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A CFSG-FREE EXPLICIT JORDAN’S THEOREM OVER

ARBITRARY FIELDS

JITENDRA BAJPAI AND DANIELE DONA

Abstract. We prove a version of Jordan’s classification theorem for finite subgroups
of GLn(K) that is at the same time quantitatively explicit, CFSG-free, and valid for
arbitrary K. This is the first proof to satisfy all three properties at once. Our overall
strategy follows Larsen and Pink [24], with explicit computations based on techniques
developed by the authors and Helfgott [2, 3], particularly in relation to dimensional
estimates.
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1. Introduction

Results about the structure of subgroups of GLn(C) have been known for a long time,
at least since Jordan proved the following result [23, Thm. 40].

Theorem 1.1 (Jordan’s theorem). Let Γ be a finite subgroup of GLn(C). Then there
is a normal abelian subgroup A⊴Γ of index bounded by a constant J(n) depending only
on n.

Since then, J(n) has been bounded explicitly. A bound of the form eO(n2/ logn) is
given in [22, Thm. 14.12], based on ideas of Frobenius and Blichfeldt, and it does not
use the Classification of Finite Simple Groups (CFSG). With the aid of CFSG, Collins
[9, Thm. A] proved the bound (n + 1)! for n ≥ 71, which is tight in general. We refer
the reader for an exposition on Jordan’s theorem to a recent survey by Breuillard [6].
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Theorem 1.1 is false if we replace C by a field of positive characteristic. Nevertheless,
there exist results about the structure of finite subgroups of GLn(K) that generalize
Jordan’s theorem. Here we prove one such result.

Theorem 1.2. Let K be any field, and let Γ be a finite subgroup of GLn(K). Then
there are Γ3 ⊴ Γ2 ⊴ Γ1 ⊴ Γ, each of them normal inside Γ, such that

(a) |Γ/Γ1| ≤ J ′(n) := nn223n10

;
(b) either Γ1 = Γ2, or char(K) = p > 0 and Γ1/Γ2 is a product of finite simple groups

of Lie type of characteristic p;
(c) Γ2/Γ3 is abelian of size not divisible by char(K);
(d) either Γ3 = {e}, or char(K) = p > 0 and Γ3 is a p-group.

A version of Theorem 1.2 without any explicit expression for J ′(n) was proved by
Larsen and Pink [24], without relying on CFSG. With the use of CFSG, Collins [10]
showed that we can take J ′(n) = (n + 2)! for n ≥ 71. Our goal is to have at the same
time an explicit J ′(n) in the statement and a CFSG-free proof. The present paper is
the first to have both properties for an arbitrary field K.

Our interest in the question stems from our previous work on dimensional estimates.
These tools were developed first in [24, §4] in a non-explicit form, and then used in sev-
eral papers in the context of Babai’s conjecture. Most recently, the authors in joint work
with Helfgott gave explicit dimensional estimates in order to achieve sharper diameter
bounds for untwisted classical groups [2, 3], and a natural question was whether the
rest of the techniques of [24] could be made equally explicit. In the present paper, we
follow the procedure in [24], sharpening and cleaning the route taken by them through
the strategies involved in the proofs of [2, 3].

1.1. Outline of the strategy. The first three sections collect some preliminary facts:
Section 2 concerns varieties, Section 3 deals with linear algebraic groups in general, and
Section 4 focuses on almost simple groups. Some of the definitions and properties are
standard, some are taken from [2, 3], and some are new although in line with the spirit
of those papers.

Section 5 deals with dimensional estimates. A dimensional estimate is a bound of the
form |A ∩ V (K)| ≤ C|AC |dim(V )/ dim(G), where G is an algebraic group over K, V ⊆ G
is a subvariety, A ⊆ G(K) is a finite subset, and C is some constant depending only
on the data of G and V (but not on A and K). Such an estimate appeared first in
[24, Thm. 4.2], with A = Γ a subgroup and with a non-explicit C. The bounds in [2,
Thm. 4.4] and [3, Thm. 1.1] have instead an explicit C and hold for A a generating set
of G(K). Our task in this section is to show that the assumption ⟨A⟩ = G(K) can be
weakened, so that we may have estimates for A = Γ with explicit C. The section plays
the role of [24, §4] through its main result (Theorem 5.3), and of [24, §6] through its
corollary on centralizers (Corollary 5.6).

The goal of Section 6 is to prove an explicit version of [24, Thm. 0.5], following the
path laid out in [24, §§7–11]. Its main result (Theorem 6.7) shows that, for any G
almost simple and any Γ ≤ G(K), either [GF , GF ] ≤ Γ ≤ GF for some appropriate
endomorphism F , where GF is a group of Lie type and its commutator is simple, or
Γ is trapped in some substructure: either |Γ| is bounded in terms of the rank of G,



A CFSG-FREE EXPLICIT JORDAN’S THEOREM OVER ARBITRARY FIELDS 3

or |Γ| ≤ H(K) for some proper subgroup H ⪇ G of smaller dimension and bounded
degree.

The path of Section 6 is articulated in several steps. Starting from the assumption
that Γ is not trapped as above, we first find regular unipotent elements in Γ, thus
incidentally proving that char(K) must be positive (Proposition 6.2)1. Then we find a
variety V of minimal unipotent elements, representing the finite field Fq that “correctly
determines” Γ (Proposition 6.3): when at the end [GF , GF ] ≤ Γ ≤ GF , F will be either
the Frobenius map with respect to Fq or a twist of that map.

For now Fq is a good model only for the minimal unipotent elements of Γ, meaning

that Γ∩V (K) ≃ Fq (as abelian groups). The final step of Section 6 is to prove that Fq is
a good model for the whole Γ. We do so in two stages: first, in Propositions 6.4–6.5 we
achieve our goal under some conditions on Γ (Assumption A1–A2) and on V (dim(V ) =
rk(G)); then, we use that partial case and stronger conditions on Γ (Assumption B1–B2)
to complete the proof without any hypothesis on V . The general case is Theorem 6.7.

In Section 7 we complete the proof of Theorem 1.2. In rough terms, the case of
[GF , GF ] ≤ Γ ≤ GF gives rise to (b), whereas the case of |Γ| small gives rise to (a). The
descent from Γ ≤ G(K) to Γ ≤ H(K) with dim(H) < dim(G) can be repeated until
we reach either one of the other cases or dim(H) = 0 (in which case |Γ| is small again,
thanks to the bound on deg(H)). Since H is not necessarily almost simple, at every
stage we need to take quotients by the unipotent radical and by the centre: the former
is a p-group, whence (d), and the latter is abelian, whence (c).

2. Varieties

In this section we collect basic properties about varieties, morphisms, and degrees.

2.1. Basic nomenclature. We go over some standard terms, whose definition in the
literature can vary.

A variety2 V in n-dimensional affine space An is defined by a set of s equations of
the form Pi(x1, . . . , xn) = 0 (for 1 ≤ i ≤ s), where all Pi are polynomials and s is any
non-negative integer. V is defined over a field K if the coefficients of all Pi belong to
K. The set of points V (K) is

V (K) = {(k1, . . . , kn) ∈ Kn : Pi(k1, . . . , kn) = 0 (1 ≤ i ≤ s)}.

Two varieties V,W are equal if and only if the ideals generated by their defining polyno-
mials inside the ring K[x1, . . . , xn] have the same radical, which by the Nullstellensatz
holds if and only if V (K) = W (K).

Let V,W be defined by polynomials P = {Pi}i≤s and Q = {Qj}j≤t. The (set-
theoretic, or reduced) intersection V ∩W is the variety defined by P ∪Q, and the union
V ∪W is defined by {PiQj}i≤s,j≤t.

The Zariski topology is the topology whose closed sets are the sets V (K) for all
varieties V . The affine space An(K) is Noetherian under this topology. The Zariski

1At this stage, a CFSG-free proof of Theorem 1.1 with explicit J(n) is already within reach. We do
not bother doing so, since [22, Thm. 14.12] already does that and with a better J(n) than ours.

2For us a variety is affine and closed, not necessarily irreducible nor connected nor pure-dimensional.
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closure S of a set S ⊆ An(K) is the smallest set of the form V (K) containing S. We
call V itself the Zariski closure of S.

A variety V is irreducible if it is not equal to any union V1 ∪ V2 with V1 ̸⊆ V2 and
V2 ̸⊆ V1. Every V can be uniquely decomposed into a finite union of irreducible varieties
not contained in each other, called the irreducible components of V . The dimension
dim(V ) of an irreducible variety V is the largest d for which we can write a chain
of irreducible proper subvarieties V0 ⊊ V1 ⊊ . . . ⊊ Vd = V . For V non-irreducible,
dim(V ) is the largest of the dimensions of its irreducible components. A variety is
pure-dimensional when all its components have the same dimension.

A morphism f : An → Am defined over K is an m-tuple of polynomials fi on n vari-
ables whose coefficients belong toK. A morphism f : X → Y forX ⊆ An, Y ⊆ Am is the
restriction of a morphism g : An → Am such that g(x) ∈ Y (K) for every x ∈ X(K), and
we write f = g|X . We have g1|X = g2|X if and only g1(x) = g2(x) for all x ∈ X(K). For
a morphism f : X → Y and a subvariety V ⊆ Y defined by polynomials Pi(y1, . . . , yn),
the preimage f−1(V ) is the variety defined by the polynomials Pi(f1(x⃗), . . . , fn(x⃗)) and
by the polynomials defining X. The image f(X(K)) need not be the set of points of
a variety, though it is a constructible set (Chevalley; see [27, §I.8, Cor. 2 to Thm. 3]),
meaning a finite union of intersections U ∩W , where U is open and W is closed.

2.2. Degrees. Let V ⊆ An be a pure-dimensional variety over K with dim(V ) = d.
The degree deg(V ) of V is the number of points in the set (V ∩ L)(K), where L is a
generic (n−d)-dimensional affine subspace of An (by [12, §II.3.1.2, Thm.] the definition
makes sense and deg(V ) is finite).

We can extend the definition of degree to general varieties V : deg(V ) is the sum of the
degrees of the pure-dimensional parts of V . The bound deg(V1∪V2) ≤ deg(V1)+deg(V2)
holds for any V1, V2 directly by definition. If V is the union of irreducible components
Vi, then deg(V ) =

∑
i deg(Vi).

By a generalization of Bézout’s theorem due to Fulton and Macpherson, as in [15,
Ex. 8.4.6], [30, (2.26)], or [12, §II.3.2.2, Thm.], for V1, V2 pure-dimensional we have

(2.1) deg(V1 ∩ V2) ≤ deg(V1) deg(V2).

By our definition of degree, (2.1) holds for V1, V2 not necessarily pure-dimensional as
well.

If V is defined by a single polynomial equation P = 0 with deg(P ) > 0, then deg(V ) ≤
deg(P ), and equality holds if P has no repeated factors. By Bézout, if V is defined by
many equations Pi = 0, then deg(V ) ≤

∏
i deg(Pi).

Following [3], for a morphism f : An → Am given by an m-tuple of polynomials fi,
we define the maximum degree of f to be mdeg(f) := maxi deg(fi). For a morphism
f : X → Y , we define mdeg(f) to be the minimum of mdeg(g) over all g : An → Am

with g|X = f .
We can bound the degree of images and preimages of varieties.

Lemma 2.1. Let V ⊆ An and W ⊆ Am be varieties and f : V → Am a morphism.
Then

(a) deg(f(V )) ≤ deg(V )mdeg(f)dim(f(V )), and

(b) deg(f−1(W )) ≤ deg(V ) deg(W )mdeg(f)dim(f(V )).
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Proof. See [2, Lem. 2.3] and [3, Lem. 2.4]. □

An important result of algebraic geometry is that, given an irreducible variety V and
a map f : V → An, all fibres f−1(x) have dimension ≥ dim(V ) − dim(f(V )), with
equality holding for a generic fibre. Below is a quantitative version of this statement.

Proposition 2.2. Let V be an irreducible variety and let f : V → An be a morphism.
Call u := dim(V ) − dim(f(V )). Then for every x ∈ f(V ) we have dim(f−1(x)) ≥ u.

Moreover, there is a proper subvariety Z ⊊ f(V ) for which

deg(Z) ≤ mdeg(f)dim(f(V ))−1 deg(V )

and for which every x ∈ f(V ) with dim(f−1(x)) > u is contained in Z.

Proof. See [27, §I.8] and [3, Prop. 3.2]. □

2.3. Degree of intersections. We show now how to bound the degree of intersec-
tions of varieties. One can always repeatedly apply Bézout, but when the number of
intersecting varieties is large (or infinite) the näıve bound thus obtained may be unman-
ageable. The results of this subsection can be seen as explicit versions of [24, Thm. 1.10,
Cor. 1.12]. Our technique is already essentially contained in [2, §3.1] and [3, §2.6] (where
it was used for a different purpose, namely escape from subvarieties), although we tweak
it to make it slightly more general and suited to our needs.

Lemma 2.3. For any D ≥ 1, define the function fD as follows: for any variety X ⊆ An,
if {Xj}j is the finite collection of irreducible components of X, set

fD(X) :=
∑
j

deg(Xj)D
dim(Xj).

Then, for any two varieties Y,Z ⊆ An with deg(Z) ≤ D, we have fD(Y ∩ Z) ≤ fD(Y ).

Proof. For any variety X, if we partition the collection of its components {Xj}j into
two subsets, say for simplicity {Xj}j≤J and {Xj}j>J , and consider their unions X≤J

and X>J , we clearly have fD(X) = fD(X≤J) + fD(X>J). Thus, it is sufficient to prove
the result for Y irreducible.

If Y = Y ∩Z then fD(Y ∩Z) = fD(Y ), and if Y ∩Z = ∅ then fD(Y ∩Z) = 0. In both
cases we are done, so assume otherwise. We must have 0 ≤ dim(Y ∩ Z) ≤ dim(Y )− 1.
If {Xj}j is the collection of irreducible components of Y ∩ Z, by Bézout

fD(Y ∩ Z) =
∑
j

deg(Xj)D
dim(Xj) ≤ Ddim(Y )−1

∑
j

deg(Xj) = Ddim(Y )−1 deg(Y ∩ Z)

≤ Ddim(Y )−1 deg(Y ) deg(Z) ≤ Ddim(Y ) deg(Y ) = fD(Y ),

proving the result. □

Corollary 2.4. Let {Zi}i∈I be a (not necessarily finite) collection of varieties inside
An, with dim(Zi) ≤ d and deg(Zi) ≤ D for all i ∈ I. Let Z =

⋂
i∈I Zi. Then

(a) Z =
⋂

i∈I′ Zi for some I ′ ⊆ I with |I ′| ≤ 1 + (d+ 1)Dd+1,

(b) deg(Z) ≤ Dd+1, and
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(c) for any Y ⊆ An with dim(Y ) = d′ and deg(Y ) = D′, calling d̂ = min{d′,dim(Zi)},
we have deg(Y ∩ Z) ≤ D′Dd̂+1.

Proof. Since An is Noetherian, there is a finite subset of I (say {1, 2, . . . , J}, after
renaming the indices) with

⋂
i≤J Zi = Z. Choose the smallest such subset, and from

now on we may assume that I = {1, 2, . . . , J}. We reorder I as follows. Choose Z1

arbitrarily, and assume that we are done ordering up to some j < J . If Z(j) :=
⋂

i≤j Zi,
there is an irreducible component X of Z(j) not contained in Z, otherwise we would
contradict the minimality of I. Among such components, choose one X having largest
dimension, and then choose Zj+1 such that X ⊊ Zj+1.

By the minimality of I we must have Z1 = Z(1) ⊋ Z(2) ⊋ . . . ⊋ Z(J) = Z. Moreover,
by the ordering chosen above, we have the following property: there are indices 1 =
id+1 ≤ id ≤ id−1 ≤ . . . ≤ i1 ≤ i0 = J such that, if id′+1 < j ≤ id′ , the number of
d′-dimensional components in Z(j) is strictly smaller than in Z(j−1), and if j ≥ id′ the
d′-dimensional components in Z(j) are the same as those of Z.

