proves that, under our assumptions, the only summands which “survive” on the
right-hand side of (2.4) modulo pe are those for which m is of the form p−1

2
+ sp for

some s. This leads directly to (4.17). �

By iteration of the recurrence in (4.17), we obtain the following non-recursive con-
gruence.

Lemma 14. Under the assumptions of Lemma 13, we have

u
(

ep−1
2

)

≡
∑

k≥0

∑

e−1
2

=α0>α1>···>αk≥0

(−1)kΠ1

(

p−1
2

+ αkp
)

·
k−1
∏

j=0

(

(2αj + 1)p

(2αj+1 + 1)p

)

Π3

(

(αj − αj+1)p
)

(mod pe). (4.19)

Proof. We show the claim by an induction on e. For the start of the induction, we
observe that for e = 1 the sum on the right-hand side of (4.19) reduces to a single term
for k = 0 and α0 = 0, which turns out to equal u(p−1

2
), in agreement with the claim.

For the induction step, we observe that, by (4.1), we have vp
(

Π3(ip)
)

≥ 2i. Hence we

may consider the term u
(

ep−1
2

− ip
)

in (4.17) modulo pe−2i. This allows us to substitute
the right-hand side of (4.19) for e replaced by e− 2i in (4.17). If, at the same time, we
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replace αj by αj+1 for all j, then this leads us to

u
(

ep−1
2

)

≡ Π1

(

ep−1
2

)

−
(e−1)/2
∑

i=1

(

ep

(e− 2i)p

)

Π3(ip)
∑

k≥0

∑

e−1
2

−i=α1>α2>···>αk+1≥0

(−1)kΠ1

(

p−1
2

+ αk+1p
)

·
k
∏

j=1

(

(2αj + 1)p

(2αj+1 + 1)p

)

Π3

(

(αj − αj+1)p
)

(mod pe).

Setting α0 =
e−1
2
, we realise that the right-hand side can be put together in the form of

the expression on the right-hand side of (4.19) with k replaced by k+1. This concludes
the induction step and, hence, the induction argument. �

5. The sequence (v(n))n≥0 modulo odd prime powers

Here, we analyse the numbers v(n) modulo odd prime powers pe. The first result is
Theorem 17 which says that v(n) vanishes modulo pe for n ≥ ⌈(e− 1)p2/2⌉, for all odd
primes and all integers e ≥ 2. Also here, the proof of the theorem is inductive, the start
of the induction being given in Proposition 16, which is itself based on auxiliary results
in Lemma 15. Again, should the prime p be congruent to 1 modulo 4, Theorem 17 can
be significantly improved; see Theorem 19.

We begin with the announced auxiliary results, which afterwards lead to Proposi-
tion 16.

Lemma 15. Let p be an odd prime number, and let (v(n))n≥0 be defined by the recur-
rence (2.6). Then we have

v(ap+ b) ≡ 0 (mod p), for 1 ≤ a ≤ p−1
2

and 0 ≤ b ≤ a− 1, (5.1)

and

v
(

ap+ p+1
2

+ b
)

≡ 0 (mod p), for 1 ≤ a ≤ p−1
2

and 0 ≤ b ≤ a− 1. (5.2)

Proof. We prove the assertions by induction on the size of ap + b and of ap + p+1
2

+ b,
simultaneously. The induction is based on the recurrence (2.6). It is clear that the first
term on the right-hand side, the product 2n−1Π3(n) = 2n−1Π3(ap+ b), is divisible by p
because of (4.1).

Now let first n = ap + b with a and b satisfying the conditions in (5.1). We want to
prove that v(n) ≡ 0 (mod p).

From Lemma 4 we infer that the binomial coefficient
(

2n
2m

)

=
(

2ap+2b
2m

)

is divisible by p,
except when 2m = cp + d with both 0 ≤ c ≤ 2a and 0 ≤ d ≤ 2b. It is important to
note that at this point the upper bounds of p−1

2
for a and b enter crucially.

If c = 0 (and hence d even since 2m = cp + d = d), then v(n−m) = v
(

ap+ b− d
2

)

is divisible by p according to the induction hypothesis. From now on we may assume
that c ≥ 1.

We distinguish whether c and d are both even or both odd. (There are no other cases
since 2m = cp+ d is even.)
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If both c and d are even, then, provided c > d, we may use the induction hypothe-
sis (5.1) to infer that v(m) = v

(

c
2
p+ d

2

)

is divisible by p. On the other hand, if c ≤ d,
then we have

n−m =
(

a− c
2

)

p+ b− d
2
.

Since, by assumption, we have a > b, we have

a− c
2
> b− d

2
≥ 0.

Consequently, again using the induction hypothesis (5.1), we obtain that v(n − m) is
divisible by p.

Now let both c and d be odd. Here we may rewrite m = c
2
p+ d

2
as

m = c−1
2
p+ p+1

2
+ d−1

2
.

Furthermore, we may write

n−m =
(

a− c+1
2

)

p+ p+1
2

+ b− d+1
2
.

It should be noted that, if c ≤ d, we have a− c+1
2

> b− d+1
2

≥ 0. As a consequence, by
the induction hypothesis (5.2), we have v(n −m) ≡ 0 (mod p). If, on the other hand,
we have c ≥ d, then v(m) ≡ 0 (mod p), again by the induction hypothesis (5.2).

Next we discuss the case where n = ap+ p+1
2
+b with a and b satisfying the conditions

in (5.2). We want to prove that v(n) ≡ 0 (mod p).
In the current case, the binomial coefficient on the right-hand side of (2.6) becomes

(

2n
2m

)

=
(

(2a+1)p+2b+1
2m

)

. Here it must be observed that, because of the upper bounds on a

and b in (5.2), we have 2a+ 1 ≤ p and 2b + 1 ≤ p− 1. If a = p−1
2
, so that 2a + 1 = p,

then, by Lemma 4,
(

2n
2m

)

=
(

p2+2b+1
2m

)

is divisible by p, except when 2 ≤ 2m ≤ 2b. In
this exceptional case, we have v(n−m) ≡ 0 (mod p) by induction hypothesis.

We assume from now on that a < p−1
2
. From Lemma 4 we infer that the binomial

coefficient
(

2n
2m

)

=
(

(2a+1)p+2b+1
2m

)

is divisible by p, except when 2m = cp + d with both
0 ≤ c ≤ 2a+ 1 and 0 ≤ d ≤ 2b+ 1.

We distinguish whether c and d are both even or both odd. (There are no other cases
since 2m = cp+ d is even.)

If both c and d are even, then, provided c > d, we may use the induction hypothe-
sis (5.1) to infer that v(m) = v

(

c
2
p+ d

2

)

is divisible by p. On the other hand, if c ≤ d,
then we have

n−m =
(

a− c
2

)

p+ p+1
2

+ b− d
2
.

Since, by assumption, we have a > b, we have

a− c
2
> b− d

2
≥ 0.

Consequently, using the induction hypothesis (5.2), we obtain that v(n−m) is divisible
by p.

Now let both c and d be odd. We may again rewrite m = c
2
p+ d

2
as

m = c−1
2
p+ p+1

2
+ d−1

2
.

Furthermore, we may write

n−m =
(

a− c−1
2

)

p+ b− d−1
2
.
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Hence, according to the induction hypothesis (5.2), we have v(m) ≡ 0 (mod p) if
c > d, and otherwise we have v(n − m) ≡ 0 (mod p) according to the induction
hypothesis (5.1). �

Proposition 16. Let (v(n))n≥0 be defined by the recurrence (2.6). Then, given an odd

prime p, the number v(n) is divisible by p2 for n ≥
⌈

p2

2

⌉

.

Proof. Let n ≥
⌈

p2

2

⌉

= p2+1
2

. Again we use induction on n. The induction will be

based on (2.6), and it proceeds by showing that each summand on the right-hand side
is divisible by p2.

It is again clear that the first term on the right-hand side, the product Π3(n) =
Π3(ap+ b), is divisible by p2 because of (4.1).

In the sequel, we may restrict our attention to n < p2 because otherwise either

m ≥ p2+1
2

or n − m ≥ p2+1
2

. The induction hypothesis then implies that either
v(m) ≡ 0 (mod p2) or v(n−m) ≡ 0 (mod p2), and therefore each term on the right-hand
side of (2.6) would be divisible by p2.

To summarise the discussion so far: we may write 2n as 2n = p2 + ap+ b for some a
and b not of the same parity and with 0 ≤ a, b ≤ p− 1.

If there are two carries when adding 2m and 2(n − m) in their p-adic representa-
tions, then, by Lemma 4, the binomial coefficient

(

2n
2m

)

is divisible by p2. Hence the
corresponding summand on the right-hand side of (2.6) is divisible by p2.

Now let us assume that there is only one carry when adding 2m and 2(n − m) in

their p-adic representations. As earlier, if either m or n − m is larger than p2

2
, then

v(m) or v(n − m) is divisible by p2, and thus as well the corresponding summand on
the right-hand side of (2.6). We may therefore assume without loss of generality that
2m = cp + d with c ≤ p−1

2
. Furthermore, we have d ≤ b since, otherwise, there would

be two carries when adding 2m and 2n− 2m in their p-adic representations.
We distinguish again whether c and d are both even or both odd.
Let first c and d be even. We write m = c

2
p + d

2
. If c > d, then, by (5.1), we infer

v(m) ≡ 0 (mod p). If c ≤ d, then we may write

n−m =
(

p+a−c
2

)

p+ b−d
2

=
(

p+a−c−1
2

)

p+ p+1
2

+ b−d−1
2

.

We use one of the two expressions, depending on the parities of a and b (the reader
should recall that a and b have different parities), so that the fractions produce integers.
By our assumptions, we have

p+a−c
2

> b+a−c
2

≥ b−c
2

≥ b−d
2

≥ 0.

By Lemma 15, this implies that v(n − m) ≡ 0 (mod p). In total, in both cases this
shows that the corresponding summand in (2.6) is divisible by p2.

Now let c and d be odd. Here we write m = c−1
2
p+ p+1

2
+ d−1

2
. If c > d, then by (5.2),

we infer v(m) ≡ 0 (mod p). If c ≤ d, then we may again write

n−m =
(

p+a−c
2

)

p+ b−d
2

=
(

p+a−c−1
2

)

p+ p+1
2

+ b−d−1
2

.

Arguing as before, we conclude that v(n−m) ≡ 0 (mod p). This shows again that the
corresponding summand in (2.6) is divisible by p2.
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If there is no carry when adding 2m and 2(n − m) in their p-adic representations,
then necessarily one of 2m or 2(n − m) is at least p2 + 1. So, again, one of v(m) or
v(n−m) is divisible by p2 due to the induction hypothesis.

This completes the proof of the proposition. �

The following theorem proves Conjecture 18(1) in [13] for v(n).

Theorem 17. Let (v(n))n≥0 be defined by the recurrence (2.6). Then, given an odd

prime p and a positive integer e ≥ 2, the number v(n) is divisible by pe for n ≥
⌈

(e−1)p2

2

⌉

.

Proof. In analogy with the proof of Theorem 9, we proceed by a double induction
on e and n, the outer induction being on e. For the start of the induction, we use
Proposition 16 which proves the assertion of the theorem for e = 2. From now on let
e ≥ 3.

We assume that
⌈

(e−1)p2

2

⌉

≤ n <
⌈

ep2

2

⌉

. We claim that the first term on the right-

hand side of (2.6), namely 2n−1Π3(n), is always divisible by pe under this assumption.
Indeed, by (4.1) we have

vp
(

2n−1Π3(n)
)

≥ 2
⌊

n
p

⌋

≥ 2
⌊

1
p

⌈

(e−1)p2

2

⌉⌋

≥ 2
⌊

(e−1)p
2

⌋

≥ 2(e− 1) ≥ e

for e ≥ 3.

Next we consider the summand on the right-hand side of (2.6) for
⌈

(f−1)p2

2

⌉

≤ m <
⌈

fp2

2

⌉

with 2 ≤ f ≤ e − 2. By the induction hypothesis applied to v(m), we have

vp(v(m)) ≥ f . Furthermore we have

n−m >
⌈

(e−1)p2

2

⌉

−
⌈

fp2

2

⌉

=
⌈

(e−f−1)p2

2

⌉

− χ(e, f odd),

where χ(A) = 1 if A is true and χ(A) = 0 otherwise. The above inequality implies

n−m ≥
⌈

(e−f−1)p2

2

⌉

.

Therefore, if we apply the induction hypothesis to v(n − m), then we obtain
vp(v(n − m)) ≥ e − f . We infer that vp

(

v(m)v(n − m)
)

≥ f + (e − f) = e, and
hence the corresponding summand in (2.6) is divisible by pe.

Let now 0 ≤ m <
⌈

p2

2

⌉

. In that case, the previous argument only shows that

n − m ≥
⌈

(e−2)p2

2

⌉

, with the consequence that we only have vp(v(n − m)) ≥ e − 1.

It might be that actually n − m ≥
⌈

(e−1)p2

2

⌉

. Then the induction hypothesis (in n)

implies that vp(v(n−m)) ≥ e, so that the corresponding summand in (2.6) is divisible

by pe. On the other hand, if
⌈

(e−2)p2

2

⌉

≤ n − m <
⌈

(e−1)p2

2

⌉

, then we may write

2n = (e − 1)p2 + ap + b and 2(n − m) = (e − 2)p2 + cp + d for some a, b, c, d with
0 ≤ a, b, c, d ≤ p− 1. Then there is (at least) one carry when adding 2(n−m) and 2m
in their p-adic representations. Therefore, by Lemma 4, the binomial coefficient

(

2n
2m

)

is
divisible by p, and together with the previously observed fact that vp(v(n−m)) ≥ e−1
this shows that the corresponding summand in (2.6) is divisible by pe.
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Finally, let
⌈

(e−2)p2

2

⌉

≤ m <
⌈

(e−1)p2

2

⌉

. The induction hypothesis (in n) implies that

in this case we have vp(v(m)) ≥ e− 1. If n−m ≥
⌈

p2

2

⌉

, then the induction hypothesis

(in n) implies that v(n − m) is divisible by p2, so that the corresponding summand

in (2.6) is divisible by pe. On the other hand, if 0 ≤ n − m <
⌈

p2

2

⌉

, then we may

write 2n = (e − 1)p2 + ap + b and 2m = (e − 2)p2 + cp + d for some a, b, c, d with
0 ≤ a, b, c, d ≤ p− 1. Then there is (at least) one carry when adding 2(n−m) and 2m
in their p-adic representations. Therefore, by Lemma 4, the binomial coefficient

(

2n
2m

)

is divisible by p, and together with the previously observed fact that vp(v(m)) ≥ e− 1
this shows that the corresponding summand in (2.6) is divisible by pe.

