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Abstract. Analysing learned concepts for PDE-based parameter identifi-
cation problems requires input from different research areas such as inverse
problems, partial differential equations, statistics and mathematical founda-
tions of deep learning. This workshop brought together a critical mass of
experts in the various field. A thorough mathematical theory for PDE-based
inverse problems using learned concepts is within reach in the coming few
years and the inspiration of this Oberwolfach meeting will substantially in-
fluence this development.
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Introduction by the Organizers

This workshop was centered at the intersection of three research areas (inverse
problems, partial differential equations, mathematical foundations of deep learn-
ing) with the aim of developing a solid mathematical theory for deep learning
concepts for PDE-based inverse problems.

Such parameter identification problems for partial differential equation are com-
monly regarded as the toughest challenges in inverse problems. To be more precise,
we may for example consider second order partial differential equations, which de-
pend on a parameter function λ:

(1) N (u,∇u,∆u, ut;λ) = 0

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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(2) λ : Ω→ IR

In this general notation N encodes the differential equation as well as boundary
conditions.

We always assume, that the parameter-to-state operator F , which maps a given
parameter λ to the solution of the PDE, is well-posed. I.e. we assume a function
space setting such that the solution u of the PDE is unique and depends continu-
ously on the parameter λ.

We will consider the following hierarchy of problems:

• Forward problem solving a single PDE: given λ, compute u = F (λ)
• Parametric studies: given many parameters λ ∈ XN , compute correspond-
ing u’s, i.e. evaluation of the parameter-to-state operator F
• Parameter identification (inverse problem): given a measured uδ or its
values Puδ under a measurement operator P , determine corresponding λ,
e.g. solve F (λ) ∼ uδ, i.e. the inverse problem posed by the parameter-to-
state operator.

The underlying PDE models, e.g. for climate modeling, molecular dynamics
or large scale engineering models for digital twins, are getting more and more
demanding requiring ever more computer power for their numerical simulation
and solution.

This is already true for solving single PDE systems, but it is even more obvious
for parametric studies, where several parameter settings need to be evaluated.

Classical numerical schemes such as finite elements are well established and ef-
ficient - but not to the extent needed for large scale parametric studies of complex
PDEs. Hence, these methods definitely need to be reconsidered when attempt-
ing parameter identification problems, which typically are solved by generalized
gradient descent iteration schemes requiring even more forward evaluations of the
PDE.

Learned concepts are a natural choice for efficient computations in this contexts
and they have been investigated intensively over the past few years. They pre-
dominately either focus on deep learning for general inverse problems or on deep
learning for fast PDE solvers and related parametric studies.

However, there is much less mathematical theory addressing deep learning con-
cepts for PDE-based parameter identification problems (inverse problems). One
reason is certainly the complexity of the problem: even if the PDE itself is linear,
the related parameter identification problems and parameter-to-state operators
are non-linear. More importantly, the inversion process is unstable or ill-posed
and needs specific measures for regularization. Hence, well studied deep learn-
ing concepts for PDE forward solvers or other stable operator settings fail when
applied to inverse problems. Such problems can only be solved in a combination
of model driven expert knowledge of the underlying PDE in combination with
specific network architectures.
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Contributions of this workshop. The talks covered a broad spectrum of dif-
ferent aspects concerning learned methods for PDE-based parameter identification
problems.

There were substantial contributions on the theoretical side, e.g. operator learn-
ing without the adjoint (Nicolas Boullé), convergence proofs for neural network
solvers including discretization (Bangti Jin), linear algebra networks for linear
inverse problems (Otmar Scherzer), novel theorems for operator approximation
(Janek Gödeke), learning of regularizers (Giovanni Alberti), bilevel optimization
(Juan Carlos De los Reyes), Lipschitz duality (Yury Korolev) or general approxi-
mation results for specific architectures (Chris Budd, Nick Heilenkötter, Sebastian
Neumayer). In particular, estimates using Wasserstein metrics were discussed
in at least two talks (Gabriele Steidl, Lisa Kreusser). There were several talks
connecting mathematical foundations of deep learning with applications, such as
analyzing the approximation properties, directly learning the inverse (Maarten de
Hoop) of learning priors for Bayesian inverse problems in imaging (Thomas Pock)
or using feature vectors (Felix Dietrich). In addition several talks focussed on
novel concepts (Christina Runkel, Alexander Denker, Johannes Hertrich, Jianfeng
Ning, Eldad Haber, Davide Murari) as well as challenging applications such as
modeling turbulence, travel-time tomography or photo-acoustic tomography (Sil-
via Barbeiro, Bastian Harrach, Yolanne Yi Ran Lee, Hanno Gottschalk, Xiaoqun
Zhang, Andreas Hauptmann, Tatiana Bubba).

Overall, this was a most stimulating workshop with plenty of ongoing discus-
sions during the extended lunch breaks as well as long evenings using the most
convenient facilities in Oberwolfach. In particular, this workshop has strengthened
the paradigm, that truly novel developments in this field need a combination of
statistical data analysis with classical analytical knowledge and motivation by real
life applications.