Now, fD(Z(j)) ≤ fD(Z(i)) whenever j ≥ i by Lemma 2.3. This allows us to give an
upper bound on the number n(d′, j) of irreducible components of dimension d′ inside
Z(j). In fact, since we have the bounds∑

X irr.comp.of Y
dim(X)=d′

deg(X)Dd′ ≤ fD(Y ) ≤ deg(Y )Ddim(Y )

valid for any Y by definition, and since deg(Zi) ≤ D for all i, we obtain

n(d′, j) =
∑

X irr.comp.of Z(j)

dim(X)=d′

1 ≤
∑

X irr.comp.of Z(j)

dim(X)=d′

deg(X) ≤ fD(Z(j))D
−d′

≤ fD(Z(1))D
−d′ = fD(Z1)D

−d′ ≤ Dd−d′+1

for all d′, j. Moreover, by our ordering of the indices, n(d′, j) < n(d′, j − 1) whenever

id′+1 < j ≤ id′ . Therefore, for every d′ we have id′ − id′+1 ≤ n(d′, id′+1) ≤ Dd−d′+1, and
the bound

J = 1 +
d∑

d′=0

(id′ − id′+1) ≤ 1 +
d∑

d′=0

Dd−d′+1 ≤ 1 + (d+ 1)Dd+1

proves (a).
Using again Lemma 2.3,

deg(Z) =
∑

X irr.comp.of Z

deg(X) ≤ fD(Z) ≤ fD(Z1) ≤ Dd+1,

proving (b). We have dim(Y ∩ Z1) ≤ d̂ and deg(Y ∩ Z1) ≤ D′D, so

deg(Y ∩ Z) =
∑

X irr.comp.of Y ∩ Z

deg(X) ≤ fD(Y ∩ Z) ≤ fD(Y ∩ Z1) ≤ D′Dd̂+1,

proving (c). □
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3. Linear algebraic groups

In this section we define linear algebraic groups, fix the relative notations, and use
the tools of Section 2 to prove some general facts that will be used later. We shall
discuss the special case of almost simple groups in more depth in Section 4.

3.1. Definition and basic properties. The space of n×n matrices Matn is the affine

space An2
endowed with a multiplication map, i.e. a morphism · : An2 × An2 → An2

defined by the usual matrix multiplication. Clearly, mdeg(·) = 2. The general linear
group GLn is commonly defined as an open set inside Matn. We shall however need to
work with GLn as a (Zariski-closed) variety, so we define instead

GLn := {x ∈ Matn+1 : xi,n+1 = xn+1,i = 0 (1 ≤ i ≤ n), det(x|n×n) · xn+1,n+1 = 1} ,

where xi,j is the (i, j)-th entry of x and x|n×n is the restriction to the n× n upper left
corner of x. The determinant is the morphism det : GLn → A1 given by taking the
determinant of the n×n upper left corner of x (we just write det(x) for simplicity); it has
maximum degree mdeg(det) = n. The inversion map is the morphism −1 : GLn → GLn

sending (x, y) to (adj(x)y,det(x)), where the adjugate adj(x) is defined by adj(x)i,j =
(−1)i+jMj,i, with Mj,i being the (j, i)-th minor of x.

We occasionally work with a specified n-dimensional K-vector space L, and denote
by Mat(L) and GL(L) respectively the space Matn and the group GLn over K.

A (linear) algebraic group3 G is a subvariety of GLn closed under the multiplication
and inversion maps [4, p. 51], and in this case we write G ≤ GLn. The maximum degree
of these maps may change when restricted to G, and the degree of G and its maps
may also differ depending on how we choose to represent G. We call H an (algebraic)
subgroup of G, and write H ≤ G, if it is both a subvariety of G and an algebraic group
(not necessarily defined over the same field K). A normal subgroup H⊴G is a subgroup
for which φ(H) = H for all automorphisms φ : G → G of the form φ(g) = xgx−1 for
some fixed x ∈ G(K); a characteristic subgroup H ⊴◀ G is a normal subgroup for which
the above holds for all automorphisms φ, not only the inner ones.

One can define the Lie algebra of G by endowing the tangent space of G at e with
a Lie algebra structure: see [4, §3.5] or [21, §9.1] for details. We use the conventional
fraktur notation, such as gln and g, to denote Lie algebras. We have dim(G) = dim(g)
for all G.

We now define several objects inside G. The identity component Go is the connected
component of the identity of G. If G = Go, or equivalently if G is connected, then G
is irreducible [26, Cor. 1.35]. For any element g ∈ G(K), any set Λ ⊆ G(K), and any
variety V ⊆ G, their centralizers in G are

CG(g) := {x ∈ G : gx = xg}, CG(Λ) :=
⋂
g∈Λ

CG(g), CG(V ) := CG(V (K)).

Every centralizer is an algebraic subgroup of G. The centre of G is defined as Z(G) :=
CG(G), and we have Z(G) ⊴◀ G.

3Since we work exclusively in the affine space, there is no need to distinguish between “algebraic
groups” and “linear algebraic groups”. See [21, §8.6].
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A torus T of G is a subgroup of G isomorphic to the product of m copies of GL1

for some m ≥ 1 [4, §8.5]; T is a maximal torus if it has maximal m among all tori of
G. A Cartan subgroup of G is a subgroup of the form CG(T ) for some maximal torus
T . If G is connected then all maximal tori are conjugate [4, Cor. 11.3(1)], and the
Cartan subgroups of G have the same dimension, which is called the rank rk(G) of G.
Throughout the rest of the paper, when dealing with an algebraic group G we use

d = dim(G), D = deg(G), r = rk(G), ι = mdeg(−1: G→ G).(3.1)

Let G ≤ GLn ⊆ Matn+1 be defined over K. An element g ∈ G(K) is unipotent if
(g|n×n− Idn)

m = 0 for some m ≥ 1, and it is semisimple if it is conjugate to some diag-
onal matrix in G(K) [4, §4.1]. There are unique elements gs, gu, respectively semisimple
and unipotent, such that g = gsgu = gugs [4, p. 81, Cor. 1(1)]. An element g ∈ G is
regular if dim(CG(gs)) = rk(G). We use the notation

Grss = {g ∈ G : g regular and semisimple}, Gun = {g ∈ G : g unipotent},
Grun = {g ∈ G : g regular and unipotent}, Girr = {g ∈ G : g not regular}.

We adopt the shorthand V rss = V ∩Grss for varieties V ⊆ G, and Xrss = X ∩Grss(K)
for subsets X ⊆ G(K) (and similarly for the other notations).

For G connected, a Borel subgroup B is a maximal connected solvable subgroup of
G. Its unipotent part U = Bun is a maximal connected unipotent subgroup of G. If B
is the collection of Borel subgroups of G, then

R(G) =

(⋂
B∈B

B

)o

, Ru(G) = R(G)un

are respectively the radical and the unipotent radical of G [4, §11.21]. The definitions
above are invariant under automorphisms of G, meaning in particular that Ru(G) ⊴◀ G.
A connected G is called reductive if Ru(G) = {e}, and semisimple if R(G) = {e}. If
G is reductive, Cartan subgroups and maximal tori coincide [4, §13.17, Cor. 2(c)], so
rk(G) is the dimension of any maximal torus. If G is also semisimple, we have further
properties on the sets of regular, semisimple, and unipotent elements: Grss is open and
dense [20, §2.5], Gun is closed and irreducible of dimension dim(G) − rk(G) [20, §4.2],
Grun is nonempty [20, §4.5], and Girr is closed and proper (since the set of regular
elements is open and dense [20, §1.4]).

The degree of many objects above can be bounded effectively.

Lemma 3.1. Let G ≤ GLn be a connected algebraic group with d = dim(G), D =
deg(G), and ι = mdeg(−1), defined over a field K.

(a) For any maximal torus T of G, deg(T ) ≤ D.
(b) For any Borel subgroup B of G, deg(B) ≤ D.

(c) For any H ≤ G connected unipotent, deg(H) ≤ dim(H)dim(H).
(d) For any maximal connected unipotent subgroup U of G, deg(U) ≤ min{D, dd}.
(e) For the unipotent radical Ru(G) of G, deg(Ru(G)) ≤ min{(nD)d+1, dd}.

Proof. Each of the subgroups T,B,U as above is respectively of the form (G∩T ′)o, (G∩
B′)o, (G ∩ U ′)o for T ′, B′, U ′ of the same type in GLn [4, Prop. 11.14(2)]. All Borel
subgroups B′ of GLn are conjugate to each other [4, §11.1], and similarly for T ′, U ′ [4,
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Cor. 11.3]. Thus, it is enough to choose T ′, B′, U ′ whose degrees we can bound well.
Choose respectively the diagonal maximal torus T ′, the group B′ of upper triangular
matrices, and the subgroup U ′ of B′ whose elements have all diagonal entries equal to
1; hence, T ′, B′, U ′ are intersections of GLn with varieties of degree 1. The bound in
(a) and (b) and the first bound in (d) all follow from Bézout.

By definition, Ru(G) is the unipotent part of the radical R(G) =
(⋂

B∈B B
)o
. The

unipotent part is defined by equations of degree ≤ n since, by what we said about Borel
subgroups of GLn, R(G) lies in a conjugate of the set of upper triangular matrices.
Furthermore, the Borel subgroups of G have degree bounded by (b). Then, for some
varieties Zi of degree ≤ n, Corollary 2.4(b)–(c) yields

deg(Ru(G)) = deg

((⋂
B∈B

B

)o

∩
⋂
i∈I

Zi

)
≤ deg

((⋂
B∈B

B

)o)
· ndim(R(G))+1

≤ Ddim(B)+1ndim(R(G))+1 ≤ (nD)d+1,

which gives the first bound in (e).
Now let H ≤ G be connected unipotent. By definition H is also solvable, so there

is some z ∈ GLn(K) for which H ′ = zHz−1 is upper triangular by the Lie-Kolchin
theorem [4, Cor. 10.5]. H ′ is still unipotent of dimension dim(H), so we can write
H = U1U2 . . . Udim(H) for some 1-dimensional irreducible subgroups Ui each generated by
a unipotent matrix ui ∈ H ′ (see for instance [21, §7.5], which is more general and forgoes
the Zariski closure at the expense of lengthening the product to 2 dim(H) factors). For
some zi ∈ GLn(K) we can write ui = ziviz

−1
i with vi in Jordan normal form. If Ji is the

set of indices j for which (vi)j,j+1 is nonzero, then the group Vi = z−1
i Uizi is the variety

defined by xj,j = 1 for all j, xj1,j1+1 = xj2,j2+1 for all j1, j2 ∈ Ji, and xj,k = 0 everywhere
else. Therefore deg(Vi) = 1, and using the morphism f : V1× . . .×Vdim(H) → G defined
by

f(x1, . . . , xdim(H)) = z−1 · z1x1z−1
1 · . . . · zdim(H)xdim(H)z

−1
dim(H) · z

we conclude that f(V1 × . . .× Vdim(H)) has degree ≤ dim(H)dim(H) by Lemma 2.1(a).
This object is H itself, so we obtain (c).

Finally, both U and Ru(G) are connected unipotent, so (c) implies the second bounds
in (d) and (e). □

We can also bound the degree of the centralizer of any set in G(K). This is an easy
application of Corollary 2.4, although a more elementary argument relying on the fact
that we intersect linear varieties would also be sufficient.

Corollary 3.2. Let G ≤ GLn be an algebraic group defined over K, with d = dim(G)
and D = deg(G), and let Λ ⊆ G(K). Then CG(Λ) = CG(Λ

′) for some Λ′ ⊆ Λ of size
|Λ′| ≤ d+ 1, and deg(CG(Λ)) ≤ D.

Proof. For any x ∈ G(K), the centralizer CG(x) is defined as the set of g ∈ G with
gx = xg, which yields a finite number of equations of degree 1. Thus CG(x) is the
intersection of G with varieties Zi,x of degree 1, for some set of indices i. In turn, CG(Λ)
is the intersection of CG(λ) for all λ ∈ Λ. Apply Corollary 2.4(a) to the collection of
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Zi,λ to obtain the bound on |Λ′|, and Corollary 2.4(c) to G and the Zi,λ to obtain the
bound on deg(CG(Λ)). □

3.2. Escaping from a subgroup. The tools from [2, 3] that we are going to use in
Section 5 rely on the procedure called escape from subvarieties, which first appeared in
[14]. To produce dimensional estimates for a set A of generators of G(K), we need to be
able to say that for any proper subvariety V ⊆ G there is some g ∈ Ak with g /∈ V (K),
where k is bounded appropriately in terms of deg(V ).

Here we start with a different object, namely a subgroup Γ, and a weaker hypothesis,
namely that we escape from algebraic subgroups. Thus, we have to prove that escaping
from subgroups is enough to escape from every subvariety as well, up to paying a price
in degree bounds. The following result shows the contrapositive statement: if Γ is large
enough and is trapped in a subvariety, then it is trapped in a subgroup as well.

Lemma 3.3. Let G be a linear algebraic group defined over K. Let Γ ≤ G(K), and let
V ⊊ G be a proper subvariety. Assume that Γ ⊆ V (K).

Then, either |Γ| ≤ deg(V )dim(V )+1, or there is a proper algebraic subgroup H ⪇ G

with Γ ≤ H(K) and deg(H) ≤ deg(V )dim(V )+1.

Proof. For every proper subvariety W ⊊ G, the stabilizer Stab(W ) = {g ∈ G : Wg =
W} is a proper algebraic subgroup of G.

We build a sequence of Vi with the following properties: Γ ⊆ Vi(K), Vi =
⋂

γ∈Si
V γ

for some Si ⊆ Γ, and Vi ⊊ Vi−1. We stop constructing the sequence when either
Γ ≤ Stab(Vi)(K) or dim(Vi) = 0. The starting point is S0 = {e} and V0 = V . To
construct Vi+1, assume that we have Vi as above, and suppose that there is some γ ∈
Γ \ Stab(Vi)(K). Then Vi ∩ Viγ ⊊ Vi and Γ = Γγ ⊆ Vi(K)γ, so we can choose Si+1 =
Si ∪ Siγ and obtain Vi+1 = Vi ∩ Viγ accordingly. The Vi are never empty because
they contain Γ, thus since the affine space is Noetherian we will eventually reach some
zero-dimensional Vi (unless we stopped because Γ ⊆ Stab(Vi)(K)).

By the above, we obtained that either Γ ⊆ Vi(K) with dim(Vi) = 0, or Γ ≤ H(K)
for H = Stab(Vi); in either case, Vi =

⋂
γ∈Si

V γ for some Si ⊆ Γ. Each V γ has the

same dimension and degree as V , so deg(Vi) ≤ deg(V )dim(V )+1 by Corollary 2.4(b); if
Γ ⊆ Vi(K) and dim(Vi) = 0, then |Γ| ≤ deg(Vi) and we are done. We can rewrite H as

H = Stab(Vi) =
⋂

w∈Vi(K)

w−1Vi =
⋂

(w,γ)∈Vi(K)×Si

w−1V γ,

so again by Corollary 2.4(b) we get deg(H) ≤ deg(V )dim(V )+1. □

3.3. Quotients. Even if a linear algebraic group G and a normal algebraic subgroup
H⊴G are naturally defined as varieties, one may not always be able to see the quotient
G/H as a variety in any obvious way. Below, we explain how to do so, following [4, §6].

Let H⊴G be both defined over K. A (geometric) quotient of G by H is a pair (π,W )
made of an affine variety W and a surjective morphism π : G → W , both defined over
K, satisfying the following universal property: if α : G→ Z is a morphism constant on
H-orbits, there is a unique morphism β : W → Z such that α = β ◦ π, and if α is a
K-morphism of K-varieties then so is β.
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By [4, Thm. 6.8], under the conditions above on G and H, a geometric quotient
always exists and is unique, and W is also an algebraic group defined over K. We use
the notation G/H for W , and we say that G/H is the quotient of G by H (forgoing π).
In this case, the quotient G/H also coincides with the categorical quotient [4, §6.16], so
we ignore the distinction.