This concludes the induction step, and, thus, the proof of the theorem. �

Remark 18. An examination of the above arguments reveals that the product Π3(n) in
the definition (2.6) could have been replaced with any function f(n) that satisfies the
p-divisibility property in (4.1).

Theorem 19. Let (v(n))n≥0 be defined by the recurrence (2.6). Then, given a prime
p ≡ 1 (mod 4) and a positive integer e, the number v(n) is divisible by pe for n ≥

⌈

ep
2

⌉

.

Proof. In analogy with the proof of Theorem 9, we proceed by a double induction on e
and n, the outer induction being on e. Clearly, the theorem is trivial for e = 0, which
serves as the start of the induction.

Now let n ≥
⌈

ep
2

⌉

. Hence, by (4.2) for n ≥ ⌈ep/2⌉ we have

vp
(

Π3(n)
)

≥ 2

⌊

⌈

ep
2

⌉

+ 3
4
(p− 1)

p

⌋

≥ 2

⌊

e

2
+

3

4
− 3

4p

⌋

≥ e.

Thus, the first term on the right-hand side of (2.6) is divisible by pe.

We consider the summand on the right-hand side of (2.6) for
⌈

fp
2

⌉

≤ m <
⌈

(f+1)p
2

⌉

with 0 ≤ f < e. By the induction hypothesis applied to v(m), we have vp(v(m)) = f .
On the other hand, if we apply the induction hypothesis to v(n −m), then we obtain
vp(v(n − m)) = e − f − 1 or vp(v(n − m)) = e − f , depending on whether or not

n−m <
⌈

(e−f)p
2

⌉

. In the latter case, we infer that vp
(

v(m)v(n−m)
)

= f +(e−f) = e,

and hence the corresponding summand in (2.6) is divisible by pe.
On the other hand, in the former case, the conclusion is that vp

(

v(m)v(n−m)
)

= e−1.
In order to show that the corresponding summand is divisible by pe, we must therefore
prove that the binomial coefficient in (2.6) is divisible by p in this case. To see this, we
consider the p-adic representations of 2m and 2(n−m). These are

(2m)p = (f)p ∗
(

2(n−m)
)

p
= (e− f − 1)p ∗ (5.3)

Here as before, (α)p denotes the p-adic representation of the integer α, and the stars on
the right-hand sides indicate the right-most digits of (2m)p and (2(n−m))p whose precise
values are irrelevant. The sum of 2m and 2(n −m) is 2n whose p-adic representation
has the form (e)p ∗. Hence, when adding the two numbers on the right-hand sides of
(5.3), at least one carry must occur — namely one from the p0-digit to the p1-digit. By
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Kummer’s theorem in Lemma 4, the consequence is that the binomial coefficient
(

2n
2m

)

is divisible by p. Therefore, again, the corresponding summand is divisible by pe.

Finally, if
⌈

ep2

2

⌉

≤ m < n, by the induction hypothesis (for n), the number v(m) is

divisible by pe, which of course implies divisibility of the corresponding summand by pe.

This concludes the induction step, and, thus, the proof of the theorem. �

Remark 20. An examination of the above arguments reveals that the product Π3(n) in
the definition (2.6) could have been replaced with any function f(n) that satisfies the
p-divisibility property in (4.2).

6. The inverse of the matrix R modulo prime powers pe with
p ≡ 3 (mod 4)

The goal of this section is to derive a divisibility result for the matrix entries R−1(n, k)
by prime powers pe with p ≡ 3 (mod 4) that would allow us to carry through an inductive
proof of Theorem 1(1) via the use of the relation (2.12). This result is presented in
Theorem 22. It is based on Proposition 21 which is stated and proved before.

We start by deriving an explicit expression for R−1(2n, 2k), the other entries of the
matrixR−1 = (R−1(n, k))n,k≥0 being zero due to the checkerboard pattern of the matrix;
cf. Proposition 2. By the definition (2.11), we have

R−1(2n, 2k) = 2n−k (2n− 1)!

(2k − 1)!

〈

t2n−2k
〉 (

U(t)/t
)−2n

= 2n−k (2n− 1)!

(2k − 1)!

〈

t2n−2k
〉

∑

m≥0

(−2n

m

)

(

U(t)/t− 1
)m

= 2n−k (2n− 1)!

(2k − 1)!

〈

t2n−2k
〉

∑

m≥0

(−1)m
(

2n+m− 1

m

)

(

∑

j≥1

u(j)

(2j + 1)!
t2j

)m

= 2n−k (2n− 1)!

(2k − 1)!

∑

m≥0

(−1)m
(

2n+m− 1

m

)

·
∑

(ci)∈Po
2n−2k+m,m

c1=0

m!

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!

2n−2k+1
∏

i=1

uci
(

i−1
2

)

=
∑

m≥0

∑

(ci)∈Po
2n−2k+m,m

c1=0

(−1)m2n−k (2n+m− 1)!

(2k − 1)!
∏2n−2k+1

i=1 i!cici!

2n−2k+1
∏

i=1

uci
(

i−1
2

)

. (6.1)

Here, the symbol Po
N,K stands for the set of all tuples (c1, c2, . . . , cN) of non-negative

integers ci for which c2j = 0 for all j, and which satisfy

c1 + c3 + · · ·+ c2n−1 = K, (6.2)

c1 + 3c3 + · · ·+ (2n− 1)c2n−1 = N, (6.3)
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with n = ⌈N/2⌉. It should be noted that, if N and K do not have the same parity,
then the set Po

N,K is empty.
The next proposition provides a lower bound on the p-divisibility of (the essential

part of) the summand on the right-hand side of (6.1).

Proposition 21. Let n, k,m, e, f be positive integers with n ≥ k, and let p be a prime
number with p ≡ 3 (mod 4). If 2n ≥ ep2, (f − 1)p2 ≤ 2k − 1 < fp2, and (ci) ∈
Po

2n−2k+m,m with c1 = 0, then the expression

F (n, k,m, (ci)) :=
(2n+m− 1)!

(2k − 1)!
∏2n−2k+1

i=1 i!ci ci!

2n−2k+1
∏

i=1

uci
(

i−1
2

)

(6.4)

is divisible by pe−f+1. Furthermore, if f = 1, then the above expression multiplied
by v(k) is divisible by pe+1.

Proof. As a consequence of Kummer’s theorem in Lemma 4 (the multinomial coefficient
below can be written as a product of binomial coefficients), we have

vp

(

(2n+m− 1)!

(2k − 1)!
∏2n−2k+1

i=1 i!ci

)

= #
(

carries when performing the addition (2k − 1) +
∑2n−2k+1

i=1 ci · i
)

. (6.5)

Here, “performing the addition (2k − 1) +
∑2n−2k+1

i=1 ci · i” means that we start with
(2k− 1)p (the p-adic representation of 2k− 1), then add (1)p to it c1 many times, then
add (3)p to it c3 many times (the reader should recall that even-indexed ci’s are zero by
definition of Po

2n−2k+m,m), etc. Carries are recorded at each single addition. Moreover,
we have

vp
(

u
(

i−1
2

))

≥
{
⌊

i
p2

⌋

+ 1, for i ≥ p2,

1, for i = ap+ b with 1 ≤ a ≤ p− 1 and 0 ≤ b < a,

the first alternative being due to Theorem 9, and the second alternative being due to
Lemma 7.

Combining the last inequality with (6.5), we obtain

vp
(

F (n, k,m, (ci))
)

≥ #
(

carries when performing the addition (2k − 1) +
∑2n−2k+1

i=1 ci · i
)

−
2n−2k+1
∑

i=1

vp(ci!) +
2n−2k+1
∑

i=p2

ci ·
(⌊

i
p2

⌋

+ 1
)

+
∑′ci, (6.6)

where
∑′ is over all odd i with 1 ≤ i < p2 and i = ap + b for some a and b with

1 ≤ a ≤ p− 1 and 0 ≤ b < a.

We begin with the negative term in (6.6), namely −∑2n−2k+1
i=1 vp(ci!). By Legendre’s

formula in Lemma 3, we have vp(ci!) ≤ ci
p−1

, so that

−
2n−2k+1
∑

i=1

vp(ci!) ≥ −
2n−2k+1
∑

i=1

ci
p− 1

= − m

p− 1
,
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the last step being due to the fact that the tuple (ci) is in Po
2n−2k+m,m. To compensate

this term, we consider the p0-digits of i1, i2, . . . , im, the carries that they cause in the
addition i1 + i2 + · · ·+ im, and contributions from

∑′ci on the right-hand side of (6.6).
Let us assume that exactly t of the iℓ’s are ≡ 0, 1 (mod p). Then we get

#
(

carries from the p0-digit to the p1-digit when doing the addition
2n−2k+1
∑

i=1

ci · i
)

+
∑′ci −

2n−2k+1
∑

i=1

vp(ci!) ≥
⌊

2(m−t)
p

⌋

+ t− m
p−1

≥
⌊

2m
p

⌋

− m
p−1

≥ 0 (6.7)

as long as m ≥ p. However, if m < p, then the sum
∑2n−2k+1

i=1 vp(ci!) equals zero, so
that the left-hand side in (6.7) is also non-negative in this case.

For the next step, in order to ease notation, let

(i1, i2, . . . , im) = (3c3 , 5c5 , . . . ),

where ici stands for the sequence i, i, . . . , i, with i repeated ci times. We assume that
jℓp

2 ≤ iℓ < (jℓ + 1)p2 for all ℓ. Then, when concentrating on the p2-digit in the p-adic
representations of 2n + m − 1, 2k − 1, i1, i2, . . . , im while performing the addition
described on the right-hand side of (6.5), namely

(2k − 1) + i1 + i2 + · · ·+ im (6.8)

(resulting in 2n+m− 1), we may extract the inequality

(f − 1) + j1 + j2 + · · ·+ jm + C ≥ e, (6.9)

where C is the number of carries from the p1- to the p2-digit when performing the
addition (6.8).

If we now use (6.7) and (6.9) in (6.6), then we obtain

vp
(

F (n, k,m, (ci))
)

≥ C +
2n−2k+1
∑

i=p2

ci ·
(⌊

i
p2

⌋

+ 1
)

≥
(

e− (f − 1)− j1 − j2 − · · · − jm
)

+ j1 + j2 + · · ·+ jm = e− f + 1. (6.10)

Finally we address the case where f = 1. The previous arguments show that

vp
(

F (n, k,m, (ci))
)

≥ e.

Hence, the task is to find — so-to-speak — an additional +1 somewhere, which may
also come from vp(v(k)).

Inspection of (6.10) shows that, using the earlier notation, we gain such an additional
+1 whenever one of the iℓ’s is at least p

2 since in the inequality (6.10) we dropped the

+1 in
(⌊

i
p2

⌋

+ 1
)

on the right-hand side. Hence, from now on, we may assume that

iℓ < p2 for all ℓ.
We may furthermore assume m < p because for m ≥ p we have actually strict

inequality in (6.7) thereby having again found an additional +1. In particular, as

already remarked earlier, the restriction m < p implies that the sum
∑2n−2k+1

i=1 vp(ci!)
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equals zero so that the argument in (6.7) is not required, and consequently no carries
from the p0-digit to the p1-digit need to be considered at this point.

Since in the current case 2k − 1 < p2, from (6.9) we deduce that the number C
of carries from before is at least e. If there is an iℓ of the form iℓ = ap + b with
1 ≤ a ≤ p − 1 and 0 ≤ b < a, then we get an additional +1 from

∑′ci in (6.6). If
k = ap+ b or k = ap+ p+1

2
+ b with 1 ≤ a ≤ p−1

2
and 1 ≤ b < a so that 2k−1 = Ap+B

with 2 ≤ A ≤ p − 1 and 0 ≤ B ≤ A − 3 then vp(v(k)) ≥ 1 by Lemma 15. Therefore
the remaining case to discuss is when iℓ = aℓp + bℓ with aℓ ≤ bℓ, 1 ≤ ℓ ≤ m, and
2k − 1 = Ap + B with A ≤ B + 1. Since the iℓ’s are odd, we have actually aℓ < bℓ for
all ℓ. Since m ≥ 1, the above conditions imply that

A+ a1 + a2 + · · ·+ am ≤ (B + 1) + (b1 − 1) + b2 + · · ·+ bm. (6.11)

We know that the number of carries C from the p1-digit to the p2-digit when adding
(2k−1)+ i1+ i2+ · · ·+ im is at least e ≥ 1. Hence, either B+b1+b2+ · · ·+bm ≥ p, thus
creating a carry from the p0-digit to the p1-digit when adding (2k−1)+i1+i2+ · · ·+im,
or A+a1+a2+· · ·+am ≥ p. But then (6.11) implies again B+b1+b2+· · ·+bm ≥ p with
the consequence of an additional carry. Consequently, we have found the additional +1
in all cases.

This completes the proof of the proposition. �

Theorem 22. Let n, k, e, f be non-negative integers with n ≥ k, and let p be a prime

number with p ≡ 3 (mod 4). If n ≥
⌈

ep2

2

⌉

and k <
⌈

fp2

2

⌉

, then R−1(2n, 2k) is divisible

by pe−f+1. Moreover, if f = 1 then R−1(2n, 2k)v(k) is divisible by pe+1.

Proof. The result follows immediately when using Proposition 21 in (6.1). �

7. The sequence (d(n))n≥0 modulo prime powers pe with p ≡ 3 (mod 4)

We are now in a position to prove our first main result. The following theorem proves
Conjecture 18(3) in [13], in the stronger form given in Theorem 1(1).

Theorem 23. Given a prime p with p ≡ 3 (mod 4) and an integer e ≥ 2, the number

d(n) is divisible by pe for n ≥
⌈

(e−1)p2

2

⌉

.