Hence, we believe that a thorough mathematical theory for PDE-based inverse
problems using learned concepts will emerge in the coming few years and that the
inspiration of the Oberwolfach meeting will substantially influence future research
in the field.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Ober-
wolfach Foundation for supporting the participation of junior researchers.
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Alexander Denker (joint with Željko Kereta, Simon Arridge)
Extending neural operator with Laplacian eigenfunctions for
arbitrary domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Felix Dietrich
Solving PDE-related inverse problems with random feature models . . . . . 27
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Abstracts

Representation equivalence for alias-free operator learning

Rima Alaifari

(joint work with Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonić,
Roberto Molinaro, Siddhartha Mishra)

In recent years, neural operators have become a popular tool aimed at learn-
ing a map between infinite-dimensional spaces. They consist of layers of linear
integral operators followed by non-linear activation functions. Since the actual
learning uses data, it is carried out in finite dimensions and requires a link to the
infinite-dimensional setting. One way to establish this link is through discretiza-
tion invariance [3] as in Fourier Neural Operators for example. It ensures that the
discretized maps tend to an operator mapping between infinite dimensions as the
discretization becomes finer.

In this work, we observe that discretization invariance is an asymptotic prop-
erty and provide numerical eivdence of significant discrepancies (through aliasing
errors) when such architectures are tested at resolutions that differ from the train-
ing resolution. We develop a novel framework of Representation equivalent Neural
Operators (ReNOs) [1], that rather guarantees a continuous-discrete equivalence.
Our construction is based on utilizing frame theory [2] and generalizing aliasing
errors to operators. This way, unique and stable reconstruction of the infinite-
dimensional operator from its discretizations can be guaranteed. By connecting
all discretizations to the same operator between infinite dimensions, any two dis-
cretizations are also tied together uniquely and stably. Numerical experiments
further highlight that there is no trade-off between the expressivity of the network
and its ReNO property. As a novel ReNO architecture we propose Convolutional
Neural Operators [4], that achieve state-of-the-art results on a large set of bench-
mark PDEs.

Alias-Free Framework for Operator Learning. Let U be an operator be-
tween separable Hilbert spaces H and K, and let Ψ = {ψi}i∈I and Φ = {ϕj}j∈J
be frames [2] forMΨ := span{ψi : i ∈ I} ⊆ H andMΦ := span{φj : j ∈ J} ⊆ K,
respectively. The synthesis operators TΨ and TΦ map sequences of frame coeffi-
cients back to functions in the respective Hilbert space, i.e. TΨ({ci : i ∈ I}) =∑
i∈I ciψi and TΦ({cj : j ∈ J}) =

∑
j∈J cjφj . Hence, out of a discrete realization

u : ℓ2(I)→ ℓ2(J) of the operator U one can construct an operator mapping from

H to K through TΦ ◦ u ◦ T †
Ψ : H → K, where T †

Ψ denotes the pseudoinverse of TΨ.
We can now introduce the operator aliasing error ǫ(U, u,Ψ,Φ)

ǫ(U, u,Ψ,Φ) := U − TΦ ◦ u ◦ T †
Ψ.

It measures the discrepancy between U and its discrete implementation u, with
the corresponding scalar error given by the operator norm ‖ǫ(U, u,Ψ,Φ)‖. If this
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error is zero, the operator U can be perfectly represented by the discrete map u,
ensuring continuous-discrete equivalence (CDE).

The concept of Representation equivalent Neural Operators (ReNOs) requires
an extension of the above. On the level of discretizations, we will consider u
more broadly as a map that takes in any pair of frames (Ψ,Φ) for any subspaces
MΨ ⊆ H,MΦ ⊆ K and outputs a mapping from ℓ2(I) to ℓ2(J):

u(Ψ,Φ) : ℓ2(I)→ ℓ2(J).

In other words, u must change with the choice of discrete representations Ψ and
Φ in order to eliminate aliasing errors. We then say that (U, u) is a ReNO if, for
any pair (Ψ,Φ) with

(1) DomU ⊆MΨ and RanU ⊆MΦ

there is no aliasing error, i.e. ǫ(U, u,Ψ,Φ) = 0. Condition (1) simply ensures
that only those frame sequences are considered, that can actually represent the
domain and range of U , respectively. This definition can be straightforwardly
extended to a layerwise instantiation, by ensuring zero aliasing error at every
layer. As a consequence of the ReNO condition, any two discrete representations
of the operator are equivalent (cf. Fig. 1), preserving the underlying structure
in function spaces. We note that one can also consider ε-ReNOs, where a small,
controlled amount of aliasing is permissible, i.e. ‖ǫ(U, u,Ψ,Φ)‖ ≤ ε, for all Ψ and
Φ satisfying (1).

ℓ2(I) ℓ2(J)

H K

ℓ2(I ′) ℓ2(J ′)

u(Ψ,Φ)

TΦT †

Ψ

U

T †

Φ′u(Ψ′,Φ′)
TΨ′

Figure 1. Property of ReNOs: discrete representations for dif-
ferent discretizations are equivalent.

Classical Convolutional Neural Networks (CNNs) and Fourier Neural Operators
(FNOs) do not satisfy the ReNO condition due to inconsistencies across different
discretizations. The discrete convolution operation in CNNs does not preserve the
continuous-discrete equivalence. For FNO, the issue lies in the nonlinear activation
function: the considered function space is that of bandlimited functions throughout
the network. When a pointwise nonlinearity σ, such as the ReLU or GeLU is
applied to a function f , then in general, σ(f) is no longer bandlimited and has an
effective bandwidth significantly larger than that of f .