By [4, Prop. 6.4(b)], dim(G/H) = dim(G)− dim(H). Furthermore, since G/H is an
algebraic group, we can represent it as a variety inside GLm for some possibly large m.
The result below gives an upper bound for m and deg(G/H), at the expense of possibly
defining G/H over K (which simplifies the matter without being a problem for us later).

Proposition 3.4. Let G ≤ GLn ⊆ Matn+1 be an algebraic group defined over a field
K, with d = dim(G) and D = deg(G). Let H ⊴ G be a normal subgroup, defined over
K by polynomials of degree ≤ ∆ (excluding the ones defining G itself).

Then G/H is an algebraic group. More precisely, there are algebraic groups Ĥ⊴ Ĝ ≤
GL2n+3 and Q ≤ GLm and a morphism β̂ : Ĝ→ Q (possibly over K) such that

(a) there is a morphism of algebraic groups Ĝ → G of maximal degree 1 with rational

inverse (so in particular Ĝ(K) ≃ G(K) as abstract groups), and the same holds for

its restriction Ĥ → H,
(b) Q ≃ Ĝ/Ĥ, meaning that Q satisfies the aforementioned universal property (possibly

over K), and
(c) the following quantitative bounds hold:

M =

(
n2 +∆

∆

)
≤ (n2 +∆)min{n2,∆}, m ≤ 22M ,

deg(Ĝ) ≤M2M+n2+4∆D, deg(Ĥ) ≤M2M+n2+4∆deg(H),

deg(Q) ≤Md+12M+n2+d+5∆d+1D, mdeg(β̂) ≤ 2M∆.

Proof. We follow the path laid out in [4], pasting together parts of the proofs of [4, §1.9
and Thms. 5.1–5.6–6.8]. We work everywhere over K for simplicity.

By our definition of GLn in Section 3.1, we are already keeping track of det(g)−1 in

the definition of g ∈ G. We will now use a new Ĝ to keep track of one more determinant
(to be defined in the future through some function F ) and of the entire g−1. In brief,
using ⊕ to denote the diagonal join of matrices, if an element of GLn ⊆ Matn+1 is
of the form a ⊕ det(a)−1, we pass to a ⊕ det(a)−1 ⊕ a−1 ⊕ det(a) ⊕ y−1 ⊕ y inside
GL2n+3 ⊆ Mat2n+4, with y defined using F .

Let R1 := K[x11, x12, . . . , xn+1,n+1] and R2 := K[x11, x12, . . . , x2n+2,2n+2], and fix
F ∈ R2 to be chosen later. Call πij the restriction map sending x ∈ Mat2n+4 to the
square submatrix whose corners are the (i, i)-th, (i, j)-th, (j, i)-th, and (j, j)-th entries
(with i ≤ j). Define

O := ([1, n+ 1]× [n+ 2, 2n+ 2]) ∪ ([n+ 2, 2n+ 2]× [1, n+ 1])

∪ ([n+ 2, 2n+ 1]× {2n+ 2}) ∪ ({2n+ 2} × [n+ 2, 2n+ 1])

∪ ([1, 2n+ 2]× {2n+ 3}) ∪ ({2n+ 3} × [1, 2n+ 2])

∪ ([1, 2n+ 3]× {2n+ 4}) ∪ ({2n+ 4} × [1, 2n+ 3]),
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X :=

x ∈ Mat2n+4 :

xij = 0 ((i, j) ∈ O),
π1,n(x) · πn+2,2n+1(x) = Idn,
xn+1,n+1 · x2n+2,2n+2 = 1,
F (π1,2n+2(x)) · x2n+3,2n+3 = 1,
x2n+3,2n+3 · x2n+4,2n+4 = 1

 .

The variety Ĝ := X ∩π−1
1,n+1(G) is an algebraic group Ĝ ≤ GL2n+3 ⊆ Mat2n+4, since by

construction det(π1,2n+3(x)) ·x2n+4,2n+4 = 1. If F (g⊕g−1) ̸= 0 for all g ∈ G, then there

is a rational map G→ Ĝ that is the inverse of π1,n+1|Ĝ, yielding a group isomorphism

Ĝ(K) ≃ G(K) and proving (a). Let f1, . . . , fk ∈ R1 be the polynomials defining H in
G, i.e.

H = {g = (gij)i,j≤n+1 ∈ G : ∀k′ ≤ k (fk′(g11, g12, . . . , gn+1,n+1) = 0)}.

By hypothesis deg(fi) ≤ ∆, and by construction the same polynomials define Ĥ :=

X ∩ π−1
1,n+1(H) in Ĝ. The group isomorphism Ĥ(K) ≃ H(K) follows from restricting

π1,n+1|Ĝ and its inverse rational map. By Bézout and Lemma 2.1(b), we get

deg(Ĝ) ≤ deg(G) · 2n2+2(deg(F ) + 1), deg(Ĥ) ≤ deg(H) · 2n2+2(deg(F ) + 1).

We shall pass to Ĝ, Ĥ at the end of our procedure, whereas for now we use the original
G,H for our constructions.

Let L be the K-vector space spanned by the set L of all monomials of degree ≤ ∆ in
the variables xij (i, j ≤ n+1); then dim(L) = |L| = M withM as in the statement. Each

fk is an element of L. For every g ∈ G(K), let ρg : R1 → R1 be the right translation
by g, namely ρg(f)(x) = f(xg). Then ρe is the identity map, and ρg1g2 = ρg2 ◦ ρg1 . The
latter property implies that the elements ρg(fk′) for all k

′ ≤ k and all g ∈ G(K) span a

K-vector subspace L′ ≤ L that is invariant under the transformations ρg. Fix a basis
{ℓi}i≤M of L whose first dim(L′) members form a basis of L′. Every ℓi is a polynomial

in R1 of degree ≤ ∆, and by construction there are polynomials f̃i,j ∈ R1 of degree ≤ ∆

for which ρg(ℓi) =
∑

j≤M f̃i,j(g)ℓj .
Therefore, putting together the facts above, we obtain the following: ρg is a linear

transformation of L, i.e. ρg ∈ Mat(L), the resulting morphism ρ(L) : G→ Mat(L) given

by ρ(L)(g) = ρg has mdeg(ρ(L)) ≤ ∆, and ρ(L) naturally restricts to ρ : G → Mat(L′)
by taking the upper left (dim(L′) × dim(L′))-corner of the matrix, thus giving again
mdeg(ρ) ≤ ∆.

If I ⊆ K[G] is the ideal of functions vanishing on H, the set W = L′ ∩ I generates
I since L′ contains all the fk′ . We have dim(W ) ≤ dim(L′) ≤ M . The proof of [4,
Thm. 5.1] shows that H = {g ∈ G : ρg(W ) = W}.

Next, let E =
∧dim(W )(L′). Then ρ induces a map α : G→ Mat(E), with mdeg(α) ≤

dim(W )mdeg(ρ) ≤M∆. Furthermore, [4, Thm. 5.1] shows that there is a 1-dimensional
subspace E′ ⊆ E such that H = {g ∈ G : α(g)(E′) = E′}. Finally, [4, Thm. 5.6] shows
that there is some subspace V ⊆ gl(E) such that the rational map β : G → Mat(V )
given by β(g)(v) = α(g)vα(g)−1 has the property that H = Ker(β); [4, Thm. 6.8]
then shows that β(G) is a closed subgroup of Mat(V ) with β(G) ≃ G/H. We have

dim(E) =
(dim(L′)
dim(W )

)
< 2dim(L′) ≤ 2M and dim(V ) ≤ dim(E)2 < 22M .



A CFSG-FREE EXPLICIT JORDAN’S THEOREM OVER ARBITRARY FIELDS 13

Our only problems with the construction of β are that β is a rational map and not a
morphism, and that it goes to Matdim(V ) rather than to GLdim(V ). To be clear on the

second issue, since (ρg)
−1 = ρg−1 , the maps ρ(L), ρ, α, β do indeed send elements of G to

invertible matrices, but we are missing the inverse of the determinant in the lower right
corner (needed in our definition of GLn from Section 3.1). These two problems are why

Ĝ comes into play: we build a new β̂ that has the same behaviour as β, but is also a
morphism to GLdim(V ) because the inverses of g and of det(β(g)) can be taken directly

from the extra variables of Ĝ.
By construction, every element ĝ ∈ Ĝ is of the form ĝ = b⊕ y1⊕ y2 with y2 = F (b) =

y−1
1 , b = g⊕g−1, and g ∈ G ≤ GLn (so that in turn g = a⊕det(a)−1 for some invertible
a ∈ Matn). Define the morphism

γ : π1,2n+2(Ĝ)→ Matdim(V ), γ(π1,2n+2(ĝ))(v) = α(π1,n+1(ĝ)) · v · α(πn+2,2n+2(ĝ)).

Since ρg−1 = (ρg)
−1 we have ρ(g−1) = ρ(g)−1 and α(g−1) = α(g)−1. Therefore

α(πn+2,2n+2(ĝ)) = α(π1,n+1(ĝ))
−1 for all ĝ ∈ Ĝ.

Choose F ∈ R2 to be the polynomial F (x) = det(γ(x)). By construction, for all

ĝ ∈ Ĝ we have F (g⊕ g−1) = det(γ(g⊕ g−1)) = det(β(g)). In particular F (g⊕ g−1) ̸= 0
for all g ∈ G (because β sends g to an invertible matrix), so by what we said before we

obtain (a). Finally, define the morphism β̂ : Ĝ → GLdim(V ) ⊆ Matdim(V )+1 by β̂(ĝ) =

γ(π1,2n+2(ĝ)) ⊕ y1. As γ(π1,2n+2(ĝ)) = β(g) and y1 = det(β(g))−1, the construction of

β̂ coincides with that of β with the addition of the extra entry for the inverse of the
determinant. Hence we have again a closed subgroup Q := β̂(Ĝ) ≃ Ĝ/Ĥ of GLdim(V ),
but by passing through γ we are now only working with polynomials, and we have (b).

To obtain (c), it remains to compute degrees. We have

deg(F ) ≤ 2mdeg(α) dim(E) ≤M2M+1∆,

deg(Ĝ) ≤ deg(G) · 2n2+2(deg(F ) + 1) ≤M2M+n2+4∆D,

deg(Ĥ) ≤ deg(H) · 2n2+2(deg(F ) + 1) ≤M2M+n2+4∆deg(H),

mdeg(β̂) ≤ mdeg(γ) ≤ 2mdeg(α) ≤ 2M∆,

deg(Q) ≤ deg(Ĝ)mdeg(β̂)dim(G) ≤Md+12M+n2+d+5∆d+1D,

where the last line used Lemma 2.1(a). □

4. Almost simple groups

In this section we restrict our focus to a special class of algebraic groups, the almost
simple groups, with particular emphasis on the adjoint ones. We recall their classifica-
tion and, for any such G, describe several related objects that will be fundamental in our
main proof: the Weyl group W of G, the Steinberg endomorphisms F : G(Fp)→ G(Fp)
in positive characteristic, and a certain representation ρ of G taken from [28].
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4.1. Almost simple and adjoint groups. A connected linear algebraic group G is
almost simple4 if it is non-abelian and has no connected normal linear algebraic sub-
groups except {e} and G. If G is almost simple then it is also semisimple. If not, we
would have R(G) = G, and in particular G would be connected solvable, so that by [4,
Thm. 10.6(1)] either Gun = {e} or Gun = G. Then, [4, Thm. 10.6(2)] implies in the first
case that G is a torus, and in the second case that dim(G) ≤ 1, contradicting in both
cases the fact that G is not abelian (in the latter case by [21, §20]).

To every connected semisimple algebraic group G one can associate a Dynkin diagram,
a finite multigraph that is connected if and only if G is almost simple. The connected
Dynkin diagrams are completely classified, which allows us to characterize the corre-
sponding groups by types: the possibilities are the classical types Ar≥1, Br≥2, Cr≥3, Dr≥4

(where r is the same as the rank of the corresponding group), and the exceptional types
E6, E7, E8, F4, G2. For G connected, an isogeny is a surjective morphism φ : G → H
with finite kernel. Every connected almost simple algebraic group is uniquely deter-
mined by its Dynkin diagram and isogeny type.

See [8, §1.11], [21, §32 and App.], [25, §9], or [26, §24] for more details about Dynkin
diagrams, isogenies, almost simple groups, and their classification. Here we only spend
a few words on roots and weights. The identification between groups and diagrams
passes through a root system Φ, defined for groups in [21, §16.4] and for diagrams as in
[21, App.] and put in relation to each other in [21, §27]. The roots are (finitely many)
elements spanning a vector space that can be identified with R⊗ZX(T ), with X(T ) the
character group of a maximal torus T , and the weights are the elements of the vector
space whose inner products with the roots are all integers. Roots and weights span two
lattices, Λr and Λw, with Λr ≤ X(T ) ≤ Λw and with [Λw : Λr] finite. The groups Λw/Λr

and Λw/X(T ) are called the fundamental groups of Φ and G, respectively (see [21, §31.1
and App.]). For a fixed Dynkin diagram, isogeny types and fundamental groups for G
are in 1-to-1 correspondence (here we really need equality of fundamental groups, not
just isomorphism: see [21, §32.1, Thm.]). The group Λw/Λr is given in [21, App. (A.9)]
or [25, Table 9.2]; we shall only need the uniform cruder bound

(4.1) |Λw/Λr| ≤ r + 1,

where r is the rank of G.
Among the (finitely many) connected almost simple groups G with the same Dynkin

diagram, i.e. isogenous to each other, there are two extremes: the simply connected
group with X(T ) = Λw and the adjoint group with X(T ) = Λr [25, Def. 9.14]. For
every G of a given type, there are isogenies from the corresponding simply connected
group to G and from G to the adjoint group [25, Prop. 9.15]. As in [24], we work almost
exclusively with the adjoint groups.

4There are many different names for these objects. Some authors call these groups simple, as in
[8, §1.11], [21, p. 168], and [25, p. xiv], but they are not necessarily simple as abstract groups. Some
call them quasi-simple, as in [29, Ex. 8.1.12(4a)], keeping closer to the convention of abstract groups.
Authors that put emphasis on the field of definition use geometrically almost simple, as in [26, Def. 19.7],
or absolutely almost simple, as in [7, §5], and they may drop the “almost”, as in [17]. Our work is mostly

on the algebraic closure K, and we deal with finite simple groups as well, so we choose to adopt the
term almost simple as in [4, Prop. 14.10(3)].
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Another definition independent of the concepts above is the following: a semisimple
group G is adjoint if and only if its centre Z(G) is trivial [26, §17.g]. For G reductive
the adjoint representation of G is the morphism AdG defined in [26, §10.d] as follows:

AdG : G→ GL(g), g 7→ AdG,g, with AdG,g : g→ g, x 7→ gxg−1.

We abbreviate AdG(G) as Gad; it is isomorphic to G/Z(G), which is an adjoint group
by [26, Cor. 17.62(e)]. If G ≤ GLn has mdeg(−1) = ι, it is clear that

(4.2) mdeg(AdG) ≤ ι+ 1 ≤ n+ 1.

In fact, in concrete terms, the action of G on g is given by conjugation in Matn+1, so it
has maximal degree ≤ ι+1; up to a change of basis (not affecting mdeg), Matn+1 is the
sum of the subspace g and a complement of it, and the restriction of the conjugation
map to g has degree ≤ ι+ 1 too. The bound ι ≤ n comes from using the adjugate map
to define inverses.

From any G connected we can naturally descend to an adjoint quotient group. Taking
the quotient here is essentially what gives (c) and (d) in the main theorem.

Lemma 4.1. Let G ≤ GLn be a connected algebraic group with d = dim(G), D =
deg(G), and ι = mdeg(−1), defined over a field K.