Proof. We prove the assertion by induction on n. Let n ≥
⌈

(e−1)p2

2

⌉

. We use the

relation (2.12). We consider some k with (f − 1)p2 ≤ k < fp2. If f ≥ 2, then
Theoremxx 22 and 17 imply

vp
(

R−1(2n, 2k)v(k)
)

≥ (e− f) + f = e. (7.1)

On the other hand, if f = 1 then the supplement in Theorem 22 says that (7.1) also
holds in this case. In other words, each term on the right-hand side of (2.12) is divisible
by pe, hence so is d(n), as desired. �

8. The sequence (v(n))n≥0 modulo powers of 2

The purpose of this section is to show periodicity of the sequence
(

v(n)
)

n≥0
modulo

powers of 2, together with a precise statement on the period length. The corresponding
analysis is much more involved than the preceding ones modulo odd prime powers.
Our starting point is an expansion that is very similar in spirit to the one in Section 6,
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namely (8.20). As a matter of fact, the main results of this section concern a polynomial

refinement of v(n) in which the product Π3(j) =
∏j

ℓ=1(4ℓ − 3)2 gets replaced by a
variable x(j), j = 0, 1, . . . , with the only restriction that x(0) = 1 and that both x(1)
and x(2) are odd.

The main results in Theorems 31 and 32 need substantial preparations. These are
the contents of Lemma 24, Corollaries 25 and 26, and Lemmas 27–29, which provide
formulae and bounds for the 2-adic valuation of the ratios of factorials that appear in
the expansion (8.20).

Lemma 24. For all positive integers n and c2 with n ≥ 2c2, we have

v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

= #(carries when adding (n− 2c2)2 and (2c2)2), (8.1)

where, as before, (α)2 denotes the 2-adic representation of the integer α.

Proof. By Legendre’s formula in Lemma 3, we obtain

v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

= 2n− s2(2n)− (n− 2c2)−
(

n− 2c2 − s2(n− 2c2)
)

− 3c2 − (c2 − s2(c2))

= −s2(n) + s2(n− 2c2) + s2(2c2).

By Lemma 5, this is indeed the number of carries when adding n− 2c2 and 2c2 in their
2-adic representations. �

Corollary 25. For all positive integers n, we have

v2

(

(2n)!

2!n−2(n− 2)! 4!

)

=

{

v2(n)− 1, if n is even,

v2(n− 1)− 1, if n is odd.

Proof. We appeal to Lemma 24 with c2 = 1. If n is even, say n = 2v2(n)n0 for an odd
integer n0 and v2(n) ≥ 1, then the number of carries in (8.1) is v2(n)− 1. On the other
hand, if n is odd, say n = 2v2(n−1)n0 + 1 for an odd integer n0, then this number of
carries is v2(n− 1)− 1. �

Corollary 26. For all positive integers n, we have

v2

(

(2n)!

2!n−4(n− 4)! 4!22!

)

=























v2(n)− 2, if n ≡ 0 (mod 4),

v2(n− 1)− 2, if n ≡ 1 (mod 4),

v2(n− 2)− 2, if n ≡ 2 (mod 4),

v2(n− 3)− 2, if n ≡ 3 (mod 4).

Proof. Again, we appeal to Lemma 24, here with c2 = 2. If n ≡ 0 (mod 4), say
n = 2v2(n)n0 for an odd integer n0 and v2(n) ≥ 2, then the number of carries in (8.1) is
v2(n)− 2. The other cases are treated similarly. We leave the details to the reader. �

Lemma 27. For all positive integers n and c2 with n ≥ 2c2 ≥ 6, we have

c2 + v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

≥ 1 + max
n−2c2<i≤n

v2(i). (8.2)
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Proof. Choose α and β such that n = n02
α + n1, with n0 odd and n1 < 2β+2, and 2β ≤

c2 < 2β+1. These conditions imply that the 2-adic representations can be schematically
indicated as

α
↓

β+2
↓

(n)2 = . . . 10 . . . 0 ∗ . . .

(2c2)2 = 1 . . . (8.3)

with the meaning that the 1 shown in the 2-adic representation of n is the α-th digit
counted from right (the counting starting with 0), and that the left-most (non-zero)
digit of the 2-adic representation of 2c2 is the (β + 1)-st digit, that is, 2c2 < 2β+2.

First, we assume that β ≥ 2. The case of β = 1, which implies that 2c2 = 6, will be
disposed of at the end of this proof.

We distinguish two cases, depending on the relative sizes of n1 and 2c2.

Case 1: n1 < 2c2. Here, by inspection of (8.3), we see that

max
n−2c2<i≤n

v2(i) = α. (8.4)

On the other hand, by Lemma 24, the term v2( . ) on the left-hand side of (8.2) equals
the number of carries when adding n − 2c2 and 2c2 in their 2-adic representations.
Equivalently, this is the number of carries when performing the subtraction of (2c2)2
from (n)2. Here, inspection of (8.3) yields that this is at least α − (β + 2) + 1. Thus,
together with (8.4) and the elementary inequality

2β ≥ β + 2 for β ≥ 2, (8.5)

we get

c2 + v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

≥ c2 + α− β − 1 ≥ 2β + α− β − 1

≥ β + 2 + α− β − 1 = α + 1 ≥ 1 + max
n−2c2<i≤n

v2(i).

Case 2: n1 ≥ 2c2. Now, by inspection of (8.3), we see that

max
n−2c2<i≤n

v2(i) ≤ β + 1.

Hence, using again (8.5), we get

c2 + v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

≥ c2 ≥ 2β ≥ β + 2 ≥ 1 + max
n−2c2<i≤n

v2(i).

Finally we address the case where β = 1, and thus 2c2 = 6. In this case, the schematic
representation (8.3) becomes

α
↓

3
↓

(n)2 = . . . 10 . . . 0 ∗∗∗
(6)2 = 110

Here also, we must distinguish two cases depending on whether or not n1 is greater
than 6.
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If n1 < 6, then (8.4) holds. By Lemma 24, we then get

c2 + v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

≥ 3 + (α− 2) = α + 1 ≥ 1 + max
n−2c2<i≤n

v2(i).

On the other hand, if n1 ≥ 6 then

max
n−2c2<i≤n

v2(i) ≤ 2,

and we obtain

c2 + v2

(

(2n)!

2!n−2c2(n− 2c2)! 4!c2c2!

)

≥ 3 ≥ 1 + max
n−2c2<i≤n

v2(i).

This completes the proof of the lemma. �

Lemma 28. For all positive integers n and c2 with n ≥ 2c2 + 3, we have

c2 + 2 + v2

(

(2n)!

2!n−2c2−3(n− 2c2 − 3)! 4!c2c2! 6!

)

≥ 1 + max
n−2c2−3<i≤n

v2(i). (8.6)

Proof. By Legendre’s formula in Lemma 3, we obtain

v2

(

(2n)!

2!n−2c2−3(n− 2c2 − 3)! 4!c2c2! 6!

)

= 2n− s2(2n)− (n− 2c2 − 3)−
(

n− 2c2 − 3− s2(n− 2c2 − 3)
)

− 3c2 − (c2 − s2(c2))− 4

= −s2(n) + s2(n− 2c2 − 3) + s2(2c2) + s2(3)

≥ −s2(n) + s2(n− 2c2 − 3) + s2(2c2 + 3)

= #(carries when adding (n− 2c2 − 3)2 and (2c2 + 3)2).

From here on we follow the setup and the arguments in the proof of Lemma 27, with
2c2 + 3 in place of 2c2; see, in particular, the schematic representation in (8.3) with
that replacement. There is one notable difference, though: here the lower bound on
c2 is zero (as opposed to 3 in the proof of Lemma 27). This entails 2c2 + 3 ≥ 3, and
hence the lower bound on the parameter β is β ≥ 0. Thus, instead of (8.5), we can only
use 2β ≥ β + 1 here, a bound that is by 1 weaker. This is balanced by the additional
summand +2 on the left-hand side of (8.6) when compared to the left-hand side of
(8.2). �

In order to have a convenient notation for the following considerations, inspired
by [11], we write PN,K for the set of all tuples (c1, c2, . . . , cN) of non-negative integers
with

c1 + c2 + · · ·+ cN = K, (8.7)

c1 + 2c2 + · · ·+NcN = N. (8.8)

Lemma 29. For all positive integers n and tuples (c1, c2, . . . , cn) in

Pn,k\{(n, 0, . . . , 0), (n− 2, 1, 0, . . . , 0), (n− 4, 2, 0, . . . , 0)},
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we have

n− k + v2

(

(2n)!

2!c1c1! 4!c2c2! · · · (2n)!cncn!

)

≥ 1 + max
c1<i≤n

v2(i). (8.9)

Proof. By Legendre’s formula in Lemma 3, the 2-adic valuation on the left-hand side
of (8.9) equals

v2

(

(2n)!

2!c1c1! 4!c2c2! · · · (2n)!cncn!

)

= 2n− s2(2n)−
n
∑

i=1

(

ci(2i− s2(2i)) + ci − s2(ci)
)

=
n
∑

i=1

cis2(i)−
n
∑

i=1

(

ci − s2(ci)
)

− s2(n).

Define the quantity G(n, k) by

G(n, k) := n− k +
n
∑

i=1

cis2(i)−
n
∑

i=1

(

ci − s2(ci)
)

− s2(n).

We must show that G(n, k) is at least as large as the right-hand side of (8.9). We achieve
this by demonstrating that, among all elements (c1, c2, . . . , cn) ∈ Pn,k with fixed c1, the
ones with ci = 0 for i ≥ 4 and c3 = 0 or c3 = 1, depending on the parity of n − c1,
attain the smallest values of G(n, k), and then appealing to Lemmas 27 and 28.

First consider a tuple (c1, c2, . . . , cn) in which c2j > 0 for some j ≥ 2. We claim that
the value of G(n, k) decreases if instead we consider the tuple (c1, c2+jc2j, . . . , 0, . . . , cn),
with 0 appearing in position 2j. This new tuple is an element of Pn,k+(j−1)c2j . In order
to prove the claim, we compare the contributions of the tuples to G(n, k), ignoring the
terms that are the same for both tuples. In particular, we may ignore appearances of n
(such as in s2(n)) since n is the same for both tuples (as opposed to k, which becomes
k + (j − 1)c2j for the modified tuple). The — in this sense — relevant contribution of
(c1, c2, . . . , cn) to G(n, k) is

c2s2(2) + c2js2(2j)− (c2 − s2(c2))− (c2j − s2(c2j))

= c2j
(

s2(j)− 1
)

+ s2(c2) + s2(c2j). (8.10)

On the other hand, the (relevant) contribution of (c1, c2 + jc2j, . . . , 0, . . . , cn) to
G(n, k + (j − 1)c2j) is

−(j−1)c2j+(c2+jc2j)s2(2)−(c2+jc2j−s2(c2+jc2j)) = −(j−1)c2j+s2(c2+jc2j). (8.11)

The difference of (8.10) and (8.11) is

c2j
(

s2(j) + j − 2
)

+ s2(c2) + s2(c2j)− s2(c2 + jc2j)

≥ c2js2(j) + (j − 2)c2j + s2(c2j)− s2(c2jj)

≥ (j − 2)c2j + s2(c2j) ≥ s2(c2j),

which is positive, thus proving our claim.
Now consider a tuple (c1, c2, . . . , cn) in which c2j+1 > 0 for some j ≥ 2. Again,

we claim that the value of G(n, k) (weakly) decreases if instead we consider the tuple
(c1, c2+(j− 1)c2j+1, c3+ c2j+1, . . . , 0, . . . , cn), with 0 appearing in position 2j+1. This
new tuple is an element of Pn,k+(j−1)c2j+1

. In order to prove the claim, we compare the
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contributions of the tuples to G(n, k), ignoring the terms that are the same for both
tuples. The (relevant) contribution of (c1, c2, . . . , cn) to G(n, k) is

c2s2(2) + c3s2(3) + c2j+1s2(2j + 1)− (c2 − s2(c2))− (c3 − s2(c3))− (c2j+1 − s2(c2j+1))

= c3 + c2j+1s2(j) + s2(c2) + s2(c3) + s2(c2j+1). (8.12)

On the other hand, the (relevant) contribution of (c1, c2+(j− 1)c2j+1, c3 + c2j+1, . . . , 0,
. . . , cn) to G(n, k + (j − 1)c2j+1) is

− (j − 1)c2j+1 + (c2 + (j − 1)c2j+1)s2(2) + (c3 + c2j+1)s2(3)

− (c2 + (j − 1)c2j+1 − s2(c2 + (j − 1)c2j+1))− (c3 + c2j+1 − s2(c3 + c2j+1))

= c3 − (j − 2)c2j+1 + s2(c2 + (j − 1)c2j+1) + s2(c3 + c2j+1). (8.13)

The difference of (8.12) and (8.13) is

c2j+1

(

s2(j) + j − 2
)

+ s2(c2) + s2(c3) + s2(c2j+1)

− s2(c2 + (j − 1)c2j+1)− s2(c3 + c2j+1)

≥ c2j+1

(

s2(j) + j − 2
)

+ s2(c2)− s2(c2 + (j − 1)c2j+1)

≥ c2j+1

(

s2(j)− 1
)

+ (j − 1)c2j+1 − s2((j − 1)c2j+1)

≥ c2j+1

(

s2(j)− 1
)

,

which is non-negative, as claimed.
So far, the above arguments show that we may restrict our attention to tuples

(c1, c2, . . . , cn) in Pn,k with ci = 0 for i ≥ 4. Finally, we argue that “3’s can be
traded for 2’s”, that is, we may decrease c3 at the cost of increasing c2. There are
two cases to be considered. First let c3 be even, c3 = 2c′3 say, with c′3 ≥ 1. We claim
that the value of G(n, k) decreases if instead of (c1, c2, c3, . . . , cn) we consider the tuple
(c1, c2 + 3c′3, 0, . . . , cn), This new tuple is an element of Pn,k+c′3

. In order to prove the
claim, we compare the contributions of the tuples to G(n, k), ignoring the terms that
are the same for both tuples. The (relevant) contribution of (c1, c2, c3, . . . , cn) to G(n, k)
is

c2s2(2) + c3s2(3)− (c2 − s2(c2))− (c3 − s2(c3)) = c3 + s2(c2) + s2(c
′
3). (8.14)

On the other hand, the (relevant) contribution of (c1, c2 +3c′3, 0, . . . , cn) to G(n, k+ c′3)
is

−c′3 + (c2 + 3c′3)s2(2)− (c2 + 3c′3 − s2(c2 + 3c′3)) = −c′3 + s2(c2 + 3c′3). (8.15)

The difference of (8.14) and (8.15) is

3c′3 + s2(c2) + s2(c
′
3)− s2(c2 + 3c′3) ≥ 3c′3 + s2(c2 + c′3)− s2(c2 + 3c′3)

≥ 3c′3 − s2(2c
′
3) ≥ c′3, (8.16)

which is positive, proving our claim.
Finally, let c3 be odd, c3 = 2c′3+1 say, with c′3 ≥ 1. We claim that the value of G(n, k)

decreases if instead of (c1, c2, c3, . . . , cn) we consider the tuple (c1, c2 + 3c′3, 1, . . . , cn),
This new tuple is an element of Pn,k+c′3

. In order to prove the claim, we compare the
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contributions of the tuples to G(n, k), ignoring the terms that are the same for both
tuples. The (relevant) contribution of (c1, c2, c3, . . . , cn) to G(n, k) is

c2s2(2) + c3s2(3)− (c2 − s2(c2))− (c3 − s2(c3)) = c3 + s2(c2) + s2(c
′
3) + 1. (8.17)

On the other hand, the (relevant) contribution of (c1, c2 +3c′3, 1, . . . , cn) to G(n, k+ c′3)
is

− c′3 + (c2 + 3c′3)s2(2) + s2(3)− (c2 + 3c′3 − s2(c2 + 3c′3))

= −c′3 + s2(c2 + 3c′3) + 2. (8.18)

The difference of (8.17) and (8.18) is the same as (8.16), of which we already know that
it is positive.