In contrast, Convolutional Neural Operators (CNOs) take this into account
by upsampling the function before applying a nonlinear activation function (fol-
lowed by a downsampling operation to control the dimensionality throughout the
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network). CNOs take the form of a U-Net architecture and convolutions are im-
plemented in the original space without passing to the Fourier domain (see [4] for
details and tests on a wide range of benchmark PDEs).

Outlook. An interesting future direction is to develop and analyze quantitative
measures of error in ReNOs. One source of error lies in extending the concept
to ε-ReNOs, providing a nuanced approach to operator learning with controlled
aliasing. Another error source is given by the leap from discrete to finite repre-
sentations. If DomU and RanU are infinite-dimensional, the index sets I and J
will be infinite as well. By using finite approximations in practice, an approxima-
tion error is introduced. Controlled error bounds are an important aspect moving
forward.

Another relevant question is that of identifying combinations of suitable func-
tion spaces and activation functions so that the space is closed under the action of
the activation function. More generally, identifying pairs of function spaces B1, B2

and activation functions σ for which σ(B1) ⊆ B2 could be helpful in designing new
architectures that satisfy the ReNO property.

References
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Learning (simple) regularizers for inverse problems

Giovanni S. Alberti

Inverse problems. We consider a linear inverse problem of the form

y = Ax+ ε,

where A : X → Y is a bounded linear map between the separable Hilbert spaces
X and Y , so-called forward map, ε represents noise, y are the noisy measurements
and x is the unknown to be recovered. In a well-established Bayesian setting, both
x and ε are treated as random variables [5]. The ill-posedness of the problem comes
from the fact that A−1 is typically an unbounded operator. Classical examples
of inverse problems of this form are deconvolution, for which A is a convolution
operator, and computed tomography, for which A is the Radon transform. These
problems are intrinsically infinite-dimensional, which motivates the need to use
function spaces for modeling.
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We consider classical regularization techniques, in which the recovery of x is
performed by minimizing a functional of the form

min
x∈X

d(Ax, y) + J(x),

where d(Ax, y) is the data fidelity term, and depends on the statistics of the noise.
Here, the focus is on the regularization term J : X → R, which should encode prior
information available on the solution x. We consider the problem of learning the
optimal J , within a fixed family of regularizers, from training data [4].

Learning the optimal Tikhonov regularizer. In [1], the focus is on general-
ized Tikhonov regularization, namely,

J(x) = ‖B−1(x − h)‖2X ,
where h ∈ X is a reference signal and B : X → X is positive and bounded. Intu-
itively, B−1 can be regarded as a generalization of a differential operator. Under
suitable assumptions, it is possible to prove that the optimal regularization pa-
rameters, namely those minimizing the mean squared error of the reconstruction,

are given by h∗ = µx and B∗ = (Σx)
1
2 , where µx and Σx are the mean and the

covariance of the random variable x, respectively. Furthermore, generalization
estimates are derived, for both a supervised learning approach based on empiri-
cal risk minimization, and for an unsupervised learning approach, based on the
approximation of µx and Σx by using the corresponding empirical counterparts.

Learning the optimal ℓ1 regularizer. The work [2] extends the results of [1]
by replacing the generalized Tikhonov term with a sparsity promoting regularizer
of the form

J(x) = ‖B−1x‖ℓ1 ,
where B : ℓ2 → X can be interpreted as a change of basis. The ℓ1 norm is used to
promote sparsity. In this case, it is not possible to give a closed form expression
of the optimal regularizer. Nevertheless, by using the Hölder continuity of the
minimizer as a function of B, a result of independent interest, we are able to prove
generalization bounds under general assumptions on the class of operators B.

Sparse regularization via Gaussian mixtures. In the work [3], we propose
a probabilistic sparsity prior formulated as a mixture of degenerate Gaussians,
capable of modeling sparsity with respect to a generic basis. Under this premise,
we design a neural network that can be interpreted as the Bayes estimator for
linear inverse problems. Additionally, we propose both supervised and unsuper-
vised training strategies to estimate the parameters of this network. To evaluate
the effectiveness of our approach, we conduct a numerical comparison with com-
monly employed sparsity-promoting regularization techniques, namely LASSO,
group LASSO, iterative hard thresholding, and sparse coding/dictionary learning.
Notably, our reconstructions consistently exhibit lower mean square error values
across all 1D datasets used in the comparisons, even in cases where the datasets
significantly deviate from a Gaussian mixture model.
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Mathematical models in elastography

Silvia Barbeiro

1. Introduction

Assessing the mechanical properties of biological tissue provides valuable insights
for disease diagnosis and monitoring, as tissue stiffness has long been recognized
as a key biomarker for certain diseases.

Optical coherence elastography (OCE) is an innovative biomedical imaging tech-
nique that uses optical coherence tomography (OCT) to form pictures of biolog-
ical tissue in order to assess its biomechanical properties. When a mechanical
load is applied to the tissue, it causes a deformation response. There are various
implementations of OCE, differing in the type of mechanical loading applied to
the tissue, the OCT scanning protocol, and the method used to measure tissue
deformation, while all approaches rely on detecting tissue deformation through
sequential OCT scans.

Mathematical modelling in elastography comprises two main steps. The first
step focuses on using OCT images for the reconstruction of the displacement field
in order to estimate the mechanical response of tissue under stress. The second
step utilizes this mechanical response estimation to reconstruct the tissue’s internal
mechanical properties.