There is some characteristic subgroup Y ⊴◀ G, defined by the polynomials defining G
and by some additional polynomials over K of degree ≤ (ι+ 1)dd, such that

G/Y ≃ (G/Ru(G))ad ≃ (G/Ru(G))/Z(G/Ru(G)).

Moreover there are algebraic groups Ĝ, Ŷ , there is a morphism

λ : Ĝ→ G, λ|Ŷ : Ŷ → Y, mdeg(λ) = mdeg(λ|Ŷ ) = 1,

having rational inverse, so that G(K) ≃ Ĝ(K) and Y (K) ≃ Ŷ (K), and there is a

morphism β̂ : Ĝ→ Ĝ/Ŷ ≤ GLm satisfying

mdeg(β̂) ≤ 2(n2 + (ι+ 1)dd)n
2
(ι+ 1)dd, m ≤ 22(n

2+(ι+1)dd)n
2

.

Proof. The group Y can be defined as the set of y ∈ G such that x−1y−1xy ∈ Ru(G)
for all x ∈ G. Unipotent radicals and centres are preserved by automorphisms, so Y is
characteristic. For any fixed x ∈ G, let fx : G → G be defined by fx(y) = x−1y−1xy,
so that mdeg(fx) ≤ ι + 1. By Lemma 3.1(e) and [18, Prop. 3], Ru(G) is defined by
polynomials (over the algebraic closure K) of degree ≤ dd. Thus, Y is defined by the
polynomials of G and by polynomials of degree ≤ (ι+ 1)dd.

Applying Proposition 3.4, we obtain the various assertions on Ĝ, Ŷ , λ, β̂,m. □

4.2. Classification of almost simple adjoint groups. The almost simple adjoint
groups can all be defined very explicitly by taking quotients, identity components, and
preimages of subgroups in appropriate matrix spaces. See [25, Table 9.2] for a list of
groups for each type, where the simply connected and adjoint extremes are highlighted.
The adjoint groups for each classical type are: PGLr+1 for type Ar, SO2r+1 for type
Br, PCSp2r for type Cr, and P((CO+

2r)
o) for type Dr. As for the exceptional types, the

groups Ead
6 , Ead

7 , Ead
8 , F ad

4 , Gad
2 can be obtained via the adjoint representation on their
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own Lie algebras; note that for types E8, F4, G2 there is a unique almost simple group
of that type.

One can use the definition itself of each adjoint group G above and combine it with
Lemmas 2.1(a)–4.1 to find a concrete way to write G ≤ GLm with bounds on m and
deg(G). However, every adjoint group G is also the image of the adjoint representation

AdG̃ for any G̃ almost simple with the same Dynkin diagram as G. Thus, we can

choose some suitable G̃ and define the adjoint groups as subgroups of matrices with
more convenient bounds.

Proposition 4.2. Every connected almost simple adjoint algebraic group G of dimen-
sion d and rank r can be written as a linear algebraic group G ≤ GLd with deg(G) ≤
(2r)2

16r2.

Proof. Every connected almost simple adjoint G is the image of AdG̃ : G̃ → GL(g̃) for

any G̃ with the same Dynkin diagram as G. We only need to choose a suitable G̃.
We start with the classical types Ar, Br, Cr, Dr. Going through the possibilities in

[8, §1.11] or [25, Table 9.2] for each type, we may choose the following (ΩC ,ΩD below
are fixed constant matrices).

Type Ar: G̃ = SLr+1 = {x ∈ Matr+1 : det(x) = 1}.

Type Br: G̃ = G = SO2r+1.

Type Cr: G̃ = Sp2r = {x ∈ Mat2r : x
⊤ΩCx = ΩC}.

Type Dr: G̃ = SO+
2r = {x ∈ Mat2r : det(x) = 1, x⊤ΩDx = ΩD}.

A uniform degree bound for every G̃ as above is deg(G̃) ≤ (2r+1)2(2r+1)2 (slightly better
bounds appear in [2, Table 1]). By Lemma 2.1(a), (4.2), and the bound dim(G) ≤ 2r2+r,
we conclude that

deg(G) ≤ deg(G̃)mdeg(AdG̃)
dim(G) ≤ (2r + 1)2(2r+1)2(2r + 2)2r

2+r < 217r
2
r2r

2+r+1

for G of classical type.
We pass now to the exceptional types E6, E7, E8, F4, G2. We may act as above and

use any G̃, for which deg(G̃) is bounded by some absolute constant, but it is possible to
describe G very explicitly. Every G adjoint is the automorphism group of its own finite-
dimensional Lie algebra, and in some cases of other algebras too: as already observed
in [3, §6.1], this means that we can define G via quadratic equations∑

i,j

λijagbigcj −
∑
k

λbckgka = 0

for all triples (a, b, c), where we have specified a basis {ei}i for the non-associative algebra
with g(ei) =

∑
j gijej and ei ◦ ej =

∑
k λijkek. Hence, we conclude that deg(G) ≤

2dim(G)3 , which for the exceptional types may be bounded uniformly by (2r)2
16r2 , say.

As this bound works for the classical types too, we obtain the result. □

Remark 4.3. A few observations about the result above.

(a) To bound deg(G), one could write G directly as a quotient and use Proposition 3.4.

However, this route would give G ≤ Matm with m ≤ Cr2 and deg(G) ≤ Cr4 for
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some absolute constant C. Passing afterwards through the adjoint representation
would give G ≤ GLd, but deg(G) would grow even more.

(b) In order to deal with a specific computation later, i.e. (6.19), we now bound deg(G)
more tightly for G connected almost simple adjoint of type A1, B2, G2. For G =
PGL2 and G̃ = SL2, we use deg(G) ≤ deg(G̃)mdeg(AdG̃)

dim(G) and obtain deg(G) ≤
16. For G = G̃ = SO5, [5, Thm. 1.1] yields deg(G) ≤ 384. For G of type G2, the

proof of Proposition 4.2 already shows the inequality deg(G) ≤ 27
3
.

(c) We give references for several algebras that can be used for the groups G of ex-
ceptional type. The Lie algebras can be constructed rather explicitly from [19, §3];
even more explicit resources are the multiplication table of g2 from [16, §22], and
the complete bases of all five types from [13, App. A.1] (based on the aforemen-
tioned references). Moreover, as pointed out before, for types G2, F4, E8 there is
only one connected almost simple G per type; thus, other constructions not using
Lie algebras will also give the same algebraic group. For G2 we can use the octonion
algebra, given in [31, §§4.3.2–4.3.4–4.4.3] in three bases with different conditions on
the characteristic. For F4 we can use the Albert algebra, or a quadratic and a
cubic form based on its construction, as in [31, §4.8]. For E8 there are no smaller
representations than the Lie algebra e8.

4.3. Weyl groups. For G connected and T a maximal torus, the Weyl group W is
the quotient of the normalizer of T by the centralizer of T inside G [8, §1.9]. The
construction is independent from the choice of T , so we can refer to W as the Weyl
group of G. For G almost simple, W is a finite group determined by the Dynkin
diagram: in fact, it can be equivalently defined using reflections of the root system [4,
§14.7]. Below we present a list of W and their sizes, taken from [31, §2.8.4, (3.22),
(3.31), (3.39)]; the notation on group extensions A × B, A·B, A : B and on abelian
groups pm+n is as in [31, §1.6], which follows [11, p. xx].

Type Ar: W ≃ Sym(r + 1), |W| = (r + 1)!,

Type Br: W ≃ Sym(2) ≀ Sym(r), |W| = 2rr!,

Type Cr: W ≃ Sym(2) ≀ Sym(r), |W| = 2rr!,

Type Dr: W ≃ H with [Sym(2) ≀ Sym(r) : H] = 2, |W| = 2r−1r!,

Type E6: W ≃ GO−
6 (2) ≃ U4(2) : 2, |W| = 51840,

Type E7: W ≃ GO7(2)× 2 ≃ Sp6(2)× 2, |W| = 2903040,

Type E8: W ≃ 2·GO+
8 (2) ≃ 2·Ω+

8 (2) : 2, |W| = 696729600,

Type F4: W ≃ GO+
4 (3) ≃ 21+4 : (Sym(3)× Sym(3)), |W| = 1152,

Type G2: W ≃ Dih6 ≃ Sym(3)× 2, |W| = 12.

As a uniform cruder bound for all |W| at once, we shall use

(4.3) |W| ≤ (2r)r,

where r is the rank of G.

4.4. Steinberg endomorphisms. In this subsection we work over the field Fp.
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Let G be a linear algebraic group G ≤ GLn defined over Fp, and let q be a power
of p. The Frobenius map (with respect to Fq) is the morphism Fq : G → G given by
raising each entry of g to the q-th power. A Steinberg endomorphism [25, Def. 21.3]
is an automorphism of abstract groups F : G(Fp) → G(Fp) such that there are q and

m for which Fm is (the map on Fp-points induced by) the Frobenius map of G with
respect to Fq.

This terminology comes from [25], but is not unanimously adopted in the literature:
[24] uses the locution “Frobenius map” to refer to what we call a Steinberg endomor-
phism, and “standard Frobenius map” to refer to what we call a Frobenius map.

A Steinberg endomorphism is not necessarily a morphism of linear algebraic groups.
The classification of Steinberg endomorphisms of connected almost simple groups is
known: see [25, Thm. 22.5], which however is restricted to the simply connected case.

For a Steinberg endomorphism F of G, we denote by GF the subgroup of G(Fp) of
points fixed by F . The group GF is finite whenever G is almost simple [25, Thm. 21.5].
The classification of all possibleGF for any connected almost simpleG and any Steinberg
endomorphism F is given in [8, §1.19] and in [25, §22.2].

4.5. The representation ρ of G adjoint. Finally, we must study a particular repre-
sentation of G. We follow Pink’s notation in [28].

Let G be connected almost simple adjoint defined over a field K, and let G̃ be the
corresponding simply connected group. There is a natural isogeny π : G̃ → G, which
induces a linear transformation dπ : g̃→ g; the two Lie algebra have the same dimension,
and the same is true for the kernel z and cokernel z∗ of dπ. We can write g̃ = z ⊕ ḡ
and g = ḡ⊕ z∗, so that ḡ is the subalgebra whose copies inside g̃ and g are identifiable
with g̃/z and dπ(g̃) respectively; when restricted to these two copies of ḡ, the map dπ
is given by some π̄ ∈ GL(ḡ).

As we already showed in (4.2), the adjoint representation AdG : G → GL(g) has
mdeg(AdG) ≤ ι+ 1. Following [28, (1.3)–(1.4)], we can define κ : Hom(g, g̃) → End(g)

by κ(f) = Idg + dπ ◦ f , and a morphism ÃdG : G→ Hom(g, g̃) so that AdG = κ ◦ ÃdG.
Therefore, AdG,g(v) = v + (dπ ◦ ÃdG(g))(v) for every g ∈ G and v ∈ g; knowing
mdeg(AdG) and using the fact that dπ : z ⊕ ḡ → ḡ ⊕ z∗ acts as the zero map on z and

as π̄ on ḡ, we obtain mdeg(ÃdG) ≤ ι+ 1.
Now, following [28, Prop. 1.10], let ĝ = z⊕ḡ⊕z∗, let di : g̃→ ĝ be the natural inclusion,

and let dω : ĝ → g be the map induced by dπ: namely, dω acts as the zero map, as π̄,
and as the identity on z, ḡ, z∗ respectively. Define the representation ρ̂ : G→ GL(ĝ) by

ρ̂(g) = Idĝ + di ◦ ÃdG(g) ◦ dω. By the discussion above, mdeg(ρ̂) ≤ ι+ 1. Furthermore,
ρ̂ is defined over K, since this is true for all the objects defined so far.

By [28, Prop. 1.11(b)], if G does not have a non-standard isogeny then ḡ is the unique
simple G-submodule of g and the unique simple quotient G-module of g̃, and the re-
striction of ρ̂ on ḡ is irreducible and non-constant. By [28, Prop. 1.11(c)], if G has
a non-standard isogeny then there is a unique simple G-submodule ḡs of g and there
is a unique simple quotient G-module ḡℓ of g̃, and the restrictions of ρ̂ on them are
irreducible, non-constant, and not equivalent to each other; moreover, we can decom-
pose ĝ so that ḡs and ḡℓ are transversal direct summands of ĝ (see the graphs in [28,
Prop. 1.11(c)]). The restrictions of ρ̂ to ḡ, ḡs, ḡℓ in the various cases are denoted by
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αG, αG
s , α

G
ℓ . Up to a change of basis, which does not affect mdeg(ρ̂), we see again that

the restrictions αG, αG
s , α

G
ℓ have maximal degree ≤ ι+ 1.

It is time to define the representation ρ of G, as given in [24, p. 1142]. Let U be the
unipotent part of a Borel subgroup B of G; up to isomorphism, U is independent from
the choice of B. By [4, Prop. 8.3], the centre Z(U) is of the form

Z(U) =



Uα
if all roots have the same length,

α = highest positive root,

Uαℓ
Uαs

if roots have different lengths,

αℓ = highest long root,

αs = highest short root,

(4.4)

so in particular dim(Z(U)) ∈ {1, 2}. During the proof of Proposition 6.3, we will fix a B-
invariant subgroup V ≤ Z(U) of minimal dimension among those with |Γ∩ V (K)| > 1;
based on that choice, we shall define

ρ :=


αG if Z(U) = V = Uα,

(αG
ℓ , α

G
s ) if Z(U) = V = Uαℓ

Uαs ,

αG
ℓ if Z(U) = Uαℓ

Uαs and V = Uαℓ
,

αG
s if Z(U) = Uαℓ

Uαs and V = Uαs .

(4.5)

In all cases, ρ is a representation over K, and when dim(V ) = 2 it can be seen as a
representation over K2 as well. By what we argued so far, we can bound the maximal
degree of ρ.

Proposition 4.4. Let G be a connected almost simple adjoint linear algebraic group
defined over a field K, with d = dim(G) and ι = mdeg(−1), and let ρ be defined as in
(4.5) (for an appropriate choice of V ). Then ρ : G → GLm is a representation defined
over K, and as such we have

m ≤ d, mdeg(ρ) ≤ ι+ 1 ≤ d.

Proof. The bound we obtained above for αG, αG
s , α

G
ℓ becomes directly mdeg(ρ) ≤ ι+1.

We started the construction from a representation G ≤ GLd as in Proposition 4.2, so
ι ≤ d− 1 as well. Comparing [28, Prop. 1.11] with the values of |Λw/Λr| for each type
(readable from [21, App. (A.9)] or [25, Table 9.2]), we see that dim(ḡs) + dim(ḡℓ) ≤
dim(g). □

5. Dimensional estimates

In this section we deal with dimensional estimates. Our work relies on the explicit
estimates for |A ∩ V (K)| contained in [3], which we first adapt so as to replace a set A
generating G(K) with a subgroup Γ ≤ G(K) not necessarily equal to G(K). This first
result is given in Theorem 5.3. Then we provide a few additional variations that will
be useful later.

We start with the following lemma, which allows us to grow in dimension using a
generic element and the almost simplicity of G.
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Lemma 5.1. Let G ≤ GLn be an almost simple linear algebraic group over a field K.
Let ι = mdeg(−1), the maximum degree of the inversion map. Let V, V ′ be subvarieties
of G defined over K, with dim(V ) < dim(G) and dim(V ′) > 0.

Then, for every g ∈ G(K) outside a variety W = {x ∈ Matn : F (x) = 0} with
deg(F ) ≤ 1 +min{ι,dim(V )} and G ̸⊆W , the variety V gV ′ has dimension > dim(V ).

Proof. See [3, Lem. 4.1]. □

Now we write our main inductive step for Theorem 5.3.