We are now in the position to finish the proof of the lemma. Our tuple (c1, c2, . . . , cn)
may be one where ci = 0 for i ≥ 3. Then c1 = n−2c2, n−k = (c1+2c2)−(c1+c2) = c2,
and c2 ≥ 3 by assumption. The assertion of the lemma then follows from Lemma 27.
On the other hand, our tuple (c1, c2, . . . , cn) may be one where c3 = 1 and ci = 0 for
i ≥ 4. Then c1 = n − 2c2 − 3, and n − k = (c1 + 2c2 + 3) − (c1 + c2 + 1) = c2 + 2.
The assertion of the lemma then follows from Lemma 28. If we are not in one of these
two cases, then we apply the above described reductions repeatedly until we arrive at a
tuple which belongs to one of these two cases. Since the value of G(n, k) never increases
while the value of c1 remains invariant when doing these reductions, Lemmas 27 and 28
again establish the assertion of the lemma.

The proof is now complete. �

Before we are able to state and prove the main result of this section, we need an
auxiliary integrality assertion on a certain product/quotient of factorials.

Lemma 30 ([1, Theorem 13.2]). Let N and K be positive integers such that N ≥ K.
For all tuples (ci)1≤i≤N of integers in PN,K — that is, satisfying (6.2) and (6.3) — the
quantity

N !
∏N

i=1 i!
cici!

is an integer, and it equals the number of partitions of the set {1, 2, . . . , N} into ci blocks
of size i, for i = 1, 2, . . . , N .

We are now in the position to embark on the proof of periodicity of v(n) as defined
in (2.5) modulo powers of 2. The next theorem treats the “generic” case where e ≥ 3,
whereas Theorem 32 handles the remaining cases where e = 1 or e = 2. Both theorems
provide in fact polynomial refinements.

Theorem 31. Let x(j), j = 0, 1, 2, . . . , be a sequence of integers with x(0) = 1, x(1)
and x(2) odd. Then the coefficients vx(n) in the expansion

∑

n≥0

vx(n)

2n (2n)!
tn =

(

1 +
∑

j≥1

x(j)

(2j)!
t2j

)1/2

(8.19)

are integers. Moreover, for all integers e ≥ 3, the sequence (vx(n))n≥0 is purely periodic
modulo 2e with (not necessarily minimal) period length 2e−1.
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Remark. Computer experiments suggest that, in fact, the period length of 2e−1 is min-
imal.

Proof of Theorem 31. We compute the defining expansion for the coefficients vx(n):

∑

n≥0

vx(n)

2n(2n)!
tn =

(

1 +
∑

j≥1

x(j)

(2j)!
tj

)1/2

=
∑

k≥0

(

1/2

k

)

(

∑

j≥1

x(j)

(2j)!
tj

)k

= 1 +
∑

k≥1

(−1)k−1

∏k−1
j=1(2j − 1)

2k k!

∑

c1+c2+···=k

k!

c1! c2! · · ·
∏

i≥1

xci(i)

(2i)!ci
tici .

By comparing coefficients of tn, we obtain

vx(n) =
∑

k≥1

∑

(ci)∈Pn,k

(−1)k−1

(

k−1
∏

j=1

(2j − 1)

)

2n−k (2n)!

2!c1c1! 4!c2c2! · · · (2n)!cncn!

n
∏

i=1

xci(i),

(8.20)
where Pn,k is defined around (8.7)–(8.8). For convenience, we denote the summand in
the above double sum by S(n, k, (ci)), that is, we set

S(n, k, (ci)) := (−1)k−1

(

k−1
∏

j=1

(2j − 1)

)

2n−k (2n)!

2!c1c1! 4!c2c2! · · · (2n)!cncn!

n
∏

i=1

xci(i) (8.21)

for some positive integer k and (ci) ∈ Pn,k. The fraction in the expression in (8.20)
(and in (8.21)) is an integer since, by Lemma 30, it is the number of all partitions
of {1, 2, . . . , 2n} into ci blocks of size 2i, i = 1, 2, . . . , n. If this property is used in
(8.20), then this establishes the integrality assertion of the theorem.

Now, let n < 2e−1. We want to prove that

vx(n+ a2e−1) ≡ vx(n) (mod 2e), (8.22)

for all positive integers a. Using our short notation for the summand in (8.20), we have

vx
(

n+ a2e−1
)

=
∑

k≥1

∑

(c̃i)∈Pn+a2e−1,k

S(n+ a2e−1, k, (c̃i)). (8.23)
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We are going to prove the finer congruences

S(n+ a2e−1, k, (c̃i)) ≡ 0 (mod 2e), if c̃1 < a2e−1,

(c̃i) not in cases (8.29)–(8.31), (8.24)

S(n+ a2e−1, n+ a2e−1, (n+ a2e−1, 0, . . . , 0)) ≡ S(n, n, (n, 0, . . . , 0)) (mod 2e),
(8.25)

S(n+ a2e−1, k + a2e−1, (c̃i)) ≡ S(n, k, (c1, c̃2, . . . , c̃n)) (mod 2e)

with c̃1 = c1 + a2e−1, and (c̃i) not in cases (8.29)–(8.31), (8.26)

S(n+ a2e−1, n+ a2e−1 − 1, (n+ a2e−1 − 2, 1, 0, . . . , 0))

+S(n+ a2e−1, n+ a2e−1 − 2, (n+ a2e−1 − 4, 2, 0, . . . , 0))

≡ S(n, n− 1, (n− 2, 1, 0, . . . , 0))

+ S(n, n− 2, (n− 4, 2, 0, . . . , 0)) (mod 2e). (8.27)

In the last congruence, undefined terms (terms S(n, k, (c̃i)) with negative c̃1) have to
be understood as being zero.

We claim that (8.24)–(8.27) together imply (8.22), and thus the theorem. In order to
prove this, we consider the summand S(n+a2e−1, k, (c̃i)) on the right-hand side of (8.23),
when taken modulo 2e, for the various choices of k and tuples (c̃i). If c̃1 < a2e−1, then,
by (8.24), the corresponding summand vanishes modulo 2e. On the other hand, if
c̃1 ≥ a2e−1, then, since k ≥ c̃1, we must also have k ≥ a2e−1. Consequently, we may
apply (8.25) and (8.26) to conclude that

S(n+ a2e−1, k, (c̃i)) ≡ S(n, k − a2e−1, (c1, c̃2, . . . , c̃n)) (mod 2e), (8.28)

except if we are in cases (8.30) or (8.31). However, for those cases the congruence (8.27)
applies. It shows that, even though the congruence (8.28) may not hold for an individual
summand in case (8.30) or (8.31), if they are combined then the corresponding reduction
in (8.28) is allowed. Altogether, we arrive at

vx
(

n+ a2e−1
)

=
∑

k≥1

∑

(c̃i)∈Pn+a2e−1,k

S(n+ a2e−1, k, (c̃i))

≡
∑

k≥a2e−1+1

∑

(ci)∈Pn,k−a2e−1

S(n+ a2e−1, k − a2e−1, (ci)) (mod 2e)

≡ vx(n) (mod 2e),

thus confirming the claim.

Now we provide the proofs of the crucial congruences (8.24)–(8.27).

Proof of (8.24). If we use Lemma 29 with n replaced by n+ a2e−1 and ci = c̃i for
all i, then we see that S(n+ ape−1, k, (c̃i)) is divisible by

2
1+ max

c̃1<i≤n+a2e−1
v2(i)

,
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with three exceptions, namely

(c̃1, c̃2, . . . , c̃n) = (n+ a2e−1, 0, . . . , 0), (8.29)

(c̃1, c̃2, . . . , c̃n) = (n+ a2e−1 − 2, 1, 0, . . . , 0), (8.30)

(c̃1, c̃2, . . . , c̃n) = (n+ a2e−1 − 4, 2, 0, . . . , 0). (8.31)

In particular, if c̃1 < a2e−1, and if (8.29)–(8.31) do not apply, then in the range
c̃1 < i ≤ n + a2e−1 we will find that i = a2e−1, and, consequently, S(n + a2e−1, k, (c̃i))
is divisible by 2e, as desired.

Proof of (8.25). By definition, we have

S(n+ a2e−1, n+ a2e−1, (n+ a2e−1, 0, . . . , 0))

= (−1)n+a2e−1−1

( n+a2e−1−1
∏

j=1

(2j − 1)

)

(2n+ a2e − 1)!! xn+a2e−1

(1)

= (−1)n−1(2n+ a2e − 3)!! (2n+ a2e − 1)!! xn+a2e−1

(1)

and

S(n, n, (n, 0, . . . , 0)) = (−1)n−1(2n− 3)!! (2n− 1)!! xn(1).

By assumption, the number x(1) is odd. Hence, Euler’s theorem and the fact that
ϕ(2e) = 2e−1 imply that

x2e−1

(1) ≡ 1 (mod 2e).

Furthermore, we have

(2n+ a2e − 1)!! = (2n− 1)!!
a−1
∏

j=0

(2n+ j2e + 1)(2n+ j2e + 3) · · · (2n+ (j + 1)2e − 1)

≡ (2n− 1)!! (mod 2e), (8.32)

since, for each j, the factors inside the product in the first line form a complete set of
representatives of the multiplicative group (Z/2eZ)×. An analogous relation holds for
(2n+ a2e − 3)!! and (2n− 3)!!. Altogether, this establishes the congruence (8.25).

Proof of (8.26). Replace n by n + a2e−1, and c1 by c1 + a2e−1 in (8.21). Since
(c1 + a2e−1, c2, . . . ) ∈ Pn+a2e−1,k, the ci’s must vanish for i > n. Furthermore, we have
k ≥ c1+a2e−1, which allows us to write k = k′+a22−1 for some non-negative integer k′.
Hence, under these substitutions and simplifications, and writing k instead of k′ in
abuse of notation, we obtain

S(n+ a2e−1, k + a2e−1, (c̃i)) = (−1)k+a2e−1−1

(

k+a2e−1−1
∏

j=1

(2j − 1)

)

× 2n−k (2n+ a2e)!

2!c1+a2e−1(c1 + a2e−1)! 4!c2c2! · · ·n!cncn!
xa2e−1

(1)
n
∏

i=1

xci(i), (8.33)
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with (ci) ∈ Pn,k. We are interested in the residue class of this expression modulo 2e.
As in (8.32), elementary number theory tells us that

k+a2e−1−1
∏

j=1

(2j − 1) ≡
k−1
∏

j=1

(2j − 1) (mod 2e).

Furthermore, we know that x(1) is odd by assumption. Therefore the expression (8.33)
simplifies to

S(n+ a2e−1, k + a2e−1, (c̃i)) ≡ (−1)k−1

(

k−1
∏

j=1

(2j − 1)

)

× 2n−k (2n+ a2e)! c1!

(2n)! 2a2e−1(c1 + a2e−1)!

(2n)!

2!c1c1! 4!c2c2! · · ·n!cncn!

n
∏

i=1

xci(i) (mod 2e). (8.34)

We have
(2n+ a2e)! c1!

(2n)! 2a2e−1(c1 + a2e−1)!
=

(n+ a2e−1)! (2n+ a2e − 1)!! c1!

n! (2n− 1)!! (c1 + a2e−1)!
.

Since, again by elementary number theory,

(2n+ a2e − 1)!!

(2n− 1)!!
≡ 1 (mod 2e),

we may conclude that

(2n+ a2e)! c1!

(2n)! 2a2e−1(c1 + a2e−1)!
≡ (n+ a2e−1)! c1!

n! (c1 + a2e−1)!
(mod 2e)

≡
n
∏

i=c1+1

i+ a2e−1

i
(mod 2e)

≡
n
∏

i=c1+1

(i · 2−v2(i)) + a2e−v2(i)−1

i · 2−v2(i)
(mod 2e).

If this is substituted back in (8.34), then we see that

S(n+ a2e−1, k + a2e−1, (c̃i))

≡ (−1)k−1

(

k−1
∏

j=1

(2j − 1)

)(

n
∏

i=c1+1

(i · 2−v2(i)) + a2e−v2(i)−1

i · 2−v2(i)

)

· 2n−k (2n)!

2!c1c1! 4!c2c2! · · ·n!cncn!

n
∏

i=1

xci(i) (mod 2e). (8.35)

The reader should note that we wrote the first product over i in this particular form
in order to make certain that the expressions i · 2−v2(i) in the denominator are odd
numbers.

At this point, we would like to simplify the terms (i · 2−v2(i)) + a2e−v2(i)−1 to
i · 2−v2(i). For, assuming the validity of this simplification, the first product over i
on the right-hand side of (8.35) would simplify to 1, and the remaining terms exactly
equal S

(

n, k, (ci)
)

.
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We claim that this simplification is indeed allowed. For, by Lemma 29, we know that
the second line in (8.35) is an integer which is divisible by

2
1+ max

c1<i≤n
v2(i)

.

Hence, instead of computing modulo 2e, we may reduce the first line of (8.35) modulo

2
e−1− max

c1<i≤n
v2(i)

.

(It should be observed that the exponent is non-negative since we assumed from
the beginning that n < 2e−1.) This is exactly what we need to perform the desired
simplification, and the first product over i drops out. What remains is exactly
S(n, k, (c1, c̃2, . . . , c̃n)).

Proof of (8.27). Here, instead of Lemma 29, we can only use the slightly weaker
Corollaries 25 and 26.