The main challenges in this line of research involve the development of efficient
methods, capable to deal with noisy data, to recover the mechanical properties
that define the elastic medium, that is to solve the elastography inverse problem.
Nevertheless, the development of robust methods for computing tissue displace-
ments in optical coherence elastography (OCE) is also crucial, as they significantly
influence the accuracy of estimating tissue elastic properties.

2. Computing the displacement field

There are two predominant techniques that can be used to obtain tissue displace-
ments, which are described in [10]: speckle tracking and phase-resolved detection.
Speckle-tracking methods rely on intensity information and, as a result, gener-
ally require large displacements. In contrast, phase-resolved measurements utilize
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phase difference information, offering nanoscale displacement sensitivity. In phase-
resolved measurements considering a laser source, the phase difference ∆ϕ is used
to estimate the tissue displacement uz [10]:

uz = ∆ϕ
λ0
4πn

,

where λ0 is the center wavelength of the laser and m is the refractive index of the
sample.

One can find various methods for estimating ∆ϕ in the literature, each offering
different levels of accuracy and sensitivity to noise. The recente work [5] proposes
a methodology that combines different phase-difference estimates such that the
error can be minimized.

3. Inverse elastography problem

Now, we focus on the numerical solution of the inverse elastography problem, which
consists of determining the set of parameters that characterize the mechanical
properties of the medium utilizing the knowledge of the excitation field at the
boundary and the displacement field at a grid of points within the domain.

Under the assumption of time-harmonic excitations in the linear elasticity model,
the displacement field exhibits a time-harmonic form [4, 6]. In this case, the fol-
lowing Lamé equation governs the elastic displacement field u in a domain Ω

µ∆u+ (λ+ µ)∇∇ · u+ ω2ρu = 0 in Ω,

where ρ is the material density, ω is the frequency and the Lamé constants, µ and
λ, are related to Young’s Modulus, E, and Poisson’s ratio, υ, by

µ =
E

2 (1 + υ)
and λ =

υE

(1 + υ) (1− 2υ)
.

To reflect the mechanical loading over the boundary, we consider a traction bound-
ary condition.

In a more general setting, the Navier-Cauchy equation that governs the dynamic
response of an isotropic, homogenous, Kelvin-Voigt viscoelastic material with small
displacement assumption can be considered [8]:

ρ
∂2u

∂t2
= µ∆u+ (λ+ µ)∇∇.u+ η∆

∂u

∂t
+ η∇∇.∂u

∂t

in Ω×R+, where η is the shear viscosity. Heterogeneity and anisotropy can also be
introduced in the above models, which enable the simulation of complex materials
like biological tissues or composites.

Different methodologies can be used to obtain the numerical solution of the
above models, namely the finite element method [3, 9]. In [4] the method of
fundamental solutions was proposed for the numerical simulation of the mechanical
waves propagation and induced displacements in the human retina, assuming time-
harmonic excitations.

There are different approaches in the literature for the inverse elastography
problem in what concerns the definition of the function to be optimized. Some
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methods are based on minimizing the difference between the measured and sim-
ulated displacements [6, 11, 12]. In [7], the cost function represents not only
measures of the error in the displacement but also includes measures of the error
in the stress fields, the momentum balance, and the constitutive law. Differently,
in [2], the parameters that characterize the mechanical properties of the medium
are computed such that the given data solves the direct problem, with the advan-
tage that the objective function is convex and consequently the optimal solution
can be computed with a single iteration.

Deep learning methods for solving inverse problems have been intensively devel-
oped [1], demonstrating remarkable performance across various applications. For
the inverse elastography problem, approaches using neural networks has shown
promising results We refer to [7], where physics-informed neural netwoks are pro-
posed to infer the Lamé parameters λ and µ of a linear elastoestatic model. Re-
cently, in [9], neural networks are designed to characterize the spatial varying
mechanical properties of the medium in a elastodynamic model.
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Operator learning without the adjoint

Nicolas Boullé

(joint work with Diana Halikias, Samuel Otto, Alex Townsend)

There is a mystery at the heart of operator learning: how can one recover a non-
self-adjoint operator from data without probing its adjoint? Current practical
approaches suggest that one can accurately recover an operator while only us-
ing data generated by the forward action of the operator without access to the
adjoint [5]. However, naively, it seems essential to sample the action of the ad-
joint for learning solution operator of time-dependent partial differential equations
(PDEs) [3]. This motivates a fundamental question in numerical linear algebra:
can one approximate a non-symmetric low-rank matrix without sketching its ad-
joint?

In this work, we explore the limits of adjoint-free low-rank matrix recovery and
propose an approach that could help analyze the behavior of structured matrix
recovery algorithms. Then, we show that one can approximate a family of non-self-
adjoint infinite-dimensional compact operators via projection onto a Fourier basis
without querying the adjoint. We apply the result to recover Green’s functions of
elliptic partial differential operators and derive an adjoint-free sample complexity
bound. While existing infinite-dimensional numerical linear algebra theory justifies
low samplemcomplexity in operator learning [2, 4], ours is the first adjoint-free
analysis that attempts to close the gap between theory and practice [1].