Proposition 5.2. Let G ≤ GLn be a connected almost simple linear algebraic group of
rank r with dim(G) = d and deg(G) = D, defined over a field K. Let Γ ≤ G(K) be a
finite group. Then at least one of the following holds:

(a) |Γ| ≤ (2dD)d+1;

(b) Γ ≤ H(K) for some subgroup H < G with dim(H) < d and deg(H) ≤ (2dD)d+1;
(c) for any irreducible subvariety V ⊊ G defined over K with 0 < dim(V ) = d′ < d,

there is an integer ℓ ≤ d − d′ + 1 and there are proper subvarieties F1, . . . , Fℓ−1 of
V and a variety E ⊊ Matn with

|Γ ∩ V (K)|ℓ ≤ |Γ| ·
ℓ−1∏
j=1

|Γ ∩ Fj(K)|+ ℓ|Γ ∩ E(K)||Γ ∩ V (K)|ℓ−1

and E not containing V , and satisfying the following properties as well:

ℓ−1∑
j=1

dim(Fj) = ℓd′ − d, deg(Fj) ≤ 2dℓd−1 deg(V )j+1, deg(E) ≤ (2ℓ)d deg(V )ℓ.(5.1)

Proof. The statement and proof are very similar to [3, Prop. 4.4], which differs from our
result in that in lieu of Γ it has a set A that generates G(K). The fact that ⟨A⟩ = G(K)
was only needed in order to provide an escape argument, and obviously here we do not
always have ⟨Γ⟩ = Γ = G(K). Hence, we have to replace the escape argument, which
we are able to do by relying on Lemma 3.3.

Let us assume that Γ does not satisfy the conditions (a) and (b). Then, following
Lemma 3.3 we get that Γ ⊈ W (K) for any subvariety W of G with deg(W ) ≤ 2dD. We
shall show that Γ satisfies condition (c).

As in the statement, let V ⊊ G be any irreducible subvariety defined over K with
0 < dim(V ) = d′ < d. Fix an integer ℓ and elements g1, . . . , gℓ−1 ∈ G(K) (to be chosen
soon), and define

V1 = V, Vj+1 = VjgjV (1 ≤ j < ℓ).

For each 1 ≤ j ≤ ℓ, let d′j = dim(Vj) and Dj = deg(Vj). By Lemma 2.1(a), we have

Dj ≤ deg(V )jjd
′
j . We will show that the gj can be chosen so that they belong to Γ and

that we have d′j+1 > d′j at every step.
If G is a connected almost simple linear algebraic group, by Lemma 5.1 we get

d′j+1 > d′j for any choice of gj outside a variety Wj with deg(Wj) ≤ 1 + min{ι, d′j}
and G ⊈ Wj . Consider the subvariety G ∩Wj of G, which is a proper subvariety of
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dimension < d and of degree

deg(G ∩Wj) ≤ D deg(Wj) ≤ D(d+ 1) ≤ 2dD.

Then, by what we said before, Γ ⊈ (G ∩Wj) (K).
Hence, we can choose an element gj inside Γ with d′j+1 > d′j at each step j, and let ℓ

be the least index such that Vℓ = G. Clearly, ℓ ≤ d− d′ + 1, and g1, . . . , gℓ−1 ∈ Γ. The
rest of the proof follows, mutatis mutandis, the steps in the proof of [3, Prop. 4.4]. □

Theorem 5.3. Let G ≤ GLn be a connected almost simple linear algebraic group of
rank r with dim(G) = d and deg(G) = D, defined over a field K, and let Γ ≤ G(K) be
a finite subgroup. Then at least one of the following holds:

(a) |Γ| ≤ (2dD)d+1;

(b) Γ ≤ H(K) for some subgroup H < G with dim(H) < d and deg(H) ≤ (2dD)d+1;
(c) for any proper subvariety V ⊊ G, we have

|Γ ∩ V (K)| ≤ C|Γ|dim(V )/d with C ≤ (2ddeg(V ))d
dim(V )

.(5.2)

Proof. The statement and proof are almost as in [3, Thm. 4.5]. The inductive step here
is provided by Proposition 5.2, which introduces cases (a) and (b). After replacing A
with the group Γ in the conclusion, we can ignore the exponent C2 since Γ = ⟨Γ⟩, and
the computation of C1, which is denoted by C here, is the same. □

The dimensional estimate of Theorem 5.3 can be extended to cover more general G.
If one is not concerned about the correct exponent for |Γ|, this is quite easy to achieve
in the group Gk (the direct product of k copies of G).

Corollary 5.4. Let G ≤ GLn be a connected almost simple linear algebraic group of
rank r with dim(G) = d and deg(G) = D, defined over a field K, and let Γ ≤ G(K) be
a finite subgroup. Then at least one of the following holds:

(a) |Γ| ≤ (2dD)d+1;
(b) Γ ≤ H(K) for some subgroup H < G with dim(H) < d and deg(H) ≤ (2dD)d+1;
(c) for any k ≥ 1 and any proper subvariety V ⊊ Gk, we have

|Γk ∩ V (K)| ≤ k(2ddeg(V ))d
d−1 |Γ|k−

1
d .

Proof. Apply the “crumbling” lemma given as [3, Lem. 4.3], so that

|Γk ∩ V (K)| ≤ k|Γ|k−1|Γ ∩ V ′(K)|
for some subvariety V ′ ⊊ G with deg(V ′) ≤ deg(V ), and then apply Theorem 5.3 to
bound |Γ ∩ V ′(K)|. □

If we want to achieve the correct exponent for |Γk ∩ V (K)|, we can set up an appro-
priate induction on both k and dim(V ). We do so in full generality in the following
lemma, and then we show below an application to orbits that will yield a useful lower
bound for centralizers of subsets of Γ.

Lemma 5.5. Let G ≤ GLn be a connected almost simple linear algebraic group of rank
r with dim(G) = d, deg(G) = D and mdeg(−1) = ι, defined over a field K, and let
Γ ≤ G(K) be a finite subgroup. Then at least one of the following holds:
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(a) |Γ| ≤ (2dD)d+1;
(b) Γ ≤ H(K) for some subgroup H < G with dim(H) < d and deg(H) ≤ (2dD)d+1;
(c) for any k ≥ 1 and any proper subvariety V ⊊ Gk, we have

|Γk ∩ V (K)| ≤ (2ddeg(V ))kd
dim(V ) |Γ|

dim(V )
d .

Proof. Assume that (a) and (b) do not hold. We prove the inequality in (c) by applying
a double induction on k and dim(V ). The base case k = 1 follows from Theorem 5.3, and
the other base case dim(V ) = 0 is vacuously true (since |Γk∩V (K)| ≤ deg(V )). Assume
that (c) holds for all pairs (k′, V ′) that either have k′ < k and dim(V ′) ≤ dim(V ) or
have k′ ≤ k and dim(V ′) < dim(V ). We may assume that V is irreducible, since the
bound is more than linear in deg(V ).

Consider the projection map π : V → Gk−1 defined by

(x1, · · · , xk−1, xk) 7→ (x1, · · · , xk−1).

Since V is irreducible, by [3, Lem. 4.2]

(5.3) |Γk ∩ V (K)| ≤ |Γk−1 ∩ π(V )(K)||Γk ∩W (K)|+ |Γk ∩ E(K)|,
where W = π−1(y) ⊊ Gk for some point y ∈ Γk−1 ∩ π(V ) with dim(W ) = dim(V ) −
dim(π(V )), and where E = π−1(Z) ⊊ V for some subvariety Z ⊊ π(V ) with deg(Z) ≤
mdeg(π)dim(π(V ))−1 deg(V ). The projection π has mdeg(π) = 1, so by Lemma 2.1(a) we
obtain the bounds

deg(π(V )) ≤ deg(V ), deg(W ) ≤ deg(V ), deg(E) ≤ deg(V )2.

We have also dim(E) < dim(V ) since V is irreducible, so by induction on the dimension

|Γk ∩ E(K)| ≤ (2ddeg(V )2)kd
dim(E) |Γ|

dim(E)
d ≤ (2ddeg(V ))2kd

dim(V )−1 |Γ|
dim(V )−1

d ,(5.4)

and by induction on k

(5.5) |Γk−1 ∩ π(V )(K)| ≤ (2ddeg(V ))(k−1)ddim(π(V )) |Γ|
dim(π(V ))

d .

We now estimate |Γk ∩ V (K)| for all three different possibilities:

(1) dim(π(V )) = 0.
(2) dim(W ) = 0.

(3) 1 ≤ dim(W ),dim(π(V )) ≤ dim(V )− 1.

Consider first dim(π(V )) = 0. Since V is irreducible, π(V ) is irreducible, therefore

π(V ) = {y} for some y = (y1, · · · , yk−1). Hence V = π−1(y), which means that V is in
fact a variety of the form {y1} × · · · × {yk−1} × V sitting inside a copy of G itself. The
result follows from Theorem 5.3.

Now consider dim(W ) = 0. In this case dim(π(V )) = dim(V ), and W is a set of
deg(W ) points so |Γk ∩W (K)| ≤ deg(W ). Therefore, following (5.3) along with (5.4)
and (5.5), for k ≥ 1, dim(V ) ≥ 1, and d ≥ 3, we write that

|Γk ∩ V (K)| ≤ (2d deg(V ))(k−1)ddim(V )+1|Γ|
dim(V )

d + (2ddeg(V ))2kd
dim(V )−1 |Γ|

dim(V )−1
d

≤ (2d deg(V ))kd
dim(V )−2|Γ|

dim(V )
d + (2ddeg(V ))kd

dim(V )−1|Γ|
dim(V )

d

≤ (2d deg(V ))kd
dim(V ) |Γ|

dim(V )
d .
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Finally consider the case 1 ≤ dim(W ),dim(π(V )) ≤ dim(V )− 1. Applying induction
on the dimension, we know that

|Γk ∩W (K)| ≤ (2ddeg(V ))kd
dim(W ) |Γ|

dim(W )
d .(5.6)

Following (5.5) and (5.6), we find that

|Γk−1 ∩ π(V )(K)||Γk ∩W (K)| ≤ (2ddeg(V ))kd
dim(W )+(k−1)ddim(π(V )) |Γ|

dim(W )+dim(π(V ))
d

≤ (2ddeg(V ))2kd
dim(V )−1 |Γ|

dim(V )
d ,(5.7)

since dim(W ) + dim(π(V )) = dim(V ). Using (5.4) and (5.7) in (5.3), we get

|Γk ∩ V (K)| ≤ 2(2d deg(V ))2kd
dim(V )−1 |Γ|

dim(V )
d

≤ (2ddeg(V ))kd
dim(V ) |Γ|

dim(V )
d ,

since d ≥ 3 and dim(V ) ≥ 1. □

Thanks to the previous lemma, we are able to obtain not only an upper bound but
also a lower bound for centralizers. This is due essentially to the orbit-stabilizer theorem:
if a finite group G acts on a set X and CG(x), Gx are respectively the stabilizer and the
orbit of a point x ∈ X under this action, then |CG(x)||Gx| = |G|. If G is an algebraic
group, as in our case, in certain cases an alternative version of the theorem still holds.
If G is a connected semisimple algebraic group acting on itself by conjugation, CG(x)
is the centralizer as defined in Section 3.1, and ClG(x) (the conjugacy class of x) is the
image of G under the map σx : G→ G given by σx(g) = gxg−1, then

(5.8) dim(CG(x)) + dim(ClG(x)) = dim(G)

(see for instance [20, §1.5]). Moreover, (5.8) still holds if G acts by conjugation on
Gk as follows: (g, (x1, · · · , xk)) 7→

(
gx1g

−1, · · · , gxkg−1
)
. In fact, we can see CG(x) as

the fibre of x through σx : G → Gk, and then (5.8) follows from fundamental results
of algebraic geometry (see [27, §I.8], used also in [3, §4] and when we say dim(W ) =

dim(V ) − dim(π(V )) in the proof of Lemma 5.5) and from the fact that every fibre
through σx must have the same dimension (as they are images of each other through
appropriate conjugation maps).

Corollary 5.6. Let G ≤ GLn be a connected almost simple linear algebraic group of
rank r with dim(G) = d, deg(G) = D and mdeg(−1) = ι, defined over a field K, and let
Γ ≤ G(K) be a finite subgroup. Then at least one of the following holds:

(a) |Γ| ≤ (2dD)d+1;
(b) Γ ≤ H(K) for some subgroup H < G with dim(H) < d and deg(H) ≤ (2dD)d+1;
(c) for any subset Λ ⊆ Γ, the centralizer CG(Λ) satisfies the bounds

1

φ(d− d′)
|Γ|

d′
d ≤ |Γ ∩ CG(Λ)(K)| ≤ φ(d′)|Γ|

d′
d

where d′ = dim(CG(Λ)) and φ(x) = (2dD(ι+ 1))x(d+1)dx.
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This result corresponds to [24, Thm. 6.2]. We are more pedantic with the constants,
using the function φ(x) instead of a unique constant c0 as in [24], since otherwise the
tower in the bound of Theorem 1.2(a) has one more floor (due to the factorial in (6.16)).

Proof. Our strategy is to use the upper bounds coming from the previous theorems on
both centralizers and conjugacy classes, and transform the upper bound for the latter
into a lower bound for the former via the orbit-stabilizer theorem and (5.8). Since we
have a set Λ instead of a single element x we must work in the direct product Gk, which
is why we needed Lemma 5.5 and we had to explain why (5.8) works for the action of
G on Gk.

Assume that (a) and (b) do not hold. By Corollary 3.2 we may assume that Λ =

{γ1, · · · , γk} ⊆ G(K) with k ≤ d+1, and also deg(CG(Λ)) ≤ D. Call λ⃗ = (γ1, · · · , γk) ∈
Gk. G acts on Gk by conjugation as follows: (g, (g1, · · · , gk)) 7→

(
gg1g

−1, · · · , ggkg−1
)
.

Under this action CG(λ⃗) = CG(Λ), and following Theorem 5.3(c)

|Γ ∩ CG(Λ)(K)| ≤ C1|Γ|
dim(CG(Λ))

d , C1 ≤ (2d deg(CG(Λ)))
ddim(CG(Λ))

,(5.9)

so that C1 ≤ φ(dim(CG(Λ))). Similarly, Lemma 5.5 gives

|Γk ∩ ClG(λ⃗)(K)| ≤ C2|Γ|
dim(ClG(λ⃗))

d , C2 ≤ (2ddeg(ClG(λ⃗)))
kddim(ClG(λ⃗))

.(5.10)

By (5.8) we have dim(CG(Λ))+dim(ClG(λ⃗)) = d, and by Lemma 2.1(a) deg(ClG(λ⃗)) ≤
D(ι+ 1)dim(ClG(λ⃗)), so that C2 ≤ φ(dim(ClG(λ⃗))).

To make (5.10) into a lower bound, we now need to pass to stabilizers and orbits in Γ
itself. The equality CΓ(Λ) = Γ ∩ CG(Λ)(K) is trivial by definition, and since Λ ⊆ Γ we

also have the inclusion ClΓ(λ⃗) ⊆ Γk ∩ ClG(λ⃗)(K). By the orbit-stabilizer theorem then

(5.11) |Γ ∩ CG(Λ)(K)| = |Γ|
|ClΓ(λ⃗)|

≥ 1

C2
|Γ|1−

dim(ClG(λ⃗))

d =
1

C2
|Γ|

dim(CG(Λ))

d .

We get the desired inequalities in (c) by combining (5.9) and (5.11). □

6. Finding a simple group of Lie type

The present section is devoted to giving an explicit version of [24, Thm. 0.5]. In brief,
we are in a situation where Γ is a finite subgroup of G(K), where G is already assumed
to be connected almost simple adjoint. Under these conditions, we shall conclude that
either Γ is not “sufficiently general” (meaning that either |Γ| is bounded or Γ is contained
in H(K) with H of bounded degree and strictly smaller dimension) or Γ is, up to a small
index, a finite simple group of Lie type in the same characteristic as K (meaning that
[GF , GF ] ≤ Γ ≤ GF for some Steinberg endomorphism F ).