We discuss first the “generic case”, namely when n ≥ 4, where all terms in (8.27) are
defined. Let us begin with the term

S(n+ a2e−1, n+ a2e−1 − 1, (n+ a2e−1 − 2, 1, 0, . . . , 0)).

The corresponding expression on the right-hand side of (8.35) contains the product

n
∏

i=(n−2)+1

(i · 2−v2(i)) + a2e−v2(i)−1

i · 2−v2(i)

=

(

((n− 1) · 2−v2(n−1)) + a2e−v2(n−1)−1
)(

(n · 2−v2(n)) + a2e−v2(n)−1
)

(n− 1) · 2−v2(n−1) n · 2−v2(n)
. (8.36)

If n ≡ 0 (mod 4), then Corollary 25 says that the last line in (8.35) (which in particular
contains the prefactor 2n−k) is (exactly) divisible by 2 · 2v2(n)−1 = 2v2(n), and hence we
may consider the numerator in (8.36) modulo 2e−v2(n). Since

((n− 1) · 2−v2(n−1)) + a2e−v2(n−1)−1 ≡ ((n− 1) · 2−v2(n−1)) (mod 2e−1)

(with v2(n− 1) = 0), the product (8.36) reduces to

n
∏

i=n−1

(i · 2−v2(i)) + a2e−v2(i)−1

i · 2−v2(i)
≡ (n · 2−v2(n)) + a2e−v2(n)−1

n · 2−v2(n)
(mod 2e)

≡ 1 +
a2e−v2(n)−1

n · 2−v2(n)
(mod 2e).

When substituted back in (8.35), this shows that

S(n+ a2e−1, n+ a2e−1 − 1, (n+ a2e−1 − 2, 1, 0, . . . , 0))

≡ S(n, n− 1, (n− 2, 1, 0, . . . , 0)) + u1
a2e−v2(n)−1

n · 2−v2(n)
(mod 2e),

where u1 is an odd integer. Here it is important that x(1) and x(2) are odd, which they
are by assumption.
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An analogous discussion for the other term on the left-hand side of (8.27), using
Corollary 26, leads to

S(n+ a2e−1, n+ a2e−1 − 2, (n+ a2e−1 − 4, 2, 0, . . . , 0))

≡ S(n, n− 2, (n− 4, 2, 0, . . . , 0)) + u2
a2e−v2(n)−1

n · 2−v2(n)
(mod 2e),

where u2 is an odd integer. Together, the last two congruences establish (8.27).
The discussions for the other congruence classes of n modulo 4 are just minor varia-

tions of the above arguments and are therefore omitted here.
Finally, we address the remaining cases of “small” n, namely 0 ≤ n < 4, when one or

both terms on the right-hand side of (8.27) contain negative parameter values, in which
case they are declared to be zero by definition. We exemplify what has to be done in
these cases by going through the case where n = 1. All other cases may be handled in
a similar manner.

Corollary 25 with n replaced by 1 + a2e−1, together with the assumption that all
x(i)’s are odd, implies that

S(n+ a2e−1, n+ a2e−1 − 1, (n+ a2e−1 − 2, 1, 0, . . . , 0)) ≡
{

2e−1 (mod 2e), if a is odd,

0 (mod 2e), if a is even.

Likewise, Corollary 26 with n replaced by 1+a2e−1, together with the assumption that
all x(i)’s are odd, implies that

S(n+ a2e−1, n+ a2e−1 − 2, (n+ a2e−1 − 4, 2, 0, . . . , 0)) ≡
{

2e−1 (mod 2e), if a is odd,

0 (mod 2e), if a is even.

Together, this establishes (8.27) in the considered case.

This finishes the proof of the theorem. �

Our next result generalises [11, Theorem 1(i)].

Theorem 32. Let x(j), j = 0, 1, 2, . . . , be integers with x(0) = 1 and x(1) odd. Then
the sequence (vx(n))n≥0, with the coefficients vx(n) being defined in (8.19), when taken
modulo 2, is the all-1-sequence. Modulo 4, the sequence is purely periodic with period
length 4, the first few values of the sequence (modulo 4) being given by

1, x(1), 3, x(1) + 2, 1, . . . . (8.37)

Proof. It suffices to treat the case of modulus 4 since, because of the assumption that
x(1) is odd, it implies the assertion for the modulus 2.

We prove the claim in the statement of the theorem by induction on n.
We use the recurrence (2.6) for the induction step. We may assume that n ≥ 4. We

rewrite the recurrence (2.6) modulo 4 in the form

0 ≡ −
⌈n/2⌉−1
∑

m=0

(

2n

2m

)

v(m)v(n−m)− 1

2
χ(n even)

(

2n

n

)

v2(n/2) (mod 4),

where χ(A) = 1 if A is true and χ(A) = 0 otherwise. Since the central binomial
coefficient is divisible by 2 for n ≥ 1, we see that, for the induction, we may simply
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substitute the claimed mod-4 values of v(m) for m = 0, 1, . . . , n in

1

2

n
∑

m=0

(

2n

2m

)

v(m)v(n−m), (8.38)

and check that the resulting expression is divisible by 4.
We substitute the values from (8.37) in the expression (8.38), to get

1

2

∑

m≡0 (mod 4)

(

2n

2m

)

+
x(1)

2

∑

m≡1 (mod 4)

(

2n

2m

)

+
3

2

∑

m≡2 (mod 4)

(

2n

2m

)

+
x(1) + 2

2

∑

m≡3 (mod 4)

(

2n

2m

)

. (8.39)

Next we recall the well-known (and easily derived) fact that

∑

m≡r (mod 8)

(

N

m

)

=
1

8

7
∑

j=0

ω−rj(1 + ωj)N ,

where ω = 1+i√
2
is a primitive eighth root of unity (with i =

√
−1). Using this in (8.39),

we obtain

1

16

7
∑

j=0

(1 + ωj)2n +
x(1)

16

7
∑

j=0

(−i)j(1 + ωj)2n

+
3

16

7
∑

j=0

(−1)j(1 + ωj)2n +
x(1) + 2

16

7
∑

j=0

ij(1 + ωj)2n.

Now we multiply this expression by zn and sum the result over all n ≥ 0. After
evaluating all the appearing geometric series and simplifying, we obtain

(x(1) + 3) (1− 7z + 21z2 − 35z3 + 34z4 − 42z5 − 28z6 − 8z7)

1− 8z + 28z2 − 56z3 + 68z4 − 112z5 − 112z6 − 64z7
. (8.40)

Here, we should first observe that the factor x(1) + 3 is even, since x(1) is odd by
assumption. Furthermore, the denominator has the form 1 + 2f(z), where f(z) is a
polynomial with integer coefficients, and the coefficients of z4, z5, z6, and z7 in the
numerator are all even. It is not difficult to see that, together, this implies that in the
series expansion of (8.40) the coefficients of zn is divisible by 4 for n ≥ 4. �

9. The inverse of the matrix R modulo powers of 2

In this section, we prove periodicity of the matrix entries R−1(k + 2n, k) (given
by Proposition 2) modulo powers of 2, when considered as a sequence indexed by k.
Moreover, this result comes again with a precise statement on period lengths. Our
starting point is a modified version of the expansion (6.1), namely (9.2). Also here, the
main result of this section concerns a polynomial refinement. More precisely, in this
refinement, the number u(j) gets replaced by a variable y(j), j = 0, 1, . . . , with the
only restriction that y(0) = 1.
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Theorem 33. Let y(j), j = 0, 1, 2, . . . , be integers with y(0) = 1. Furthermore, define
coefficients R−1

y (n, k) by

R−1
y (n, k) = 2(n−k)/2 (n− 1)!

(k − 1)!

〈

t−k
〉

U−n
y (t), (9.1)

where

Uy(t) :=
∑

j≥0

y(j)

(2j + 1)!
t2j+1.

Here again, the case k = 0 has to be interpreted as R−1
y (0, 0) = 1 and R−1

y (n, 0) = 0

for n ≥ 1. Then, for fixed n and any 2-power 2e, the sequence
(

R−1
y (k + 2n, k)

)

k≥0
is

purely periodic modulo 2e with (not necessarily minimal) period length 2e.

Proof. By the definition (9.1) and the computation in (6.1) with u replaced by y, n re-
placed by n+ k, and k replaced by k/2, in this order, we obtain

R−1
y (2n+ k, k) =

∑

m≥0

∑

(ci)∈Po
2n+m,m

c1=0

(−1)m2n
(

2n+m+ k − 1

2n+m

)

· (2n+m)!

3!c3c3! 5!c5c5! · · · (2n+ 1)!c2n+1c2n+1!

2n+1
∏

i=1

yci
(

i−1
2

)

, (9.2)

with Po
N,K having been defined below (6.1). Here, we observe that Po

2n+m,m is empty
for m > n. Indeed, for (ci) ∈ Po

2n+m,m with c1 = 0, we have

3m = 3
2n+1
∑

i=1

ci ≤
2n+1
∑

i=1

ici = 2n+m, (9.3)

and hence m ≤ n. Consequently, we may restrict the sum over m in (9.2) to m =
0, 1, . . . , n.

We want to consider R−1
y (2n+ k, k) for fixed n as a function in k. Inspection of the

last expression in (9.2) reveals that, since the sum over m is finite, R−1
y (2n + k, k) is

a polynomial in k with rational coefficients. Hence, it is certainly periodic modulo 2e

(and, more generally, modulo any modulus M). In order to find a bound on the period
length, we must perform a 2-adic analysis of the expression in (9.2).
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We may rewrite (9.2) as follows:

R−1
y (2n+ k, k) =

∑

m≥0

∑

(ci)∈Po
2n+m,m

c1=0

(−1)m2n
(2n+m+ k − 1)(2n+m+ k − 2) · · · k

(2n)!

· (2n)!

2!c3c3! 4!c5c5! · · · (2n)!c2n+1c2n+1!

2n+1
∏

i=1

(

y
(

i−1
2

)

i

)ci

=
∑

m≥0

∑

(ci)∈Po
2n+m,m

c1=0

(−1)m
(2n+m+ k − 1)(2n+m+ k − 2) · · · k

n! (2n− 1)!!

· (2n)!

2!c3c3! 4!c5c5! · · · (2n)!c2n+1c2n+1!

2n+1
∏

i=1

(

y
(

i−1
2

)

i

)ci

. (9.4)

We want to consider (9.4) modulo 2e, and our goal is to show that, modulo 2e, this
expression is periodic with period length 2e as a (polynomial) function in k.

Now, the first term in the last line of (9.4) is an integer due to the fact that

2n+1
∑

i=1

(2i)ci =
2n+1
∑

i=1

(2i+ 1)ci −
2n+1
∑

i=1

ci = (2n+m)−m = 2n,

which allows the application of Lemma 30 with (ci) replaced by

(0, c3, 0, c5, 0, . . . , 0, c2n+1).

The product over i in the last line of (9.4) is a rational number with an odd denominator,
since ci = 0 for all even i. Thus, the last line of (9.4) represents a rational number
with an odd denominator, which has a non-negative 2-adic valuation. Likewise, the
term (2n− 1)!! in the denominator of the expression in the first line of (9.4) is an odd
number, and consequently also does not influence the 2-adic analysis of this expression.

We substitute k + 2e in place of k in the remaining terms in the first line of (9.4)
(ignoring the sign (−1)m), and compute

(2n+m+ k + 2e − 1)(2n+m+ k + 2e − 2) · · · (k + 2e)

n!

=

(

2n+m+ k + 2e − 1

n

)

(n+m+ k + 2e − 1)(n+m+ k + 2e − 2) · · · (k + 2e)

≡
(

2n+m+ k + 2e − 1

n

)

(n+m+ k − 1)(n+m+ k − 2) · · · k (mod 2e)

= (2n+m+ k + 2e − 1)(2n+m+ k + 2e − 2) · · · (n+m+ k + 2e)

× (n+m+ k − 1)(n+m+ k − 2) · · · (n+ k)

(

n+ k − 1

n

)

(mod 2e)

≡ (2n+m+ k − 1)(2n+m+ k − 2) · · · k
n!

(mod 2e).
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If we use this congruence in (9.4), then the periodicity of this expression in k with
period length 2e becomes apparent.

This finishes the proof of the theorem. �

10. The sequence (d(n))n≥0 modulo powers of 2

Now we are in the position to prove our second main result, namely Part 3 of Theo-
rem 1.

Theorem 34. The sequence (d(n))n≥0, when taken modulo any fixed 2-power 2e with
e ≥ 3, is purely periodic with (not necessarily minimal) period length 2e−1. Modulo 4,
the sequence is purely periodic with period length 4, the first few values of the sequence
(modulo 4) being given by

1, 1, 3, 3, 1, . . . .

Proof. Suppose first that e ≥ 3. By (9.2) with y(i) = u(i) for all i, we have
R−1(2n, 2k) ≡ 0 (mod 2e) for n ≥ k + e, due to the factor 2n−k that arises under
the corresponding substitution. Thus, the relation (2.12) becomes

d(n) ≡
n
∑

k=max{0,n−e+1}
R−1(2n, 2k)v(k) (mod 2e)

≡
min{n,e−1}
∑

k=0

R−1(2n, 2n− 2k)v(n− k) (mod 2e). (10.1)

By Theorem 31 with x(j) =
∏j

ℓ=1(4ℓ− 3)2 for all j, the sequence (v(n))n≥0 is (purely)
periodic modulo 2e with period length 2e−1, and, by Theorem 33 with y(j) = u(j)
for all j, k and n interchanged, and subsequently n replaced by 2n− 2k, the sequence
(

R−1(2n, 2n−2k))n≥0 is (purely) periodic modulo 2e with period length 2e−1. There is a
little detail that needs to be addressed here: what is the meaning of R−1(2n, 2n−2k) if
n < k? So far we have not given a meaning to this in that case. However, the expression
for R−1(2n+ k, k) provided by (9.2) makes it easy to define the appropriate extension.
Namely, as we said earlier, this expression is a polynomial in k and therefore it gives
a meaning to R−1(2n + k, k) for all — positive or negative — integers k. Moreover,
as long as −2n ≤ k < 0, the term R−1(2n + k, k) vanishes because of the appearance
of the binomial coefficient

(

2n+m+k−1
2n+m

)

in (9.2). Furthermore, the periodicity argument
still applies to the extended sequence. Altogether, this allows us to relax the upper
bound on the summation index k in (10.1) to

d(n) =
e−1
∑

k=0

R−1(2n, 2n− 2k)v(n− k) (mod 2e).