Limits of adjoint-free low-rank matrix recovery. We start in the funda-
mental setting of recovering a low-rank matrix by querying the map x 7→ Fx but
without access to x 7→ F ∗x. We show that querying x 7→ F ∗x is essential for
recovering F and prove rigorous guarantees on the quality of the reconstruction in
terms of how close F is to a symmetric matrix. Thus, we conclude that without
prior knowledge of the properties of the adjoint, one must have access to its action.

We assume that F is δ-near-symmetric (i.e., its left and right singular subspaces
are δ-close), but we only have access to partial information regarding the symmetry
of F , namely that F is ǫ-nearsymmetric for some ǫ ≥ δ, and sketching constraint
FX . To quantify the resulting uncertainty about F , we define the set of possible
matrices one could recover given this prior knowledge as

ΩǫF,X = {A ∈Mn(C) : rank(A) = k,AX = FX, ∃Q ∈ O(k), ‖U∗
AVA −Q‖2 ≤ ǫ},

where A = UASAV
∗
A is the singular value decomposition of A, O(k) is the group of

k×k orthogonal matrices, and ‖ ·‖2 denotes the spectral norm. Hence, given some
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tolerance ǫ,ΩǫF,X is the set of ǫ-near-symmetric matrices that can be returned by
any low-rank recovery algorithm when approximating F , such as the randomized
SVD [6, 7] or the Nyström method [8].

The size of ΩǫF,X is measured by its diameter in the spectral norm and deter-
mines the maximum accuracy of any reasonable reconstruction. If the diameter
is large, one cannot estimate F accurately, as one cannot distinguish between
any candidate matrix in ΩǫF,X . This is because any matrix in ΩǫF,X satisfies the
sketching constraint and is near-symmetric. On the other hand, a small diameter
guarantees the fidelity of the reconstruction. We provide sharp upper and lower
bounds on the size of ΩǫF,X , i.e., determine how far apart any two matrices in ΩǫF,X
can be from each other, with respect to ǫ, which measures our prior knowledge
of F ’s symmetry. The upper and lower bounds on the diameter of ΩǫF,X reveal
that the uncertainty about F given queries of its action is directly related to the
uncertainty about the symmetry of its left and right singular subspaces. For ex-
ample, our ability to recover a symmetric rank-k matrix using k ≤ s < n queries
is fundamentally limited by our prior knowledge about the proximity of Range(F )
and Range(F ∗) because there are many asymmetric matrices with the same rank
that satisfy the same sketching constraints. This result is a fundamental limita-
tion of adjoint-free low-rank matrix recovery in numerical linear algebra and has
implications for operator learning.

An adjoint-free operator learning approach. To provide an operator learn-
ing approach that does not need access to the adjoint, we exploit regularity results
from PDE theory to estimate the range of the adjoint of the solution operator.
This allows us to prove the first guarantees on the accuracy of adjoint-free ap-
proximations. Our key insight is to leverage the favorable properties of a prior
self-adjoint operator, such as the Laplace–Beltrami operator, to use as an oper-
ator preconditioner in the approximation problem. In particular, we query the
action of the solution operator on the eigenfunctions of the prior self-adjoint oper-
ator, yielding an approximation with an error that decays at a rate determined by
the eigenvalues of the prior. This is remarkable because common operator learn-
ing techniques always seem to plateau; yet, we construct a simple algorithm that
provably converges.

The effect of non-normality on sample complexity. We derive a sample
complexity bound for our algorithm when applied to second-order uniformly-
elliptic PDEs that are perturbed away from self-adjointness by lower-order terms.
We show that for small perturbations, our bound on the approximation error grows
linearly with the size of the perturbation, and we conjecture that this linear growth
continues for large perturbations as well. This aspect of the error growth is also
present in common operator learning techniques, as our numerical experiments
illustrate. With respect to our operator learning algorithm, this means that the
number of samples required to achieve a fixed error tolerance grows algebraically
with the perturbation size.
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Learned proximal operators meets unrolling in imaging
inverse problems

Tatiana A. Bubba

(joint work with Subhadip Mukherjee, Luca Ratti, Andrea Sebastiani)

Consider the linear inverse problem:

(1) m = Au† + ǫ

where m ∈ R
d are the measurements, A : Rn → R

d is the forward operator, ǫ ∈ R
d

such that ‖ǫ‖ ≤ δ is the noise and u† ∈ R
n is an image to be recovered (from,

e.g., tomographic data [8]). The Maximum a Posteriori (MAP) formulation allows
to find an approximate solution of (1) by seeking a solution of the minimization
problem (derived under the assumption ǫ ∼ N (0, σ2I)):

(2) argmin
u

{
λ

2
‖Au−m‖22 + φ(u)

}
,

where λ > 0. The role of φ is that of a regularizer, i.e., it should address ill-
posedness of (1), enforcing a priori regularity of the solution, and should in general
be linked to the underlying image probability distribution, as well as maintaining
the mathematical tractability of the functional in (2) to aid the application of
efficient numerical optimization schemes. A prominent example for the class of
imaging inverse problems is that of sparsity-promoting regularization solved via
the Iterative Soft-Thresholding Algorithm (ISTA) [5].