All the results of this section work under the same assumptions, except that we
may need to use two different explicit versions of the “sufficiently general” condition.
We collect the assumptions here and reference the appropriate choices throughout the
section to make the statements less cumbersome.
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Assumption. G ≤ GLn is a connected almost simple adjoint linear algebraic group
of rank r defined over an arbitrary field K, with d = dim(G), D = deg(G), and ι =
mdeg(−1). Γ ≤ G(K) is a finite subgroup, either satisfying

(Assumption A1) |Γ| > (2dDrnι)(2dDrι)10d
4

, and
(Assumption A2) Γ ̸≤ H(K) for any linear algebraic subgroup H ⪇ G with

dim(H) < d and deg(H) ≤ (2dD)4d,

or satisfying

(Assumption B1) |Γ| > (2dDrnι)(2dDrι)11d
4

, and
(Assumption B2) Γ ̸≤ H(K) for any linear algebraic subgroup H ⪇ G with

dim(H) < d and deg(H) ≤ (2dDr)4d
2
.

The reader should not be alarmed by the salad of letters appearing in the bound
for |Γ|: what is really important is the number of exponential floors we use, and we
include all the parameters with the sole intention of covering the many ways in which
the assumption plays its role in the rest of the paper. In the final theorem, everything
can be expressed just in terms of the rank.

6.1. Finding the finite field Fq. The first goal is to find the “correct” field Fq that
underlies the structure of Γ: if the final objective is to have [GF , GF ] ≤ Γ ≤ GF for
some Steinberg endomorphism F (as defined in Section 4.4), we need to know to what
field the endomorphism is referred.

First, we shall find a regular unipotent element u ∈ Γ. Its existence proves incidentally
that char(K) ̸= 0, since otherwise any nontrivial unipotent element generates an infinite
group. Then we shall use u to find a unipotent algebraic subgroup V for which Γ∩V (K)
is isomorphic (as a group) to Fq. The group V is essentially made of “minimal” elements:
for instance, if G = PGLn and u is upper triangular, V is the variety of unipotent
elements having their only nonzero off-diagonal entry in the upper right corner; then,
the values taken in that entry by elements of Γ form the field Fq.

Following [24, p. 1129], we call Λ ⊆ G(K) a toric subset if it is contained in an
algebraic torus of G. The preliminary result below shows that centralizers of toric
subsets of Γ contain mostly regular semisimple elements of Γ.

Lemma 6.1. Let G,n, r,K, d,D, ι,Γ be as in Assumption A1–A2. Then, for any toric
subset Λ ⊆ Γ we have

|(Γ ∩ CG(Λ)
o)rss| ≥

(
1− 1

2(2r)r

)
|Γ ∩ CG(Λ)

o|.

Proof. We follow [24, Prop. 7.2]. For g ∈ G(K), by (4.2) the matrix AdG,g ∈ Gl(g)(K)
given by the adjoint representation has entries of degree ≤ ι + 1 in the entries of g.
We know that g is not regular semisimple when the characteristic polynomial of Adg
(call it pg(t)) is divisible by (t− 1)r+1; using Hasse derivatives, this condition becomes

p
(r)
g (1) = 0, which is an equation of degree ≤ d(ι+ 1) in the entries of g. Let V be the

variety of such g.
Since Λ is toric, let T be a maximal torus containing Λ. Every torus is connected [4,

§8.5] and its elements commute with all elements of Λ by definition, therefore CG(Λ)
o ⊇
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T . Since regular semisimple elements are dense in T (see [20, §2.3]), the intersection
V ∩ T is proper inside T , so V ∩ CG(Λ)

o ⊊ CG(Λ)
o as well, and in particular dim(V ∩

CG(Λ)
o) ≤ dim(CG(Λ)

o)− 1.
We also have deg(V ∩ CG(Λ)

o) ≤ deg(V ) deg(CG(Λ)) ≤ d(ι + 1)D by Corollary 3.2.
By Assumption A1–A2, Theorem 5.3(c), and Corollary 5.6(c),

|Γ ∩ (V ∩ CG(Λ)
o)(K)| ≤ (2d2D(ι+ 1))d

d−1 |Γ|
dim(CG(Λ)o)−1

d

≤ 1

(2dD(d+ 1))(d+1)dd+1 · 2D(2r)r
|Γ|

dim(CG(Λ)o)

d

≤ 1

2D(2r)r
|Γ ∩ CG(Λ)(K)| ≤ 1

2(2r)r
|Γ ∩ CG(Λ)

o(K)|,

using the obvious equality dim(CG(Λ)) = dim(CG(Λ)
o) and the fact that by Corol-

lary 3.2 we have |Γ∩CG(Λ)(K)| ≤ deg(CG(Λ))|Γ∩CG(Λ)
o(K)| ≤ D|Γ∩CG(Λ)

o(K)|. □

Now we prove that there is a regular unipotent u ∈ Γ.

Proposition 6.2. Let G,n, r,K, d,D, ι,Γ be as in Assumption A1–A2.
Then |Γrun| ≥ 1

2 |Γ
un| ≥ 1 and char(K) ̸= 0.

Proof. We follow the proof leading to [24, Cor. 7.10]; we skip the theoretical details,
focusing on the explicit bounds.

Fix any toric subset Λ ⊆ Γ, let T (Λ) be the set of all maximal toric subgroups inside
Γ ∩ CG(Λ)

o(K), and pick a set S(Λ) ⊆ T (Λ) of representatives of (Γ ∩ CG(Λ)
o(K))-

conjugacy classes of elements of T (Λ). By Lemma 6.1, we prove that

(6.1) 1− 1

2(2r)r
≤

∑
Θ∈S(Λ)

1

[NΓ∩CG(Λ)o(K)(Θ) : Θ]
≤ 1

1− 1
2(2r)r

;

furthermore, each denominator in the sum above divides the size of the Weyl group of
G, so by (4.3) the sum in (6.1) must be equal to 1. This implies∑

Θ∈T (Λ)

|Θ| = |Γ ∩ CG(Λ)
o(K)|,

∑
Θ∈T (Λ)

1 = |(Γ ∩ CG(Λ)
o(K))un|.(6.2)

For all Θ ∈ T (Λ), we also see from the proof of [24, Prop. 7.3] that

Θ = Γ ∩ CG(Θ)o(K), dim(CG(Θ)o) = r.(6.3)

We can apply the second equality of (6.2) to Λ = ∅, for which CG(∅)o = Go = G, then
the first equality of (6.3), then the upper bound of Corollary 5.6 to CG(Θ) ⊇ CG(Θ)o,
and finally the second equality of (6.3) and the fact that the sum in (6.1) is equal to 1.
We conclude that

|Γun| (6.2)=
∑

Θ∈T (∅)

1 =
∑

Θ∈S(∅)

|Γ|
|NΓ(Θ)|

(6.3)
=

∑
Θ∈S(∅)

|Γ|
[NΓ(Θ) : Θ] · |Γ ∩ CG(Θ)o|

Cor. 5.6
≥

∑
Θ∈S(∅)

|Γ|1−
dim(CG(Θ)o)

d

[NΓ(Θ) : Θ] · (2dD(ι+ 1))(d+1)dd+1

(6.1)–(6.3)
=

|Γ|1−
r
d

(2dD(ι+ 1))(d+1)dd+1 .(6.4)
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Now we bound |Γun \Γrun| = |Γ∩ (Gun∩Girr)(K)|. As mentioned in Section 3.1, Gun

is an irreducible variety of dimension d− r, and by Corollary 2.4(c) it has degree

deg(Gun) = deg(G ∩ {x ∈ Matn+1 : (x|n×n − Idn)
n = 0}) ≤ Dnd+1.

Then, Gun ∩Girr is a proper subvariety of Gun [20, §4.13], and it can be defined as the
set of g ∈ Gun for which, if f : G × Gun → Gun is the map given by f(x, y) = xyx−1,
the fibre f−1(g) is larger than the generic one [20, §1.4]. By Proposition 2.2, there is
some variety Z with Gun ∩ Girr ⊆ Z ⊊ Gun (so in particular dim(Z) < d − r) and
deg(Z) ≤ (ι+ 2)d−r−1D2nd+1. Then, Theorem 5.3(c) gives

(6.5) |Γun \ Γrun| ≤ |Γ ∩ Z(K)| ≤
(
2d(ι+ 2)d−r−1D2nd+1

)dd−r−1

|Γ|1−
r+1
d ,

since the alternatives (a) and (b) of Theorem 5.3 do not hold by Assumption A1–A2.
Combining (6.4) and (6.5) with the condition on |Γ| coming from Assumption A1, we
obtain the claim on Γrun.

Finally, the existence of a regular unipotent element implies that char(K) divides its
order, so char(K) ̸= 0 (see [24, Cor. 7.11]). □

We conclude the subsection by finding the desired algebraic subgroup V of minimal
unipotent elements. In the following, the normalizer NΓ(V ) = {γ ∈ Γ : γV = V γ} is a
subgroup of Γ ≤ G(K) ≤ GLn(K) with char(K) = p, so it makes sense to talk about
the group ring Fp[NΓ(V )].

Proposition 6.3. Let G,n, r,K, d,D, ι,Γ be as in Assumption A1–A2.
Then char(K) = p > 0, there is some q = pe, and there is some abelian unipotent

subgroup V = V (G) ≤ G of dimension 1 ≤ dim(V ) ≤ min{2, r} and degree deg(V ) ≤ D

such that Γ ∩ V (K) ≃ Fq (as abelian groups), Fq ≤ Kdim(V ) (as Fp-algebras), Fq ≃
Fp[NΓ(V )] (as rings), and

1

φ(d− 1)
|Γ|

dim(V )
d ≤ |Γ ∩ V (K)| = q ≤ φ(2)|Γ|

dim(V )
d , φ(x) = (2dD(ι+ 1))x(d+1)dx .

The function φ(x) above is the same as in Corollary 5.6.

Proof. We follow the proof leading to [24, Thm. 8.17], skipping the theoretical details.
By Proposition 6.2, char(K) = p > 0 and there exists some u ∈ Γrun. Pick a Borel

subgroup B of G so that its unipotent part U contains u: Γ ∩ U(K) is a normal Sylow
p-subgroup of Γ ∩ B(K), so by the Schur–Zassenhaus theorem Γ ∩ B(K) is a semidi-
rect product of Γ ∩ U(K) and the corresponding quotient; then [21, §19.4, Prop. (a)]
guarantees that there is a maximal torus T in B such that

(6.6) Γ ∩B(K) = (Γ ∩ U(K))⋊ (Γ ∩ T (K)).

First we prove that Z(U) is a centralizer, following the steps of [24, Lem. 8.9]. T is
a maximal torus of G as well [21, §21.3, Cor. A], and T is the centralizer of itself [21,
§26.2, Cor. A(b)], so the lower bound of Corollary 5.6(c) yields

(6.7) |Γ ∩ T (K)| ≥ 1

(2dD(ι+ 1))(d−r)(d+1)dd−r |Γ|
r
d ,
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since Assumption A1–A2 forbids the other cases. Now, if f : T → U is the conjugation
map f(t) = tut−1, then for any given element g ∈ CG(f(Γ∩ T (K))) we get Γ∩ T (K) ⊆
f−1(CU (g))(K), and in particular

(6.8) |Γ ∩ T (K)| ≤ |Γ ∩ f−1(CU (g))(K)|.
On the other hand,

deg(f−1(CU (g))) ≤ deg(T ) deg(CU (g))mdeg(f)dim(CU (g))

≤ deg(T ) deg(U)mdeg(f)dim(U) ≤ D2(ι+ 1)d−r

using Lemma 2.1(b), the inequality deg(CU (g)) ≤ deg(U) (proved as in Corollary 3.2),
Lemma 3.1(a)–(d), and dim(U) ≤ d− r (see for instance [20, §4.2]). Therefore, calling
r′ = dim(f−1(CU (g))), we have

(6.9) |Γ ∩ f−1(CU (g))(K)| ≤ (2dD2(ι+ 1)d−r)d
r′ |Γ|

r′
d

by Theorem 5.3(c). If r′ < dim(T ) = r, Assumption A1 becomes incompatible with
(6.7)–(6.8)–(6.9), so we must have r′ = dim(T ). This implies f−1(CU (g)) = T since
T is irreducible by definition, and thus that f(T ) ⊆ CU (g) for any g ∈ CG(f(Γ ∩
T (K))). Since U is also irreducible and f(T ) is made of regular elements, the image
f(T )/[U,U ] of f(T ) ⊆ U in the quotient U/[U,U ] is the quotient’s unique open T -orbit
(see the description in terms of root subgroups in [20, §4.1]). Thus f(T )/[U,U ] generates
U/[U,U ] as an algebraic group, and because U is nilpotent similarly f(T ) generates U .
Hence, since f(T ) ⊆ CU (g) and the latter is an algebraic group too, we have U = CU (g),
or in other words g ∈ Z(U). By our choice of g then CG(f(Γ ∩ T (K))) ⊆ Z(U), and
since the reverse inclusion is trivial we conclude that Z(U) is a centralizer. In particular,
by Corollary 5.6(c) we obtain

(6.10)
1

φ(d− 1)
|Γ|dim(Z(U))/d ≤ |Γ ∩ Z(U)(K)| ≤ φ(2)|Γ|dim(Z(U))/d

with φ(x) as in the statement, using the fact that 1 ≤ dim(Z(U)) ≤ 2 by (4.4).
Now we search for our V . The group Z(U) is nontrivial since U is nilpotent, and every

nontrivial B-invariant subgroup V ⊆ Z(U) (including V = Z(U) itself) is connected
with V = CG(V ) = CG(CG(V )) by [24, Prop. 8.4]. As dim(Z(U)) ≥ 1, (6.10) and
Assumption A1 imply that there is some v ∈ (Γ ∩ Z(U)(K)) \ {e}. From now on, fix

a V = V (G) of minimal dimension among all possible B-invariant subgroups of Z(U)
with |Γ ∩ V (K)| > 1, where B also runs among all possible Borel subgroups of G. We

warn the reader that, although here we just write V instead of V (G), the dependence
on G is important in later subsections.

By what we said before, such a V exists and dim(V ) ≥ 1; V is abelian since Z(U)
contains it, which implies also dim(V ) ≤ min{2, r}. Moreover, as V is a centralizer,
Corollary 3.2 yields deg(V ) ≤ D and Corollary 5.6 yields

(6.11)
1

φ(d− 1)
|Γ|dim(V )/d ≤ |Γ ∩ V (K)| ≤ φ(2)|Γ|dim(V )/d

with φ(x) as in the statement. Combining again the above with Assumption A1, in
which the bound is larger than φ(d − 1)5d, we have |Γ ∩ V (K)| ≥ φ(d − 1)4. Recall
now that char(K) = p, and consider the ring Fp[NΓ(V )]: by [24, Prop. 8.4(a)-8.15], it
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is in fact a finite field Fq and at the same time a finite Fp-subalgebra of Kdim(V ), and

Γ∩V (K) is a nontrivial finite-dimensional Fq-vector space. Then we plug [24, Thm. 6.6]

and the bound |Γ ∩ V (K)| ≥ φ(d − 1)4 into [24, Lem. 8.16], and we obtain that the
dimension of Γ ∩ V (K) as a vector space over Fq is 1. The various claims on Fq and V
follow from this conclusion and from (6.11). □

6.2. Finding the simple group [GF , GF ]. Now that we have identified the correct
field Fq, a copy of which occurs inside Γ as a subgroup Γ ∩ V (K) of minimal unipo-
tent elements, we must show that Fq is a good choice throughout the whole Γ. More
rigorously, as said before, our goal is now to prove that [GF , GF ] ≤ Γ ≤ GF for some
Steinberg endomorphism F with respect to Fq; additionally, [G

F , GF ] shall be a finite
simple group of Lie type.