The above arguments show in particular that each summand on the right-hand side is
(purely) periodic modulo 2e with (not necessarily minimal) period length 2e−1. Since
these are finitely many summands, the same must hold for d(n).

The assertion of the theorem concerning the behaviour of the sequence modulo 4 is
a direct consequence of Theorem 32 with x(1) = 1 and Theorem 33 with y(j) = u(j)
for all j. �



44 C. KRATTENTHALER AND T.W. MÜLLER

11. The inverse of the matrix R modulo prime powers pe with
p ≡ 1 (mod 4)

This section prepares for the proof of our third main result, given in the subsequent
section. The goal is to establish periodicity of R−1(2n, 2k) modulo powers of a prime p
with p ≡ 1 (mod 4), when considered as a sequence in n. This will eventually be achieved
in Theorem 41. Similar to Section 9, we actually prove a polynomial refinement in which
the number u(j) that appears in the definition of the matrix entries R−1(2n, 2k) (cf.
(2.11)) is replaced by an integer y(j), j = 0, 1, . . . , with the restriction that y(j) is
divisible by pe for j ≥ ⌈ep/2⌉. The corresponding analysis is the most demanding
one in this article. Already the final periodicity result in (11.21) (with “supporting”
powers p⌊2k/p⌋ on both sides) indicates that matters are much more delicate here. While
our starting point is again the expansion (9.2) (with the appropriate substitutions; see
(11.22)), the analysis of the summand modulo powers of p is much more intricate here.
The corresponding auxiliary results are the subject of Lemmas 35–40.

We start with a lower bound for the p-adic valuation of the summand in (11.22) in
the “generic” case.

Lemma 35. Let p be a prime with p ≡ 1 (mod 4) and let
(

y(n)
)

n≥0
be an integer

sequence with the property that vp
(

y(n)
)

≥ e for n ≥
⌈

ep
2

⌉

. For all positive integers

n and k, and non-negative integers m and ci, 1 ≤ i ≤ 2n − 2k, with
∑2n−2k

i=1 ici =

2n− 2k +m,
∑2n−2k

i=1 ci = m, and ci = 0 for all even i, we have

vp

(

(2n+m− 1)!

(2k − 1)!
∏2n−2k

i=1 i!ci ci!

2n−2k
∏

i=1

yci
(

i−1
2

)

)

≥ #
(

carries when adding (2n+m− 1− pcp)p and (pcp)p

)

+#
(

carries when adding (2n− 2k +m− pcp)p and (2k − 1)p

)

+ 1
2(p−1)

(2n− 2k +m− pcp)− 1
p−1

sp(2n− 2k +m− pcp). (11.1)

Remark 36. For non-negative integers N , we have

1
2(p−1)

N − 1
p−1

sp(N) ≥ −1
2
.

Thus, although the last line in (11.1) can be negative, the sum of the two numbers of
carries on the right-hand side of (11.1) is still a lower bound for the p-adic valuation
on the left-hand side since the latter is an integer.
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Proof of Lemma 35. By Legendre’s formula in Lemma 3, the p-adic valuation on the
left-hand side of (11.1) equals

vp

(

(2n+m− 1)!

(2k − 1)!
∏2n−2k

i=1 i!ci ci!

2n−2k
∏

i=1

yci
(

i−1
2

)

)

=
1

p− 1

(

2n− 2k +m− sp(2n+m− 1) + sp(2k − 1)

−
2n−2k
∑

i=1

(

cii− cisp(i) + ci − sp(ci)
)

)

+
2n−2k
∑

i=1

civp

(

y
(

i−1
2

)

)

. (11.2)

We consider the terms involving ci on the right-hand side of (11.2) separately. Concern-
ing these, we claim that the following lower bound holds for all odd i ≥ 3 with i 6= p:

1

p− 1

(

− (i+ 1)ci + cisp(i) + sp(ci)
)

+ civp

(

y
(

i−1
2

)

)

≥ − ici
2(p− 1)

. (11.3)

Multiplying both sides by 2(p− 1) and using our divisibility assumption for y
(

i−1
2

)

, we
see that the above claim will follow from the estimate

−(i+ 2)ci + 2cisp(i) + 2sp(ci) + 2(p− 1)ci

⌊

i−1
p

⌋

≥ 0.

This inequality can now indeed easily be verified for 3 ≤ i < p, for p < i < 2p, for

i = 2p+ 1, and finally for 2p+ 3 ≤ i making use of the simple inequality
⌊

i−1
p

⌋

≥ i−p
p
.

This proves our claim in (11.3).
We use (11.3) in (11.2) for i 6= p, keeping the terms for i = p unchanged. Thereby,

we obtain

vp

(

(2n+m− 1)!

(2k − 1)!
∏2n−2k

i=1 i!ci ci!

2n−2k
∏

i=1

yci
(

i−1
2

)

)

≥ 1

p− 1









2n− 2k +m− pcp + sp(cp)− sp(2n+m− 1) + sp(2k − 1)− 1

2

2n−2k
∑

i=1
i 6=p

ici









=
1

2(p− 1)
(2n− 2k +m− pcp) +

1

p− 1

(

sp(pcp)− sp(2n+m− 1) + sp(2k − 1)
)

=
1

2(p− 1)
(2n− 2k +m− pcp)−

1

p− 1
sp(2n− 2k +m− pcp)

+
1

p− 1

(

sp(pcp) + sp(2n+m− 1− pcp)− sp(2n+m− 1)
)

+
1

p− 1

(

sp(2k − 1) + sp(2n− 2k +m− pcp)− sp(2n+m− 1− pcp)
)

.

(11.4)
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By Lemma 5, the next-to-last line in (11.4) equals the first number of carries that
appears on the right-hand side of (11.1), while the last line in (11.4) equals the second
number of carries on the right-hand side of (11.1). Thus, we have established (11.1). �

In a special case, the bound from the previous lemma can be slightly improved.

Lemma 37. To the assumptions of Lemma 35 we add the conditions that ci = 0 for
i ≥ 2p and that ci < p for 1 ≤ i < p and for p < i < 2p. Then we have

vp

(

(2n+m− 1)!

(2k − 1)!
∏2n−2k

i=1 i!ci ci!

2n−2k
∏

i=1

yci
(

i−1
2

)

)

≥ #
(

carries when adding (2n+m− 1− pcp)p and (pcp)p

)

+#
(

carries when adding (2n− 2k +m− pcp)p and (2k − 1)p

)

+ 1
p−1

(2n− 2k +m− pcp)− 1
p−1

sp(2n− 2k +m− pcp). (11.5)

Remark 38. The only difference between (11.5) and (11.1) is a “missing” factor of 2 in
the denominator of the first term in the last line of (11.5). Now, by Legendre’s formula
in Lemma 3, this last line equals the p-adic valuation of (2n − 2k + m − pcp)! and is
therefore non-negative (as opposed to the last line in (11.1); cf. Remark 36).

Proof of Lemma 37. We use again the identity (11.2). At this point, we observe that
the additional conditions on the ci’s imply that the contribution of ci with 1 ≤ i < 2p
and i 6= p in (11.2) is non-negative. Indeed, this contribution is

− 1

p− 1

(

cii− cisp(i) + ci − sp(ci)
)

+ civp

(

y
(

i−1
2

)

)

= − 1

p− 1

(

ici − cisp(i)
)

+ civp

(

y
(

i−1
2

)

)

. (11.6)

since ci < p. If i < p, then we have sp(i) = i and hence the value in (11.6) is non-
negative. If, on the other hand, p < i < 2p, then we have sp(i) = i − p + 1 and

vp

(

y
(

i−1
2

)

)

≥ 1, and therefore the value in (11.6) is again non-negative.

For the remaining terms in (11.2), we compute

1

p− 1

(

2n− 2k +m− sp(2n+m− 1) + sp(2k − 1)− pcp + sp(cp)
)

=
1

p− 1
(2n− 2k +m− pcp)−

1

p− 1
sp(2n− 2k +m− pcp)

+
1

p− 1

(

sp(2n+m− 1− pcp) + sp(pcp)− sp(2n+m− 1)
)

+
1

p− 1

(

sp(2n− 2k +m− pcp) + sp(2k − 1)− sp(2n+m− 1− pcp)
)

. (11.7)

By Lemma 5, the last line is the number of carries that appears in the next-to-last line
in (11.5). For the same reason, the next-to-last line in (11.7) is the number of carries
that appears in the third line from below in (11.5). This completes the proof. �
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The next lemma collects together several auxiliary inequalities that concern the right-
hand side of (11.1). They will be used in subsequent arguments.

Lemma 39. Let p be a prime with p ≡ 1 (mod 4) and N and ℓ non-negative integers
with pℓ ≤ N < pℓ+1. Then

⌊

N
p

⌋

≥ ℓ, for ℓ ≥ 0, (11.8)

1
2(p−1)

N − 1
p−1

sp(N) > N
2p

− 3
2
, for ℓ ≥ 0, (11.9)

1
2(p−1)

N − 1
p−1

sp(N) ≥ ℓ+ 3
8
, for ℓ ≥ 2, (11.10)

1
2(p−1)

N − 1
p−1

sp(N) ≥ ℓ, for ℓ ≥ 1 and N ≥ pℓ(p− 1), (11.11)

1
2(p−1)

N − 1
p−1

sp(N) > 0, for 2p ≤ N < p2. (11.12)

Proof. The first inequality is obvious.
For the proof of (11.9), we write N = n0+n1p+n2p

2 with 0 ≤ n0, n1 < p and n2 ≥ 0,
and then estimate the difference of the left-hand side and N/(2p),

1
2(p−1)

N − 1
p−1

sp(N)− N
2p

= N
2p(p−1)

− 1
p−1

sp(N)

= 1
2p(p−1)

(

n0 + n1p+ n2p
2 − 2pn0 − 2pn1 − 2psp(n2)

)

≥ 1
2p(p−1)

(

−n0(2p− 1)− n1p+ n2(p
2 − 2p)

)

≥ −2p−1
2p

− 1
2
> −3

2
,

as desired.
In order to show (11.10), let N = n0 + n1p+ · · ·+ nℓp

ℓ with 0 ≤ ni < p for all i and
nℓ > 0. Then we have

1
2(p−1)

N − 1
p−1

sp(N) = 1
2(p−1)

(

n0 + n1p+ · · ·+ nℓp
ℓ
)

− 1
p−1

(n0 + n1 + · · ·+ nℓ)

= 1
2(p−1)

(

− n0 + n1(p− 2) + · · ·+ nℓ(p
ℓ − 2)

)

≥ 1
2(p−1)

(

− (p− 1) + (pℓ − 2)
)

(11.13)

= 1
2(p−1)

(pℓ − 2)− 1
2
. (11.14)

Now, it is a simple exercise to show that

pℓ ≥ 2(p− 1)ℓ+ p2 − 4p+ 4, for ℓ ≥ 2 and p ≥ 5.

We use this in (11.14) to get

1
2(p−1)

N − 1
p−1

sp(N) ≥ ℓ+ 1
2(p−1)

(p2 − 4p+ 2)− 1
2
= ℓ+ 1

2
(p− 4)− 1

2(p−1)
≥ ℓ+ 3

8
,

since p ≥ 5.
For the proof of the strengthening in (11.11), we observe that, instead of the last line

in (11.14), we may improve that lower bound to

1
2(p−1)

N − 1
p−1

sp(N) ≥ 1
2(p−1)

(

− (p− 1) + (p− 1)(pℓ − 2)
)

= 1
2
(pℓ − 3).

The fact that this is at least ℓ for ℓ ≥ 1 and p ≥ 5 is straightforward to verify.
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Finally we turn to the proof of (11.12). We write N = n0 +n1p with 0 ≤ n0 < p and
2 ≤ n1 < p, and compute

1
2(p−1)

N − 1
p−1

sp(N) = 1
2(p−1)

(n0 + n1p)− 1
p−1

(n0 + n1)

= 1
2(p−1)

(

− n0 + n1(p− 2)
)

≥ 1
2(p−1)

(

− (p− 1) + 2(p− 2)
)

= 1
2(p−1)

(

p− 3
)

> 0,

since p ≥ 5.
This completes the proof of the lemma. �

The purpose of the lemma below is to “convert” the lower bound from Lemmas 35
and 37 into a form that is needed in the proof of the upcoming Theorem 41.

Lemma 40. Let p be a prime with p ≡ 1 (mod 4) and let
(

y(n)
)

n≥0
be an integer

sequence with the property that vp
(

y(n)
)

≥ e for n ≥
⌈

ep
2

⌉

. For all positive integers

n and k, and non-negative integers m and ci, 1 ≤ i ≤ 2n − 2k, with
∑2n−2k

i=1 ici =

2n− 2k +m,
∑2n−2k

i=1 ci = m, and ci = 0 for all even i, we have

⌊

2k
p

⌋

+vp

(

(2n+m− 1)!

(2k − 1)!
∏2n−2k

i=1 i!ci ci!

2n−2k
∏

i=1

yci
(

i−1
2

)

)

≥ 1+ max
cp<i≤⌊(2n+m−1)/p⌋

vp(i). (11.15)

By convention, if cp = ⌊(2n+m− 1)/p⌋ the right-hand side is interpreted as zero (so
that the inequality is trivially true).

Proof. We proceed in a similar manner as in the proof of Lemma 27.
Choose α, β, and γ such that 2n+m− 1 = n0p

α+n1, with n0 not divisible by p and
n1 < pβ+1, pβ ≤ 2n +m − 1 − pcp < pβ+1, and pγ ≤ 2k − 1 < pγ+1. These conditions
imply that the p-adic representations can be schematically indicated as

α
↓

β
↓

γ
↓

(2n+m− 1)p = . . . ? 0 . . . 0 ∗ . . . . . . . †
(2n+m− 1− pcp)p = ? . . . . . . . †

(2k − 1)p = ? . . .∗ (11.16)

with the meaning that the shown ? in the first line is the α-th digit counted from
right (the counting starting with 0), that the left-most (non-zero) digit of the p-adic
representation of 2n+m− 1− pcp is the β-th digit, and that the left-most (non-zero)
digit of the p-adic representation of 2k− 1 is the γ-th digit. The symbol ∗ indicates an
arbitrary digit (between 0 and p− 1) — not necessarily the same in the first and in the
third line, the symbol ? indicates an arbitrary non-zero digit (between 1 and p− 1) —
not necessarily the same in lines 1–3, while † indicates a digit which is the same in the
first and in the second line. The reader is advised to consult (11.16) constantly while
going through the subsequent arguments.