In fact, ISTA is a special instance of the Proximal Gradient Descent (PGD)
method which, starting from the initial guess u(0) ∈ R

n, computes a solution
of (2) by forming the sequence (u(k))k∈N defined by:

(3) u(k+1) = proxγφ(u
(k) − γ∇f(u(k))),
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where f(u) = λ
2 ‖Au−m‖22, γ ∈ R is a step size and proxψ(·) denotes the proximity

operator associated with a (weakly) convex function ψ. A convergence result, along
with a linear convergence rate, of the sequence in (3) can be found in, e.g., [2].
The convergence rate can be improved by considering an extrapolated version of
PGD:

(4)

{
u(k+1) = proxγφ(z

(k) − γ∇f(z(k))),
z(k+1) = u(k+1) + αk+1(u

(k+1) − u(k)),
where (αk)k∈N forms the sequence of extrapolation parameters, which is crucial to
determine the (accelerated) convergence properties of the extrapolated scheme [2].

In recent years, model-based strategies for solving ill-posed inverse problems,
such as (2)-(3) or (2)-(4), have been successfully integrated with data-driven ap-
proaches, providing satisfying numerical results and insights into major theoretical
and practical questions [1, 3]. A notable example, among the self-supervised tech-
niques, is that of Plug-and-Play (PnP) [10], which can be deployed by replacing
the proximity operator in algorithms like (3) or (4) with a denoiser Dσ:

(5) u(k+1) = Dσ(u
(k) − γ∇f(u(k))),

where Dσ is separately trained using pairs (ui, ui + ηi) of clear and noisy images,
with ηi ∼ N (0, σ2I). Under suitable assumptions on the denoiser (e.g., Gradient
Step denoiser), it is possible to guarantee that the update in (5) implicitly defines
a variational regularization strategy (that is, Dσ is the proximity operator of a
weakly convex φσ), and ensure its (linear) convergence [7].

Another paradigm for integrating model and data-based techniques is provided
by algorithm unrolling (or deep unfolding), a supervised learning approach con-
sisting of unfolding the successive iterations of an iterative scheme, such as PGD
or ISTA [6]. This idea has been widely explored in the context of inverse problems
in imaging. For instance, in [4] the authors proposed a novel convolutional neural
network, called ΨDONet, designed starting from the unrolled iterations of ISTA
by adding a learnable “perturbation” which acts as an operator correction:

(6) u(k+1) = proxγkφ(u
(k) − γk∇f(u(k))− βkΛζku(k)),

where the ζk’s are the CNN filters components for each layer k, which are learned
end-to-end together with the parameters βk and γk. In [4], ΨDONet was applied
to the inverse problem of limited angle tomography showing that the CNN struc-
ture can be informed by the convolutional nature of the X-ray transform [9], thus
inducing a “microlocal regularization” that smooths away the singularities charac-
terizing this imaging problem. The convergence analysis of the sequence in (6) is
also provided in [4], relying on classical results on the convergence theory of ISTA.

In this talk, some recent results on combining the Gadrient-Step (GS) denoiser
formulation of a Plug-and-Play scheme with the unrolling framework of ΨDONet
are presented. Particular effort is put into the efficient formulation of the al-
gorithm, by introducing an extrapolation strategy in the unrolled scheme which
allows to reduce the computational resources necessary to compute the reconstruc-
tion while preserving the theoretical guarantees. In detail, the first part of the talk
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is devoted to the convergence analysis of the following extrapolated PnP-PGD up-
date:

(7)

{
u(k+1) = Dσ(z

(k) − γ∇f(z(k))),
z(k+1) = u(k+1) + αk+1(u

(k+1) − u(k)).
Linear convergence of the sequence in (7) to a stationary point of Fσ(u) := f(u)+
φσ(u) is guaranteed under suitable assumptions on the denoiser: in particular,
it requires Dσ = I − ∇gσ (with gσ(u) =

1
2‖u − Nσ(u)‖2 using a neural network

Nσ) to be a GS denoiser and to ensure that the Lipschitz constant Lgσ of ∇gσ is
bounded above by 1. These requirements are in line with the related literature
on PnP extrapolated schemes (cf., e.g., [7]). Guaranteeing Lσ < 1 is not simply
a theoretical requirement but turns out to be essential especially in the context
of imaging problems with incomplete data, such as limited data tomography. To
strike a balance between the expressivity and efficiency for the denoiser Dσ, a
shallow network (e.g., composed of two layers) is employed in the numerical tests.
This allows a precise estimate of Lσ, which is controllable during training by weight
normalization.

In the second part of the talk, the extrapolated PnP strategy in (7) meets the
deep unfolded framework of ΨDONet, by studying the convergence analysis of the
following update:

(8)

{
u(k+1) = Dσk

(z(k) − γk∇f(z(k))− βkΛζku(k)),
z(k+1) = u(k+1) + αk+1(u

(k+1) − u(k)).
Effectively, the iteration above turns the (extrapolated) PnP algorithm into a
deep unfolded architectures: in practice, the PnP iteration is truncated to a fixed
number of iterations so that the denoiser Dσk

and the CNN Λζk are jointly trained
end-to-end in a supervised fashion. Linear convergence of the sequence in (8) to
a stationary point of the same data-driven regularization functional Fσ = f(u) +
φσ(u) from the first part of the talk is guaranteed under similar assumptions on
the denoiser Dσ (including Lσ < 1) and with the additional requirement that the
intensity of the ΨDO correction Λζk decays sufficiently fast as k → ∞. It is also
possible to prove a stability result of the learned reconstruction method in (8),
relevant to provide sample error estimates and study its generalization properties.