The procedure is covered in [24, §§9–10–11]. In this subsection we follow the theoret-
ical proof with just enough details to allow the reader to understand the process, and
focus instead on the quantitative bookkeeping. Overall, the results here are arranged
differently than in [24]. The correspondence is in general terms as follows:

Larsen–Pink: This paper:

Thm. 9.1, basic case,
proved in §10 ←→ Prop. 6.4, under

Assumption A1–A2ww�
Thm. 0.5, basic case,

proved in §9 (Prop. 5.5)
ww� (Prop. 6.5)ww�

Thm. 9.1, general case,
proved in §11 ←→ Prop. 6.6, under

Assumption B1–B2ww� (Prop. 5.5)
ww� (Prop. 6.5)

Thm. 0.5, general case,
proved in §9 ←→ Thm. 6.7, under

Assumption B1–B2

The fact that the basic case of [24, Thm. 9.1] is used to prove the general case of the
same result is the reason why we have two versions of the quantitative assumptions.

We start by showing that, under the weaker quantitative Assumption A1–A2 and the
stronger condition dim(V ) = r, we can build a representation of G onto a module that,
up to changing the base field from K to Fq, is also Γ-invariant. One can imagine that
this fact gets us close to saying Γ = G(Fq); the last statement is too strong, but it shall
be relaxed to saying [GF , GF ] ≤ Γ ≤ GF instead.

Proposition 6.4. Let G,n, r,K, d,D, ι,Γ be as in Assumption A1–A2. Since Proposi-
tion 6.3 holds, let p, q = pe, V = V (G) be as given therein. Assume that dim(V ) = r.
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Then, there is a Kdim(V )-module M , there is a nontrivial representation σ : G →
GL(M) with mdeg(σ) ≤ d2 (σ defined over K), and there is an Fq-submodule M0 of M

with M0 ⊗Fq K
dim(V ) ≃M and σ(γ)(M0) = M0 for every γ ∈ Γ.

Proof. The proof follows chiefly [24, §10].
The process of constructing V involves fixing B,U, T , respectively a Borel subgroup,

its unipotent radical, and a maximal torus T satisfying (6.6), so let them be fixed here as
well. Since dim(V ) = r we must have dim(Z(U)) = r (by construction V ≤ Z(U) ≤ T ),
which can happen only for r = 1, 2 by (4.4). If Λ ⊆ Γ is the set of elements conjugate
to an element of (Γ ∩ T (K))rss, then

(6.12) |Λ| = |(Γ ∩ T (K))rss|
|Γ ∩ T (K)|

· 1

[NΓ(T ) : Γ ∩ T (K)]
·|Γ| ≥

(
1− 1

2(2r)r

)
· 1

|W|
·|Γ| ≥ |Γ|

2|W|

using Lemma 6.1 on T = CG(T ) = CG(T )
o.

Let ρ be given as in (4.5). We know that Tr(ρ(Γ)) ⊆ Kr by definition of ρ, and that
by Proposition 6.3 Fq is a subalgebra of Kr and isomorphic to Fp[NΓ(V )] as a ring. We
want to prove that Tr(ρ(Λ)) ⊆ Fq. The case r = 1 is immediate (see [24, p. 1143]), so
assume r = 2.

By (6.6) and the fact that Γ ∩ U(K) acts trivially on V ⊆ Z(U), Γ ∩ T (K) acts
faithfully by conjugation on V and therefore maps isomorphically to a subgroup of
F∗
q = (Fp[NΓ(V )])∗. Thus Γ∩T (K) is cyclic, generated by some element γ that maps to

some (x, xp
f
) ∈ F∗

q (recall that Fq is also a subalgebra of K2). Fix such γ, x, f . Under
Assumption A1–A2, one can prove that 2f + 1 = e: this is not a surprise, since the
cases with dim(Z(U)) = r = 2 are those of type B2, G2 with characteristic p = 2, 3

respectively, and the automorphisms (·)pf with q = p2f+1 provide the twists that yield
Suzuki–Ree groups. The proof is contained in [24, Lemmas 10.5 to 10.9]; here we just
sum up the computational details.

There exists some u ∈ Γrun by Proposition 6.2; this fact and [24, Lem. 8.6] imply

|(Γ ∩ U(K))run| ≥ 1

2kr
|Γ ∩ U(K)|, kr =

r−1∑
i=0

r!

i!
,

(so k2 = 4) and then by [24, Prop. 8.7], (6.6), and Assumption A1 we conclude that

|Γ ∩ T (K)| = [Γ ∩B(K) : Γ ∩ U(K)] ≥ 1

2kr(2dD(ι+ 1))3(d+1)dd+1 |Γ|
r
d > 1.

The subgroup T ′ ≤ T yielding a scalar action on U/[U,U ] has dimension 1, so the bound
above and Theorem 5.3 imply that there is some element γ′ ∈ Γ∩T (K) whose action on
U/[U,U ] is non-scalar. We also need the size of the subgroup of F∗

q to which Γ ∩ T (K)

maps isomorphically to be at least (q−1)/φ(d−1)2 (true by Assumption A1–A2 and [24,

Thm. 6.6]), and we need the bound (q − 1)/φ(d− 1)2 ≥ 2q3/4 (true by Assumption A1
and Proposition 6.3). The existence of u and γ′, the minimality of V as defined inside
the proof of Proposition 6.3, and the two bounds above force the equality 2f +1 = e. A
case-by-case analysis for the possible groups G and the corresponding roots then gives

Tr(ρs(γ
i)) = Tr(ρℓ(γ

i))p
f
for all i, yielding the case r = 2 of the claim Tr(ρ(Λ)) ⊆ Fq.
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It is time to define the objects that we look for. By Proposition 4.4, ρ is a represen-
tation over K of the group G in a space of dimension ≤ d, and it has mdeg(ρ) ≤ d; the

same can be said for ρ seen as a representation over Kdim(V ). Let M ≤ GLd(K
dim(V ))

be the ring of Kdim(V )-linear transformations of the representation space of ρ. Call

X ⊆ Gd2 the set of (gi)i≤d2 for which (ρ(gi))i≤d2 does not span M as a Kdim(V )-vector

subspace of (Kdim(V ))d
2
. The set X is a proper subvariety of Gd2 (thus of dimension

< d3) defined as the set of zeros of the (dim(M)×dim(M))-minors of the matrix whose
rows are the ρ(gi). By Corollary 2.4(b) we have

deg(X) ≤ (mdeg(ρ) dim(M))d
3 ≤ d3d

3
,

so Corollary 5.4 gives |Γd2 ∩X(K)| ≤ d2(2d3d
3+1)d

d−1 |Γ|d2−
1
d . On the other hand, if we

call Ω ⊆ Γd2 the set of (γi)i≤d2 for which∣∣∣∣∣∣
d2⋂
i=1

γ−1
i Λ

∣∣∣∣∣∣ ≥ |Γ|
2(2|W|)d2

,

then by (6.12) and [24, Lem. 10.10] we also have |Ω| ≥ |Γ|d2/2(2|W|)d2 . By (4.3),
Assumption A1, and the two bounds above, there must be some (γi)i≤d2 ∈ Ω \X. Fix

such a tuple, fix γ0 ∈
⋂d2

i=1 γ
−1
i Λ, and define

M0 := {m ∈M : Tr(ρ(γiγ0)m) ∈ Fq (1 ≤ i ≤ d2)}.

This is an Fq-vector space contained in M that by definition of X spans the whole M

over Kdim(V ). Now, [24, Lem. 10.12] shows that |Γ ∩ ρ−1(M0)(K)| ≥ |Γ|/2(2|W|)d2 .
In turn, this implies that the left stabilizer ∆ := {γ ∈ Γ : ρ(γ)M0 = M0} is large, in

the sense that [Γ : ∆] ≤ 4(2|W|)d2 : if it were not, for some left Γ-translates M ′
0,M

′′
0

of M0 we would have a large intersection |Γ ∩ ρ−1(M ′
0 ∩ M ′′

0 )(K)|, meaning at least

|Γ|/(4(2|W|)d2)2 in size (see the proof of [24, Lem. 10.13] for details), but this is not
possible because every proper submodule N ⊊ M must have

deg(ρ−1(N)) ≤ Ddd |Γ ∩ ρ−1(N)(K)| ≤ (2Ddd+1)d
d |Γ|1−

1
d(6.13)

by Lemma 2.1(b) and Theorem 5.3(c), contradicting the previous lower bound by (4.3)
and Assumption A1. Let σ : G→ GL(M) be the representation defined by

(6.14) σ(g)(m) = ρ(g)mρ(g)−1.

By definition of ρ, we have mdeg(σ) ≤ d2 (as ρ comes from the adjoint representation
mdeg(σ) can be shown to be linear in d, but the improvement is negligible), and σ is
defined over K. We need to show that M0 = σ(γ)(M0) for every γ ∈ Γ. We know that
ρ(∆) ⊆M0, and the large index of ∆ implies that

|Γ ∩ ρ−1(M0 ∩ σ(γ)(M0))| ≥ |∆ ∩ γ∆γ−1| ≥
(

1

4(2|W|)d2
)2

|Γ|,

while if M0 ̸= σ(γ)(M0) we would get an upper bound on |Γ∩ ρ−1(M0 ∩σ(γ)(M0))(K)|
like in (6.13), contradicting again Assumption A1. Therefore M0 = σ(γ)(M0), proving
the result. □
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From the Γ-invariant module M0 we build the desired Steinberg endomorphism in
Proposition 6.5 below. We do not assume any condition on dim(V ), so that we may be
able to apply the result again later in the paper.

Proposition 6.5. Let G,n, r,K, d,D, ι,Γ be as in Assumption A1–A2. Since Propo-
sition 6.3 holds, let p, q = pe, V = V (G) be as given therein. Assume that there exist
σ,M,M0 satisfying the conclusions of Proposition 6.4 (unlike in that result, we do not
necessarily assume that dim(V ) = r).

Then, there is a Steinberg endomorphism F : AutK(M) → AutK(M) (where M is

seen as a module over K, instead of over Kdim(V )) such that [GF , GF ] ≤ Γ ≤ GF with
[GF , GF ] simple.

Proof. We follow [24, §9], skipping the theoretical details and focusing on explicit
bounds.

By construction M is a Kdim(V )-module, where dim(V ) ∈ {1, 2} by (4.4). As σ in
nontrivial and G is almost simple adjoint, Adσ(G) ◦σ is a totally inseparable isogeny on
its image, hence injective (as follows from its definition, see [28, p. 448]), and since all
maps are defined over K then σ must be injective on K-points.

As M is a module and σ(G) ≤ GL(M) (over K), we may define our desired Steinberg
endomorphism F : GL(M)→ GL(M) as a linear transformation of the K-vector space
Mat(M). Therefore, as F amounts to a change of basis, we shall have mdeg(F ) = 1
when F is seen as an isomorphism of the variety GL(M) onto itself.

The details of the choice of F are contained in [24, p. 1141]. If dim(V ) = 1, we take
F to be the Frobenius map F : AutK(M) → AutK(M) with respect to Fq ⊆ K. If
dim(V ) = 2, we can write M = Mℓ⊕Ms and AutK2(M) = AutK(Mℓ)×AutK(Ms) and
take isogenies on the two components so that their product is a map F whose square
is the Frobenius map with respect to Fq ⊆ K2. By construction, σ−1(F (σ(G))) ≤ G,
and the conclusion of Proposition 6.4 gives F (σ(γ)) = σ(γ) for all γ ∈ Γ, meaning that
Γ ⊆ σ−1(F (σ(G))).

The bounds mdeg(σ) ≤ d2 and mdeg(F ) = 1 give by Lemma 2.1(a)–(b)

deg(σ−1(F (σ(G)))) ≤ D2mdeg(σ)2dmdeg(F )d ≤ D2d4d.

Hence, Assumption A2 forces σ−1(F (σ(G))) = G. The map F becomes naturally an

isogeny F : G → G (see [24, Lem. 9.4], which uses [28, Thm. 1.7]) for which F dim(V )

is the Frobenius map with respect to Fq. On one hand we have Γ ⊆ GF , using the
injectivity of σ on K-points. On the other hand, Assumption A1 and [24, Thm. 3.4]
imply that [GF , GF ] is simple with index ≤ r + 1 inside GF by (4.1), and that

(6.15)
|Γ|

2φ(d− 1)
d

dim(V )

≤ (q
1

dim(V ) − 1)d ≤ |GF | ≤ q
d

dim(V ) ≤ φ(2)
d

dim(V ) |Γ|

by Proposition 6.3. Let H1 := Γ∩ [GF , GF ], and let H2 be the normal core of H1 inside
[GF , GF ]. The upper bound in (6.15) gives

|[GF , GF ]/H2| ≤ [[GF , GF ] : H1]! ≤ [GF : Γ]! ≤
(
φ(2)

d
dim(V )

)
!

≤
(
(2dD(ι+ 1))2(d+1)d3

)
! ≤ (2dDι)(2dDι)5d

4

,(6.16)
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and the lower bound of (6.15) gives

(6.17) [GF , GF ] ≥ |G
F |

r + 1
≥ |Γ|

2(r + 1)(2dD(ι+ 1))dd+1 .

Putting together (6.16), (6.17), Assumption A1, and the simplicity of [GF , GF ], we are
forced to have H2 = [GF , GF ], concluding that Γ ⊇ [GF , GF ]. □

Next we prove the existence of a Γ-invariant module M0 as in Proposition 6.4, this
time without the assumption dim(V ) = r. The construction relies on finding a smaller

subgroup H ≤ G for which dim(V (H)) = rk(H), and use the field and the representation
resulting from H to build the representation of G. Passing from G to H worsens the
conditions on Γ, hence we need to impose the stronger Assumption B1–B2 on Γ ≤ G(K)
to ensure that a second group ∆ ≤ H(K) related to Γ satisfies Assumption A1–A2.

Proposition 6.6. Let G,n, r,K, d,D, ι,Γ be as in Assumption B1–B2. Since Proposi-
tion 6.3 holds, let p, q = pe, V = V (G) be as given therein.

Then, there is a Kdim(V )-module M , there is a nontrivial representation σ : G →
GL(M) with mdeg(σ) ≤ d2 (σ defined over K), and there is an Fq-submodule M0 of M

with M0 ⊗Fq K
dim(V ) ≃M and σ(γ)(M0) = M0 for every γ ∈ Γ.

Proof. If dim(V ) = r we are done by Proposition 6.4, so we may assume dim(V ) < r. We

follow [24, §11]. The first step is to find a suitable H ≤ G for which dim(V (H)) = rk(H)
and apply Propositions 6.4–6.5 to it.

By [21, §§28.3–28.5], we can decompose G as a disjoint union

G =
∐
w∈W

BwB = BẇB ⊔
∐
w ̸=ẇ

BwB,

where BẇB is open and dense. If X is the union over w ̸= ẇ on the right-hand side,
by Lemmas 2.1(a)–3.1(b) and (4.3) we have

(6.18) deg(X) ≤ (|W| − 1) deg(B)22d ≤ ((2r)r − 1)D22d.

Hence, by Assumption B1–B2 and Theorem 5.3(c) applied to X, there is some γ ∈
Γ ∩ (BẇB)(K). From now on, fix such a γ. Call H(γ) the algebraic group generated

by V and γV γ−1: H(γ) is connected almost simple of type A1, B2, G2, and is in fact
the product of root subgroups normalized by T [24, Prop. 11.1(a)–(b)]. Thus, we can
write H(γ) as the image of the map from T ×T to G given by f(t1, t2) = t1g1t

−1
1 t2g2t

−1
2

for some appropriate g1, g2, which by Lemma 2.1(a) gives deg(H(γ)) ≤ D2(2ι + 2)2.

Write also π for the adjoint representation AdH(γ)
and H for its image Had

(γ): the map

π : H(γ) → H has mdeg(π) ≤ ι+ 1 by (4.2), and every fibre has size ≤ 2 (checking the
types case by case). Most notably, H is a connected almost simple adjoint group of a

type for which dim(V (H)) = rk(H), so Propositions 6.4–6.5 apply to H, provided that
we also have a suitable finite group inside H(K).