We first dispose of the simple case in which β = 0 (and hence γ = 0): in that case,
by considering the schematic representation in (11.16), it becomes apparent that cp =
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⌊(2n+m− 1)/p⌋. According to the convention that we have made in the statement of
the lemma, there is nothing to prove. Hence, from now on, we assume that β ≥ 1.

Now we distinguish two main cases, depending on the relative sizes of n1 and
2n+m− 1− pcp.

Case 1: n1 < 2n+m− 1− pcp. Here, by inspection of (11.16), we see that

max
cp<i≤⌊(2n+m−1)/p⌋

vp(i) = α− 1, (11.17)

since we obtain the p-adic representation of ⌊(2n+m− 1)/p⌋ by simply deleting the
right-most digit (indicated by † in (11.16)) in the p-adic representation of 2n+m− 1,
and since pcp is the difference of the first two lines in (11.16).

On the other hand, by Lemma 35, the left-hand side of (11.15) is bounded below by
⌊

2k
p

⌋

+#
(

carries when adding (2n+m− 1− pcp)p and (pcp)p

)

+#
(

carries when adding (2n− 2k +m− pcp)p and (2k − 1)p

)

+ 1
2(p−1)

(2n− 2k +m− pcp)− 1
p−1

sp(2n− 2k +m− pcp). (11.18)

Clearly, the number of carries when adding two numbers A and B in their p-adic
representations equals the number of carries when performing the subtraction of, say,
A from A+B. In view of this observation, inspection of (11.16) yields that the number
of carries in the first line of (11.18) is at least α−β. Hence, comparison of (11.15) with
(11.17) shows that what remains to demonstrate is that
⌊

2k
p

⌋

+#
(

carries when adding (2n− 2k +m− pcp)p and (2k − 1)p

)

+ 1
2(p−1)

(2n− 2k +m− pcp)− 1
p−1

sp(2n− 2k +m− pcp) ≥ β. (11.19)

In order to accomplish this, we need to discuss several subcases.

If β > γ+1 and γ ≥ 0, then 2n−2k+m−pcp ≥ pβ or pβ−1 ≤ 2n−2k+m−pcp < pβ.
In the former case we may use (11.10) to conclude that the left-hand side of (11.19)
is at least β + 3

8
, while in the latter case the number of carries in (11.19) must be at

least 1 and 2n− 2k +m− pcp must be at least (p− 1)pβ−1; consequently (11.11) leads
to the conclusion that the left-hand side of (11.19) is at least 1 + (β − 1) = β, both
confirming the inequality in (11.19).

The case where β = 1 and γ = 0 needs a special treatment, to which we will come
at the end of this discussion of subcases.

If β = γ ≥ 1, then we use (11.8) to see that ⌊2k/p⌋ is at least γ = β, again confirming
(11.19). We point out that for this conclusion we implicitly used the observation of
Remark 36.

If β = γ + 1 and γ ≥ 1, then either 2n− 2k +m− pcp ≥ pβ or the number of carries
in (11.19) is at least 1. In the former case, we may use (11.10) to see that the last
line on the left-hand side of (11.19) is at least β, as desired. In the latter case, the
inequality (11.8) specialised to N = 2k > pγ implies that the left-hand side of (11.19)
is at least 1 + γ = β, again confirming (11.19). Here also, this conclusion requires
implicitly the observation of Remark 36.
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Finally we discuss the remaining case where β = 1 and γ = 0. Here, we have either
2p ≤ 2n−2k+m−pcp < p2, or p ≤ 2n−2k+m−pcp < 2p, or 1 ≤ 2n−2k+m−pcp < p.
In the first case, the inequality (11.12) implies that the third line on the left-hand side
of (11.19) is strictly positive. Since this is a lower bound for the left-hand side of (11.15),
an integer, it is an effective lower bound of 1 = β, as desired. For the second and third
cases, we observe that, since by assumption

2n− 2k +m− pcp =
2n−2k
∑

i=1
i 6=p

ici,

we must have ci = 0 for i ≥ 2p, ci ≤ 1 for p < i < 2p, and ci < p for 3 ≤ i < p. Thus,
the conditions of Lemma 37 are satisfied. We may therefore bound the left-hand side
of (11.15) by

#
(

carries when adding (2n+m− 1− pcp)p and (pcp)p

)

+#
(

carries when adding (2n− 2k +m− pcp)p and (2k − 1)p

)

+ 1
p−1

(2n− 2k +m− pcp)− 1
p−1

sp(2n− 2k +m− pcp). (11.20)

We have already found that the number of carries in the first line is at least α−β = α−1.
On the other hand, under the assumption on 2n− 2k+m− pcp in the second case, the
expression in the third line equals 1. Together with (11.17), this confirms again (11.15).
In the third case, there must be at least one carry when adding 2n− 2k+m− pcp and
2k− 1 in their p-adic representations, meaning that the second line in (11.20) equals 1.
This again confirms (11.15).

Case 2: n1 ≥ 2n+m− 1− pcp. Now, by inspection of (11.16), we see that

max
cp<i≤⌊(2n+m−1)/p⌋

vp(i) ≤ β − 1.

A moment’s thought will convince the reader that we are in exactly the same situation
as in Case 1: we must either prove (11.19) or, in the case where β = 1 and γ = 0, show
that the sum of the second and third lines in (11.20) is at least 1. Hence, the remaining
steps are the same as the corresponding ones in Case 1, completing the proof. �

We are now in the position to prove the announced “twisted” periodicity of the matrix
entries R−1

y (2n, 2k) as given by (9.1) modulo prime powers pe, when considered as a
sequence in n.

Theorem 41. Let p be a prime with p ≡ 1 (mod 4) and let
(

y(n)
)

n≥0
be an integer

sequence with the property that vp
(

y(n)
)

≥ e for n ≥
⌈

ep
2

⌉

. For all positive integers n,
k, and e, we have

p⌊2k/p⌋R−1
y

(

2n+ pe−1(p− 1), 2k
)

≡ yp
e−1(p−1

2

)

· (−1)(p−5)/4p⌊2k/p⌋R−1
y (2n, 2k) (mod pe), for n ≥ e+ 1. (11.21)

In particular, if y
(

p−1
2

)

is a quadratic residue modulo p and coprime to p, then the

sequence
(

p⌊2k/p⌋R−1
y (2n, 2k)

)

n≥e+1
, when taken modulo any fixed p-power pe with e ≥ 1,

is purely periodic with (not necessarily minimal) period length 1
4
pe−1(p− 1)2.
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Proof. The last assertion follows from Euler’s theorem, the fact that ϕ(pe) = pe−1(p−1),
from our assumption that y

(

p−1
2

)

is a quadratic residue modulo p and coprime to p,

and the easily proven property that, if c ≡ d (mod p), then cp
e−1 ≡ dp

e−1
(mod pe) for

all positive integers e.

We turn to the proof of (11.21). Replacement of k by 2k and of n by n− k in (9.2)
leads to

R−1
y (2n, 2k) =

∑

m≥0

∑

(ci)∈Po
2n−2k+m,m

c1=0

(−1)m2n−k

(

2n+m− 1

2n− 2k +m

)

· (2n− 2k +m)!

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!

2n−2k+1
∏

i=1

yci
(

i−1
2

)

(mod pe). (11.22)

The earlier observation in (9.3) also applies here — with n replaced by n−k — so that
m ≤ n− k ≤ n. In particular, the sum over m in (11.22) is finite.

The fraction in the expression in (11.22) is an integer since, by Lemma 30, it is
the number of all partitions of {1, 2, . . . , 2n − 2k + m} into ci blocks of size i, i =
3, 5, . . . , 2n− 2k + 1.

Let T (n, k,m, (ci)) denote the summand in (11.22); that is,

T (n, k,m, (ci)) := (−1)m2n−k (2n+m− 1)!

(2k − 1)!

× 1

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!

2n−2k+1
∏

i=1

yci
(

i−1
2

)

(11.23)

for a non-negative integer m and (ci) ∈ Po
2n−2k+m,m with c1 = 0. In view of the previous

observation, T (n, k,m, (ci)) is an integer multiplied by a monomial in the y(j)’s.

We want to prove the periodicity assertion in (11.21). We are going to prove that,
for all positive integers a, we have

p⌊2k/p⌋T
(

n+ 1
2
ape−1(p− 1), k,m, (ci)) ≡ 0 (mod pe), for n ≥ e+ 1 and cp < ape−1,

(11.24)
and

p⌊2k/p⌋T
(

n+ 1
2
ape−1(p− 1), k,m+ ape−1, (c̃i)

)

≡ yap
e−1( i−1

2

)

· (−1)a(p−5)/4p⌊2k/p⌋T
(

n, k,m, (ci)
)

(mod pe), for n < pe−1(p− 1),
(11.25)

with c̃p = cp + ape−1, and c̃i = ci for all other i.

We claim that these two congruences together imply

p⌊2k/p⌋R−1
y (2n, 2k)

≡ yap
e−1(p−1

2

)

· (−1)a(p−5)/4p⌊2k/p⌋R−1
y

(

2n− ape−1(p− 1), 2k
)

(mod pe), (11.26)

where a is maximal such that n− 1
2
ape−1(p− 1) ≥ e+ 1. It is obvious that, in its turn,

this congruence implies (11.21), and thus the theorem.
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In order to prove the claim, we rewrite the left-hand side of (11.26) in terms of our
short notation (11.23),

p⌊2k/p⌋R−1
y (2n, 2k) =

∑

m≥0

∑

(ci)∈Po
2n−2k+m,m

c1=0

p⌊2k/p⌋T (n, k,m, (ci)). (11.27)

We now consider the summands p⌊2k/p⌋T (n, k,m, (ci)) on the right-hand side for the
various choices of m and (ci). Let b be maximal such that cp − bpe−1 ≥ 0. If b < a,
then we may use (11.24) with a replaced by b + 1 to conclude that the corresponding
summand on the right-hand side of (11.27) vanishes modulo pe. On the other hand,
if b ≥ a, then we use (11.25) with n replaced by n − 1

2
ape−1(p − 1), m replaced by

m− ape−1 (this is indeed non-negative since m ≥ cp), and cp replaced by cp − ape−1 to
conclude that

p⌊2k/p⌋T (n, k,m, (ci))

≡ yap
e−1(p−1

2

)

·(−1)a(p−5)/4p⌊2k/p⌋T
(

n− 1
2
ape−1(p− 1), k,m− ape−1, (ĉi)

)

(mod pe),

with ĉp = cp − ape−1 and ĉi = ci for all other i. Thus, we obtain

p⌊2k/p⌋R−1
y (2n, 2k) ≡ yap

e−1(p−1
2

)

· (−1)a(p−5)/4

×
∑

m≥0

∑

(ĉi)∈Po
2n−2k+m−ape,m−ape−1

ĉ1=0

p⌊2k/p⌋T
(

n− 1
2
ape−1(p− 1), k,m− ape−1, (ĉi)

)

(mod pe),

with a maximal such that n − 1
2
ape−1(p − 1) ≥ e + 1. Recalling (11.27), we are then

directly led to our claim (11.26).

Now we provide the proofs of the crucial congruences (11.24) and (11.25).

Proof of (11.24). Let ⌊2k/p⌋ = l. If l ≥ e, there is nothing to prove. Therefore,
we assume l < e from now on.

If

2
(

n+ 1
2
ape−1(p− 1)

)

− 2k +m− pcp ≥ (2e− 2l + 1)p,

then Lemma 35 with n replaced by n+ 1
2
ape−1(p− 1) and (11.9) together imply that

vp
(

T
(

n+ 1
2
ape−1(p− 1), k,m, (ci)

)

> (2e−2l+1)p
2p

− 3
2
= e− l − 1.

In other words, the left-hand side — being an integer — is at least e− l. In combination
with ⌊2k/p⌋ = l, this establishes (11.24) in this case.

On the other hand, if

2
(

n+ 1
2
ape−1(p− 1)

)

− 2k +m− pcp < (2e− 2l + 1)p,

then, since m ≥ cp and 2k ≤ lp+ (p− 1), we infer

2n+ ape−1(p− 1)− lp− (p− 1)− (p− 1)cp < (2e− 2l + 1)p.

Equivalently, we have

cp >
1

p−1

(

2n− 2ep− p+ lp
)

+ ape−1 − 1.
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This entails

2
(

n+ 1
2
ape−1(p− 1)

)

+m− 1 ≥ 2n+ ape−1(p− 1) + cp − 1

> 2n+ ape + 1
p−1

(

2n− 2ep− p+ lp
)

− 2.

Since, by assumption, we have n ≥ e+ 1, it follows that

2
(

n+ 1
2
ape−1(p− 1)

)

+m− 1 > 2(e+ 1) + ape + 1
p−1

(

2(e+ 1)− 2ep− p+ lp
)

− 2

= ape − 1 + 1
p−1

(

1 + lp
)

.

As the left-hand side is an integer, we conclude that

2
(

n+ 1
2
ape−1(p− 1)

)

+m− 1 ≥ ape. (11.28)

Now we use Lemma 40 with n replaced by n + 1
2
ape−1(p − 1) to see that

p⌊2k/p⌋T
(

n+ 1
2
ape−1(p− 1), k,m, (ci)

)

is divisible by

p
1+ max

cp<i≤⌊(2n+ape−1(p−1)+m−1)/p⌋
vp(i)

.

As cp < ape−1, and since, by (11.28), we have ⌊(2n+ ape−1(p− 1) +m− 1)/p⌋ ≥ ape−1,
in the range cp < i ≤ ⌊(2n+ ape−1(p− 1) +m− 1)/p⌋ we will find i = ape−1, and
consequently p⌊2k/p⌋T

(

n+ 1
2
ape−1(p− 1), k,m, (ci)

)

is divisible by pe.

Proof of (11.25). We substitute n + 1
2
ape−1(p − 1) for n, m + ape−1 for m, and

cp+ape−1 for cp in the definition of T (n, k,m, (ci)) in (11.23). After little manipulation,
we get

T
(

n+ 1
2
ape−1(p− 1), k,m+ ape−1, (c̃i)

)

= yap
e−1(p−1

2

)

(−1)m+ape−1

2n+
1
2
ape−1(p−1)−k (2n+m+ ape − 1)!

(2k − 1)!

× 1

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!
· cp!

p!ape−1 (cp + ape−1)!