The advantages of the update (8) are demonstrated in the context of limited
angle tomography. Even though the convergence analysis only ensures a linear
convergence rate, in practice it can be observed that the extrapolation step in (7)-
(8) allows to reach a more sensible solution by using a lower number of layers (i.e.,
unrolling a smaller number of iterations). In the context of limited angle tomog-
raphy, enabling the operator correction in (8) encoded by ΨDONet is essential to
smooth away the singularities, effectively improving the reconstruction quality.
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Adaptivity, and expressivity in FKS and neural network
approximations

Chris Budd

(joint work with Simon Arridge, Teo Deveney, Lisa Kreusser)

In this talk consider the problem of univariate nonlinear function approximation
using shallow neural networks (NN) with a rectified linear unit (ReLU) activation
function. We show that the L2 based approximation problem is ill-conditioned and
the behaviour of optimisation algorithms used in training these networks degrades
rapidly as the width of the network increases. This can lead to significantly poorer
approximation in practice than we would expect both from the theoretical expres-
sivity of the ReLU architecture and with traditional methods such as univariate
Free Knot Splines (FKS). This impacts on the accuracy of using these methods in
the context of a PINN to solve a differential equation, leading to poor convergence
in this case.

Univariate shallow ReLU,NNs and FKS span the same function space, and
thus have the same theoretical expressivity. However, the FKS representation,
remains well-conditioned as the number of knots increases. We leverage the the-
ory of optimal piecewise linear interpolants to improve the training procedure for
a ReLU,NN. Using the equidistribution principle, we propose a two-level proce-
dure for training the FKS by first solving the nonlinear problem of finding the
optimal knot locations of the interpolating (I)FKS, and then the nearly linear,
well-conditioned, problem of finding the optimal weights and knots of the FKS.

The training of the FKS gives insights into how we can train a ReLU NN
effectively to give an equally accurate approximation. To do this we combine the
training of the ReLU NN with an equidistribution based loss to find the breakpoints
of the ReLU functions, this is then combined with preconditioning the ReLU, NN
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approximation (to take an FKS form) to find the scalings of the ReLU functions.
This procedure leads to a fast, well-conditioned and reliable method of finding an
accurate shallow ReLU,NN approximation to a univariate target function. We test
this method on a series of regular, singular, and rapidly varying target functions
and obtain good results, realising the expressivity of the shallow ReLU network in
all cases. We then extend our results to deeper networks.

Approximating the nonlinear inverse by neural operators

Maarten V. de Hoop

(joint work with Nikola B. Kovachi, Matti Lassas, Nicholas H. Nelsen,
Andrew M. Stuart)

We give a general procedure for approximating the solution operators of inverse
problems with neural operators. We present an abstract framework with conditions
but focus on studying Calderón’s inverse conductivity problem in dimension two,
on a bounded domain, Ω, with smooth boundary, as a concrete example. The
main contribution of this work is an approximation theorem for the inversion
operator that holds even outside of the range of the forward operator making
use of the Benyamin-Lindenstrauss extension theorem. To obtain this result, we
consider the kernel of the Neumann-to-Dirichlet (NtD) map, identified as a Hilbert-
Schmidt operator, as the data. The inversion operator maps this kernel to the
conductivity. The conductivity belongs to the set requiring that it is has a finite
BV norm. This set contains discontinuous conductivities; its image under the
forward map is compact in L2(∂Ω×∂Ω), which follows from the continuity of this
map. By interpolating the operator norm using Hilbert-Schmidt truncations we
get a forward continuity result for the kernels. We show that the extension of the
inversion map preserves the (logarithmic) modulus of continuity.

In the framework of learning the inverse, the noise in the NtD kernel must be
small (based on the logarithmic stability of the extension) enough. We then give
a universal approximation theorem with certain neural operators with explicit
expression rates: Our quantitative rates relate the dependencies of the depth,
width and rank of the neural operations in terms of the radius of compact sets,
the modulus of continuity and the desired approximation error. By assuming tanh
activation functions, the neural operator takes values in the same Sobolev space as
the nonlinear operator it approximates by Meyers-Serrin theorem. We introduce
nonlocal, integral kernel operator contributions in the first and last layers only.
Despite the typical inclusion of (infinite-rank) integral kernel operators in the
hidden layers of neural operators, this is not necessary for the constructed class of
neural operators to be universal approximators. Earlier work on out of distribution
risk bounds upon introducing stochastic depth (J.A. Lara Benitez, T. Furuya, F.
Faucher, A. Kratsios, X. Tricoche & M.V. de Hoop, 2024) can adapted to these
results.
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Bilevel learning for PDE inverse problems

Juan Carlos De los Reyes

In recent years, novel optimization ideas have been applied to several inverse prob-
lems in combination with data-driven approaches, to improve the inversion by
optimally choosing different parameters and quantities of interest. A rigorous
framework to deal with these types of problems is bilevel optimization. Within
this, the model-based inverse problem is considered as lower-level instance, while
on the upper level a data-driven loss functional is minimized, usually considering
a training set to learn from.