Define ∆ := π(Γ ∩ H(γ)(K)). By the bound on fibre sizes and Proposition 6.3, we
have

|∆| ≥ 1

2
|Γ ∩H(γ)(K)| ≥ 1

2
|Γ ∩ V (K)| ≥ 1

2(2dD(ι+ 1))dd+1 |Γ|
dim(V )

d ,
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and if Γ satisfies Assumption B1 then ∆ must satisfy Assumption A1. Now, let L be
any algebraic subgroup of H that is proper (so dim(L) < dim(H) automatically) and
that satisfies

(6.19) deg(L) ≤ (2 dim(H) deg(H))4 dim(H) ≤ 214000,

where we used dim(H) ≤ 10 and deg(H) ≤ 27
3
by Remark 4.3(b). Since L is proper,

by definition of H(γ) we cannot have V ⊆ π−1(L) and γV γ−1 ⊆ π−1(L) at the same

time. Suppose that V ̸⊆ π−1(L). Lemma 2.1(b) implies that deg(V ∩ π−1(L)) ≤
214000D(ι+ 1)2. Combining Assumption B1 with Theorem 5.3(c) and Proposition 6.3,

|Γ ∩ (V ∩ π−1(L))(K)| ≤ (2d · 214000D(ι+ 1)2)d
2 |Γ|

dim(V )−1
d

<
|Γ|

dim(V )
d

(2dD(ι+ 1))dd+1 ≤ |Γ ∩ V (K)|,

implying that Γ ∩ V (K) ̸⊆ π−1(L)(K). Analogously, γV γ−1 ̸⊆ π−1(L) gives Γ ∩
γV γ−1(K) ̸⊆ π−1(L)(K). In either case, we obtain ∆ ̸⊆ L(K), which means that
∆ satisfies Assumption A2. Hence, we can apply Proposition 6.5 to ∆ and H, we have
[HF , HF ] ≤ ∆ ≤ HF for some Steinberg endomorphism with [HF , HF ] simple.

Finally, by Assumption B1 and (6.11) there is some v ∈ (Γ ∩ V (K)) \ {e}, which we
fix. If γ runs through the elements of Γ ∩ (BẇB)(K) the group H(γ) may change, but
all such H(γ) are conjugate by [24, Prop. 11.1(c)]; therefore H,F do not depend on the
choice of γ. The proof of [24, Prop. 11.7] then shows that Fq and the field underlying
the map F are the same field, and that, for ρ as in (4.5), Tr(ρ(vγvγ−1)) ∈ Fq for all

γ ∈ Γ ∩ (BẇB)(K) (and v fixed).
Now we use the result above about traces to define the appropriate σ,M,M0. Let

M̄ be the ring of Kdim(V )-linear transformations of the representation space of ρ, and
let M̄ ′ be the smallest G-invariant Kdim(V )-submodule of M̄ containing ρ(v). Just
as in the proof of Proposition 6.4, there is a representation σ̄ : G → GL(M̄) given
as in (6.14), which in particular is defined over K and satisfies mdeg(σ̄) ≤ d2. Its
restriction σ̄′ : G → GL(M̄ ′) is again defined over K, because σ̄ and M ′ are, and has
mdeg(σ̄′) ≤ d2. Since σ̄(g) is conjugation by ρ(g) it preserves traces, so we may take
the quotient M := M̄ ′/(M̄ ′∩M̄ ′⊥) (the orthogonal complement is taken with respect to
the trace form) and still obtain a representation σ : G → GL(M) with mdeg(σ) ≤ d2.
Moreover σ is nontrivial by [24, Prop. 11.5, (11.9)], and it is defined over K because
M̄ ′⊥ is. Finally, let m0 ∈ M be the element corresponding to ρ(v) ∈ M̄ ′, and call M0

the Fq-submodule generated by the orbit OΓ(m0). By construction, σ(γ)(M0) = M0 for
any γ ∈ Γ.

It remains to prove that M0 ⊗Fq K
dim(V ) ≃M . See the proof of [24, Lem. 11.12]; we

only present the computational details. Let N be a proper Kdim(V )-submodule of M ,
and define

X(N) := {g ∈ G : σ(g)(m0) ∈ N}
as in [24, (11.13)]. The variety X(N) is proper inside G, and it is the preimage of N
through the map σ(·)(m0), so

deg(X(N)) ≤ deg(G) deg(N)mdeg(σ)dim(N) ≤ Dd2d
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by Lemma 2.1(b). If the natural map M0 ⊗Fq Kdim(V ) → M is not surjective then

Γ ⊆ X(N)(K) for some N , and if it is not injective then

Γ ⊆ X(N)(K) ∪
ℓ⋃

i=1

⋃
w ̸=ẇ

(γiBwB)(K),

where ℓ is at most one more than the dimension of M as a Kdim(V )-vector space.
Recalling the degree bound of (6.18), in both cases we obtain that Γ is contained in a
variety of degree ≤ 2d+r+2rrD2d2d ≤ (2dDr)2d+r+1; applying Lemma 3.3, we contradict
either Assumption B1 or B2, so the map must be an isomorphism, and we are done. □

Combining Propositions 6.5 and 6.6, we reach the finite simple group [GF , GF ] that
we are looking for. Below we write a self-contained statement, but the conditions on G
and Γ coincide with Assumption B1–B2.

Theorem 6.7. Let G ≤ GLn be a connected almost simple adjoint group of rank r
defined over K, with d = dim(G), D = deg(G), and ι = mdeg(−1). Let Γ ≤ G(K) be
finite. Assume the following:

(a) |Γ| > (2dDrnι)(2dDrι)11d
4

;

(b) Γ ̸≤ H(K) for any subgroup H ⪇ G with dim(H) < d and deg(H) ≤ (2dDr)4d
2
.

Then char(K) = p > 0, there is some q = pe such that Fq is an Fp-subalgebra of either
K or K2, and there is a Steinberg endomorphism F : G→ G such that either F or F 2

is the Frobenius map with respect to Fq, with

[GF , GF ] ≤ Γ ≤ GF

and with [GF , GF ] simple.

Proof. Since the conditions on G and Γ are exactly the ones in Assumption B1–B2, we
obtain Proposition 6.6. Then we apply Proposition 6.5, whose hypothesis is the weaker
Assumption A1–A2, and the result follows. □

7. Proof of the main theorem

The main result of the previous section is that, for G almost simple adjoint and Γ
sufficiently general, we have [GF , GF ] ≤ Γ ≤ GF for some Steinberg endomorphism such
that [GF , GF ] is a finite simple group of Lie type. This assertion lies at the the core of
(b) in Theorem 1.2. In the current section we build the rest of the theorem around this
initial core.

The proof relies mainly on a descent process: if Γ is not sufficiently general (meaning
that it violates either (a) or (b) in Theorem 6.7), then it is trapped in a smaller subgroup,
for some definition of “smaller”; repeating the procedure enough times, eventually the
subgroup becomes zero-dimensional, giving a bound on |Γ| in terms of n only. Being
connected almost simple adjoint is not preserved at every step though, so we need a
few more steps in between. If G is an algebraic group, we first pass to a small-index
connected subgroup Go (and the effect on Γ is absorbed by (a) in the main theorem),
then we get to a reductive group via taking quotient by Ru(G) (which is absorbed by
(d)), then to a semisimple group via quotient by Z(G) (which is absorbed by (c)). A
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semisimple group is a product of almost simple pieces, which gives either a product of
finite simple groups as in (b), up to a small index contributing to (a), or a descent as
before. The potential case of dim(G) = 0 and bounded |Γ| is again dealt with by (a).

Let us specify what parameter we use to track the descent. Let {Gi}i∈I(G) be
the collection of the connected almost simple adjoint factors of the semisimple group
(Go/Ru(G

o))ad; the set I(G) could be empty, and the Gi could be defined over K.
Define

dad(G) :=
∑

i∈I(G)

dim(Gi) = dim((Go/Ru(G
o))ad).

Trivially dad(G) ≤ dim(G), and if G is almost simple then equality holds. It is also easy
to show that if H ≤ G then dad(H) ≤ dad(G). We set up an induction using dad(G).

Lemma 7.1. Let G ≤ GLn be an algebraic group of rank r defined over K, with
d = dim(G), D = deg(G), and ι = mdeg(−1). Let Γ ≤ G(K) be finite.

Assume I = I(G) ̸= ∅ (i.e. dad(G) ≥ 1). Then at least one of the following holds:

(a) Γ ≤ H(K) for some subgroup H ⪇ G with dad(H) < dad(G) and

deg(H) ≤ (2dnι)(2dnι)
220d4r2+2dn2

Dd+1;

(b) char(K) = p > 0, and for every i ∈ I there is a Steinberg endomorphism Fi : Gi →
Gi with

[GFi
i , GFi

i ] ≤ πi(Γ ∩Go(K)) ≤ GFi
i

and with [GFi
i , GFi

i ] simple.

Proof. Since GL1 is abelian we may assume n ≥ 2, or else I = ∅. Take Y = Y (Go)

and the corresponding Ĝ, Ŷ , λ, β̂,m as in Lemma 4.1. Since Ĝ(K) ≃ Go(K), we may

consider Γ∩Go(K) ≤ Ĝ(K). The quotient Ĝ/Ŷ (possibly defined over K) is connected
adjoint, so it is isomorphic to the direct product of the Gi: the isomorphism can be
taken to be the adjoint representation AdĜ/Ŷ , whose image sits in GL(x) (where x is the

Lie algebra of Ĝ/Ŷ ) and which has maximum degree ≤ m + 1 by (4.2). Then, up to
a change of basis of x (which does not affect the degree), the projection to any almost
simple factor has maximum degree ≤ 1.

For every i ∈ I, call πi : Ĝ → Gi the natural epimorphism given by composing the
quotient map β̂, the adjoint representation AdĜ/Ŷ , the change of basis of x, and the

projection to Gi. By the facts above,

(7.1) mdeg(πi) ≤ 2(n2+(ι+1)dd)n
2
(ι+1)dd ·

(
22(n

2+(ι+1)dd)n
2

+ 1

)
≤ (2dnι)(2dnι)

2dn2

.

Furthermore, by Proposition 4.2 we have the following bounds on the parameters of the
Gi depending only on d = dim(G) = dim(Ĝ) and r = rk(G) = rk(Ĝ):

rk(Gi) ≤ r ≤ d, dim(Gi) ≤ d, ι|Gi ≤ n|Gi ≤ d, deg(Gi) ≤ (2r)2
16r2 .(7.2)

For each i ∈ I, apply Theorem 6.7 to the finite group πi(Γ ∩ Go(K)) contained in
Gi(K). If conditions (a)–(b) are both satisfied for all i, we obtain case (b) of the present
result. Assume then that either (a) or (b) in Theorem 6.7 is violated for some i. As a
matter of fact, we may rewrite case (a) to look like an instance of case (b): to do so,
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interpret πi(Γ∩Go(K)) as the zero-dimensional algebraic group H defined as the union⋃
γ∈πi(Γ∩Go(K)){γ}. Hence, in both cases, Γ ∩ Go(K) ≤ π−1

i (H)(K) for some algebraic

subgroup H ≤ Gi such that either dim(H) < dim(Gi) and deg(H) ≤ (2d)2
19d2r2 , or

dim(H) = 0 and deg(H) ≤ (2d)(2d)
220d4r2

.

Set P := λ(π−1
i (H)), which is an algebraic group. As Go is irreducible we have

P ⪇ Go ≤ G and dim(P ) < d, while dad(H) ≤ dim(H) < dim(Gi) = dad(Gi) implies
that dad(P ) < dad(G). Lemma 2.1(a)–(b) gives deg(P ) ≤ D deg(H)mdeg(πi)

d. Let
L =

⋂
γ∈Γ γPγ−1. Again dad(L) ≤ dad(P ) < dad(G), and Corollary 2.4(b) yields

deg(L) ≤ deg(P )d.
Since Γ is finite, ΓL =

⋃
γ∈Γ γL is a variety. Moreover, the normalizer of L in G

contains Γ, so ΓL is an algebraic subgroup of G containing Γ. We have (ΓL)o = Lo,
giving dad(ΓL) = dad(L) < dad(G). It remains to bound deg(ΓL). By definition,
Γ ∩ L(K) is the normal core of Γ ∩ P (K) = Γ ∩ Go(K) inside Γ, but Γ ∩ Go(K) ⊴ Γ
already, therefore

|ΓL(K)/L(K)| = |Γ/(Γ ∩ L(K))| = |Γ/(Γ ∩Go(K))| ≤ |G/Go| ≤ D.

Hence, using (7.1),

deg(ΓL) ≤ D deg(L) ≤ Dd+1 deg(H)dmdeg(πi)
d2 ≤ (2dnι)(2dnι)

220d4r2+2dn2

Dd+1,

so the algebraic subgroup ΓL satisfies the conditions in (a). □

With the induction step of Lemma 7.1 at hand, we can prove the main theorem.

Proof of Theorem 1.2. If Γ is abelian then the result holds by taking Γ2 = Γ and Γ3 its
Sylow p-subgroup. Thus we may assume Γ non-abelian, and thus n ≥ 2.

Start with G = GLn, and apply Lemma 7.1 to it. If case (a) of the lemma holds,
repeat the process with the subgroup of G found in this way, and repeat this step until
either I(G) = ∅ or we reach case (b). Since dad(G) strictly decreases at each step, the
process ends in at most d steps. By the bound on deg(H) inside Lemma 7.1(a) and the
natural bounds on dim(GLn),deg(GLn), rk(GLn),mdeg(−1) in terms of n, at the last

step we have deg(G) ≤ nn(223−1)n10

.
Let Y = Y (Go) be as in Lemma 4.1. Since Y ⊴◀ Go ⊴◀ G and Ru(G

o) ⊴◀ Go ⊴◀ G, we
have Y ⊴◀ G and Ru(G

o) ⊴◀ G. Call Γ2 := Γ∩Y (K) and Γ3 := Γ∩Ru(G
o)(K): we have

Γ3 ⊴ Γ2 ⊴ Γ and Γ3 ⊴ Γ.
By construction, Y/Ru(G

o) is the centre of Go/Ru(G
o); in particular, its finite sub-

group Γ2/Γ3 is contained in a torus of the reductive group Go/Ru(G
o), thus it is abelian

of order not divisible by char(K). Since Ru(G
o) is unipotent, there is a central normal

series whose quotients are isomorphic to algebraic subgroups of Ga [26, Prop. 14.21];
hence, since Γ3 ≤ Ru(G

o) is finite, either it is trivial (if char(K) = 0) or it is a p-group
(if char(K) = p > 0).

It remains to deal with Γ/Γ2. If I(G) = ∅, by definition Go/Ru(G
o) is equal to its own

centre, so we set Γ1 := Γ2 and the quotient Γ/Γ2 has size ≤ |G/Go| ≤ deg(G). Assume
from now on that we have fallen into case (b) of Lemma 7.1. Therefore, char(K) = p > 0
and (Γ ∩Go(K))/Γ2 is a subgroup of the nonempty product R =

∏
i∈I πi(Γ ∩Go(K)),
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for which we know that ∏
i∈I

[GFi
i , GFi

i ] ≤ R ≤
∏
i∈I

GFi
i

and that each factor [GFi
i , GFi

i ] is a finite simple group of Lie type of characteristic

p. The commutator [R,R] must then be equal to the product of the [GFi
i , GFi

i ] and,
by a folklore consequence of Goursat’s lemma (see [1, Prop. 3.3]), if we call Γ1 :=
[Γ∩Go(K),Γ∩Go(K)]Γ2 then Γ1/Γ2 must be isomorphic to the product of some of the

[GFi
i , GFi

i ]. By construction Γ1⊴Γ, since Γ∩Go, its commutator, and Γ2 are all normal
in Γ. Finally,

|Γ/Γ1| ≤ |G/Go|
∏
i∈I
|GFi

i /[GFi
i , GFi

i ]| ≤ deg(G)(r + 1)d ≤ nn223n10

by (4.1). □
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