2n−2k+1
∏

i=1

yci
(

i−1
2

)

.

(11.29)

We have

(−1)p
e−1

= −1 (11.30)

and

2p
e−1(p−1)/2 ≡ (−1)(p−1)/4 (mod pe), (11.31)

since for p ≡ 1 (mod 8) the residue class of 2 is a quadratic residue modulo p, while for
p ≡ 5 (mod 8) it is not. Furthermore, we have

(p− 1)!p
e−1 ≡ −1 (mod pe), (11.32)
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as is seen by a straightforward induction on e based on Wilson’s theorem. If we use
(11.30)–(11.32) in (11.29), then we obtain

T
(

n+ ape−1(p−1)
2

, k,m+ ape−1, (c̃i)
)

≡ yap
e−1(p−1

2

)

(−1)m+a p−1
4 2n−k (2n+m+ ape − 1)!

(2k − 1)!

× 1

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!
· cp!

pape−1 (cp + ape−1)!

2n−2k+1
∏

i=1

yci
(

i−1
2

)

(mod pe). (11.33)

We have

(2n+m+ ape − 1)!

(2n+m− 1)!
p−ape−1

= p−ape−1

(2n+m+ ape − 1) · · · (2n+m+ 1)(2n+m)

=
⌊(2n+m+ ape − 1)/p⌋!

⌊(2n+m− 1)/p⌋! · [(2n+m+ ape − 1) · · · (2n+m+ 1)(2n+m)]p, (11.34)

where [a · b · · · z]p denotes the product a · b · · · z in which all factors divisible by p are
omitted. Now we observe that [b · (b + 1) · · · (b + pe − 1)]p forms a complete set of
representatives of the multiplicative group (Z/peZ)×. Consequently, the product is
congruent to −1 modulo pe. The term [ . ]p on the right-hand side of (11.34) consists of
a such products. Therefore,

(2n+m+ ape − 1)!

(2n+m− 1)!
p−ape−1 ≡ (−1)a

⌊(2n+m+ ape − 1)/p⌋!
⌊(2n+m− 1)/p⌋! (mod pe).

If we substitute this in (11.33), then we get

T
(

n+ ape−1(p−1)
2

, k,m+ ape−1, (c̃i)
)

≡ yap
e−1(p−1

2

)

(−1)m+a p−5
4 2n−k (2n+m− 1)!

(2k − 1)!

× ⌊(2n+m+ ape − 1)/p⌋!
(cp + ape−1)!

cp!

⌊(2n+m− 1)/p⌋!

× 1

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!

2n−2k+1
∏

i=1

yci
(

i−1
2

)

≡ yap
e−1(p−1

2

)

(−1)m+a p−5
4 2n−k (2n+m− 1)!

(2k − 1)!

⌊(2n+m−1)/p⌋
∏

i=cp+1

i · p−vp(i) + ape−vp(i)−1

i · p−vp(i)

× 1

3!c3c3! 5!c5c5! · · · (2n− 2k + 1)!c2n−2k+1c2n−2k+1!

2n−2k+1
∏

i=1

yci
(

i−1
2

)

(mod pe).

(11.35)

The reader should note that we wrote the first product over i in this particular form in
order to make sure that the expressions i · p−vp(i) in the denominator are coprime to p.

Similarly to the proof of (8.26), we would like to simplify the terms (i · p−vp(i)) +
ape−vp(i)−1 to i·p−vp(i). For, assuming the validity of this simplification, the first product
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over i on the right-hand side of (11.35) would simplify to 1, and the remaining terms

exactly equal yap
e−1(p−1

2

)

T
(

n, k,m, (ci)
)

.
We claim that this simplification is indeed allowed, provided both sides of (11.35) are

multiplied by p⌊2k/p⌋. (The reader should go back to (11.25) to see that this is indeed
what we need.) For, by Lemma 40, we know that the “prefactor” of the first product
over i on the right-hand side of (11.35) (that is, the right-hand side of (11.35) without
that first product over i), multiplied by p⌊2k/p⌋, is an integer that is divisible by

p
1+ max

cp<i≤⌊(2n+m−1)/p⌋
vp(i)

.

Hence, instead of calculating modulo pe, we may reduce the first product over i on the
right-hand side of (11.35) modulo

p
e−1− max

cp<i≤⌊(2n+m−1)/p⌋
vp(i)

.

(It should be observed here that the exponent in the last displayed expression is non-
negative. Indeed, as we observed at the beginning of this proof, we have m ≤ n.
Furthermore, by assumption, we have n < pe−1(p − 1). Together, this implies that
⌊(2n+m− 1)/p⌋ ≤ 3pe−1 < pe.) This is exactly what we need to perform the desired
simplification and the first product over i drops out.

This completes the proof of the theorem. �

12. The sequence (d(n))n≥0 modulo prime powers pe with p ≡ 1 (mod 4)

We are now able to prove our third main result, this one concerning the periodicity of
d(n) modulo prime powers pe with p ≡ 1 (mod 4), announced in Part (2) of Theorem 1.

Theorem 42. Let p be a prime number with p ≡ 1 (mod 4), and let e be some pos-
itive integer. Then the sequence

(

d(n)
)

n≥e+1
is purely periodic modulo pe with (not

necessarily minimal) period length 1
4
pe−1(p− 1)2.

Proof. We start by recalling (2.12), that is

d(n) =
n
∑

k=0

R−1(2n, 2k)v(k). (12.1)

By Theorem 19, we know that v(k) ≡ 0 (mod pe) for k ≥
⌈

ep
2

⌉

. Consequently, we may
truncate the sum in (12.1) when we consider both sides modulo pe. In fact, Theorem 19
says more precisely that v(k) = p⌊2k/p⌋V (k, p), where V (k, p) is an integer. Altogether,
this leads to

d(n) ≡
⌊ep/2⌋
∑

k=0

R−1(2n, 2k)p⌊2k/p⌋V (k, p) (mod pe)

≡
⌊ep/2⌋
∑

k=1

R−1(2n, 2k)p⌊2k/p⌋V (k, p) (mod pe), for n ≥ 1. (12.2)

We are indeed allowed to ignore the summand for k = 0 since R−1(2n, 0) = 0 for n ≥ 1,
cf. Proposition 2. By Theorem 41 with y(k) = u(k) for all k (see in particular the
last paragraph of the statement; Theorem 11 provides the properties of u(k) required
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by the theorem), the sequence
(

p⌊2k/p⌋R−1(2n, 2k)
)

n≥e+1
is purely periodic when taken

modulo pe with (not necessarily minimal) period length 1
4
pe−1(p− 1)2. Since, by (12.2),

the sequence
(

d(n)
)

n≥e+1
, when taken modulo pe, is a finite linear combination of the

sequences
(

p⌊2k/p⌋R−1(2n, 2k)
)

n≥e+1
, k = 1, 2, . . . , it has the same periodicity behaviour.

�

It should be observed that the above argument, combined with (4.8), in fact proves a
refinement of the periodicity of the sequence

(

d(n)
)

n≥e+1
that generalises (1.2), namely

d
(

n+ pe−1(p−1)
2

)

≡ (−1)(p−5)/4(3 · 7 · 11 · · · (2p− 3))2p
e−1

d(n) (mod pe),

for p ≡ 1 (mod 4) and n ≥ e+ 1. (12.3)

13. Some conjectures and speculations

In this final section, we report on some conjectures concerning congruence properties
of the sequences

(

u(n)
)

n≥0
,
(

v(n)
)

n≥0
, and

(

d(n)
)

n≥0
that are suggested by extensive

computer experiments. If true, they would further strengthen the results of our paper.
Roughly speaking, the data suggest that it is possible to improve period lengths and
bounds for odd prime powers pe by a factor of 2. By contrast, it seems that, in our
result in Section 10 on periodicity of d(n) modulo powers of 2, the period length is the
exact one.

Our first conjecture predicts that, for primes p ≡ 3 (mod 4), the vanishing of u(n)
modulo pe occurs by a factor of 2 earlier than proved in Theorem 9.

Conjecture 43. (1) If p ≡ 3 (mod 4) and e ≥ 1, we have u(n) ≡ 0 (mod p2e−1) for

n ≥
⌈

ep2−1
2

⌉

.

(2) If p ≡ 3 (mod 4) and e ≥ 2, we have u(n) ≡ 0 (mod p2e) for n ≥ ep2+(e−2)p
2

.

(2a) If p ≡ 3 (mod 4), we have u(n) ≡ 0 (mod p2) for n ≥ p2−1
2

.

Remark. Computer experiments indicate that the above lower bounds can be improved
in two sporadic cases:

(1) If p ≡ 3 (mod 4), we have u(n) ≡ 0 (mod p) for n ≥ p2−p
2

.

(2) If p ≡ 3 (mod 4), we have u(n) ≡ 0 (mod p6) for n ≥ 3p2−1
2

.

The next conjecture predicts an analogous strengthening of Theorem 17, again for
primes p ≡ 3 (mod 4).

Conjecture 44. (1) If p ≡ 3 (mod 4) and e is odd, we have v(n) ≡ 0 (mod pe) for

n ≥ (ep+2)(p+1)
4

.

(2) If p ≡ 3 (mod 4) and e is even, we have v(n) ≡ 0 (mod pe) for n ≥
⌈

ep2

4

⌉

, “with

very few exceptions.” Based on data for v(n) with n ≤ 1500, the only exceptions that
we found were

• p = 7 and e = 8, where the correct lower bound is 102 instead of
⌈

8·72
4

⌉

= 98;



ROMIK’S SEQUENCE OF TAYLOR COEFFICIENTS OF JACOBI’S THETA FUNCTION θ3 57

• p = 7 and e = 24, where the correct lower bound is 298 instead of
⌈

24·72
4

⌉

= 294;

• p = 7 and e = 40, where the correct lower bound is 494 instead of
⌈

40·72
4

⌉

= 490;

• p = 11 and e = 36, where the correct lower bound is 1095 instead of
⌈

36·112
4

⌉

=

1089.

For the sequence
(

d(n)
)

n≥0
and primes p ≡ 3 (mod 4), it seems that Theorem 23 can

be improved analogously.

Conjecture 45. If p ≡ 3 (mod 4), we have d(n) ≡ 0 (mod pe) for n ≥
⌈

ep2

4

⌉

.

For primes p ≡ 1 (mod 4), it appears that the periodicity of d(n) modulo p-powers
can be refined in the following way, which would improve Theorem 42.

Conjecture 46. (1) If p ≡ 1 (mod 4), the sequence
(

d(n)
)

n≥1
, taken modulo pe, is

(eventually) periodic with (not necessarily minimal) period length 1
8
pe−1(p− 1)2.

(2) If p ≡ 1 (mod 4), there exists a constant Cp,e such that:

(i) d
(

n+ pe−1(p−1)
4

)

≡ Cp,ed(n) (mod pe) for all n ≥ 1;

(ii) C
(p−1)/2
p,e ≡ 1 (mod pe).

Remark. (1) From computer data, it seems that
(

d(n)
)

n≥1
is actually purely periodic

modulo pe for a prime p with p ≡ 1 (mod 4). However, that may be deceiving and
just mean that one sees counter-examples only if one goes to very high prime powers pe

(which however is difficult since the computation of d(n) for large n quickly exceeds the
capacity of computers). In any case, with an arbitrary sequence

(

y(n)
)

n≥0
satisfying the

conditions of Theorem 41, the congruence (11.21) is not true in general. Furthermore,
recall that we proved pure periodicity of d(n) modulo pe only starting from n = e+ 1.
Phrased differently, if pure periodicity for

(

d(n)
)

n≥1
is true, then this would come from

very special properties of the sequences
(

u(n)
)

n≥0
and

(

v(n)
)

n≥0
.

(2) Item (2) above is a strengthening and generalisation of [13, Conj. 18(2)].

Concerning the matrix
(

R(n, k)
)

n,k≥0
, we record the following — conjectural — con-

gruence properties. Item (3) is a strengthening of Theorem 33 specialised to y(k) = u(k)
for all k.

Conjecture 47. (1) For fixed k and any given prime power pe with p ≡ 1 (mod 4), the
sequence (R(2n+ k, k))n≥0, when considered modulo pe, is (purely) periodic.

(2) For fixed k and any given prime power pe with p ≡ 3 (mod 4), the sequence
(R(2n+ k, k))n≥0, when considered modulo pe, is eventually 0.

(3) For fixed a and any 2-power 2e, the sequence
(

R−1(2n + k, k)
)

k≥0
is periodic

modulo 2e with period length 2e−3.

An attentive reader may have observed earlier that we did not say anything about
the behaviour of u(n) modulo powers of 2. The reason is that we simply did not
need to know more than u(0) = 1, and that u(1) and u(2) are odd, in order to prove
periodicity of

(

d(n)
)

n≥0
modulo powers of 2. However, data suggest a high divisibility
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of u(n) by powers of 2. Even much more seems to be true, namely a “hypergeometric”
generalisation; see the conjecture below. This high divisibility might be necessary for
a proof of Conjecture 47(3).

Conjecture 48. Let (u(n))n≥0 be defined by the recurrence (2.4). Then u(n)
(2n+1)!

∈ Z2.

In other words, the rational number u(n)
(2n+1)!

can be written with an odd denominator.

In particular, we have v2
(

u(n)
)

≥ 2n − ⌈log2(n)⌉. More generally, it seems that any
quotient

2F1

[

3
4
+ a, 3

4
+ b

3
2
+ c

; 4t

]

2F1

[

1
4
+ d, 1

4
+ e

1
2
+ f

; 4t

]

with a, b, c, d, e, f non-negative integers has coefficients in Z2.

Acknowledgement

We thank Tanay Wakhare for helpful correspondence. The authors also thank the
Mathematische Forschungsinstitut Oberwolfach for the opportunity of an Oberwolfach
Research Fellowship in August/September 2024, during which they succeeded to im-
prove the divisibility results for primes p ≡ 3 (mod 4) significantly.

References

[1] G. E. Andrews, The Theory of Partitions, Encyclopedia of Math. and its Applications, vol. 2,
Addison–Wesley, Reading, 1976.

[2] G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, The Encyclopedia of Mathematics
and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.

[3] B. C. Berndt, Ramanujan’s Notebooks. Part V, Springer–Verlag, New York, 1998.
[4] P. Guerzhoy, M. H. Mertens and L. Rolen, Periodicities for Taylor coefficients of half-integral weight

modular forms, Pacific J. Math. 307 (2020), 137–157.
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