If the lower-level instance corresponds to a PDE inverse problem and a sin-
gle training pair (utrue, yobs) is considered, the bilevel model for optimizing the
weight α ∈ Rn in front of the regularizer can be mathematically formulated in the
following form:

minimize
α∈[αa,αb]⊂Rn

ℓ(u, utrue)(1a)

subject to





minimize
(y,u)

1

2

∫

S
|y − yobs|2 dx+ α · R(u)

subject to e(y, u) = 0,

(1b)

where utrue is a known parameter from which learning is possible, and ℓ is a loss
function; for instance, the square loss,

ℓ(u, utrue) := ‖u− utrue‖2L2 .

The vectors αa, αb, satisfying 0 < αa ≤ αb < ∞ componentwise, establish lower
and upper bounds for the parameters to be found.

Concerning the lower-level problem (1b), S is a subset of the domain Ω for
which observations are available, R : U → Rn is the regularizer that incorporates
prior information about the solution of the problem and yobs are observations of
the PDE state y ∈ Y . The PDE is expressed through the equation e(y, u) = 0,
where e : Y × U →W is assumed to be Fréchet differentiable, with Y, U,W being
reflexive Banach spaces. Moreover, it is assumed that ey (ȳ, ū) ∈ L(Y,W ) is a
bijection, to guarantee existence of an adjoint state (see, e.g., [2]).

Differently from classical imaging tasks, like denoising (see, e.g., [3]), if the
inverse problem is governed by a PDE, the bilevel optimization problem structure
becomes quite involved to be analyzed, as the convexity of the lower-level problem
gets lost in general [1, 5].

The existence of an optimal vector α can be proven under certain assumptions
about the PDE, namely, the uniqueness of its solution, the weak continuity of the
solution mapping, and the boundedness of the states corresponding to bounded
parameters. Additionally, the regularizer R is required to be coercive and weakly
lower semi-continuous.
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Another significant consequence of the loss of convexity in the lower-level in-
stance (1b) is that the bilevel problem cannot simply be reformulated as a single-
level one, by replacing the lower-level problem by its first-order necessary optimal-
ity condition. Instead, alternative strategies must be considered, incorporating
first- and second-order optimality conditions for the lower-level problem, which
remains an ongoing area of research.
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Extending neural operator with Laplacian eigenfunctions for
arbitrary domains

Alexander Denker

(joint work with Željko Kereta, Simon Arridge)

Neural operators learn mappings between infinite-dimensional function spaces with
applications for solving solution operators for differential equations [1]. In particu-
lar, neural operators are intended to address a major drawback of typical learning
approaches for differential equations by being discretisation-invariance, i.e., they
act on, and can adapt to, any discretisation of the input function. Fourier neural
operator (FNO) [2] is a particularly effective method that leverages the fast Fourier
transform (FFT) to learn transformations in the frequency domain. However, the
efficient implementation with the FFT constrains the FNO to rectangular domains
with a uniform discretisation, which limits possible applications.

Extensions of FNO methods to non-rectangular domains have been extensively
studied in recent years. A common method is to embed the irregular domain into a
larger rectangle [3]. Another line of work tries to first transform, or interpolate, the
data onto a regular grid before applying the FNO, cf. Geo-FNO [4] or GINO [5].
However, this introduces the additional challenge of learning, or defining, the
transformation between the irregular and the regular grid. DSE-FNO [6] replaces
the FFT with a non-uniform fast Fourier transform [7]. As an alternative to Fourier
features, in [9] the authors propose to use a decomposition into eigenfunctions of
the Laplace-Beltrami operator to learn neural operators on manifolds.

In a typical learning setting we have access to a dataset {(a(i), u(i))}Ni=1 arising
from some, possibly unknown, parametric PDE

(Lau)(x) = f(x), x ∈ Ω,
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with appropriate boundary conditions. The goal is to approximate the solution
operator Gf : a 7→ u with a neural operator Gθ. The basic building block of most
neural operators Gθ are iterative updates of the form

vt+1(x) = σ (Wvt(x) + [T vt](x)),
where vt : Ω → Rdv is the input function to the block, x ∈ Ω is the query point,
W ∈ Rdv×dv is a learnable weight matrix and σ is a non-linear activation function,
applied point-wise [1]. The operator T is chosen as a linear integral operator

(T vt)(x) :=
∫

Ω

κ(x, y)vt(y)dy.

Different choices of the kernel κ result in different neural operator architectures.
Prominently, FNO [2] imposes a stationary kernel κ(x−y). In this case, the integral
operator reduces to a convolution operator and can be expressed as (TFNOvt)(x) :=
F−1(F(κ) · F(vt))(x), where F is the Fourier transform.

Laplacian operator network. In this work we follow a different approach. We
assume that we have a symmetric and positive definite kernel κ ∈ L2(Ω×Ω). Then,
following Mercer’s theorem [10], there exists an orthonormal basis {ui}i with non-
negative scalars {λi}i, which can respectively be identified as eigenfunctions and
eigenvalues of the corresponding integral operator, such that the kernel can be
represented as

κ(s, t) =

∞∑

i=1

λiui(s)ui(t) ≈
M∑

i=1

λiui(s)ui(t).

Approximating the kernel with the firstM terms, we can define building blocks as

[Tλvt](x) :=
∫

Ω

M∑

i=1

λiui(x)ui(s)vt(s)ds =

M∑

i=1

λi〈ui, vt〉ui(x),

where λ = (λ1, . . . , λM )⊤ ∈ RM≥0 encodes learnable parameters. Using the opera-
tors

E : L2(Ω)→ R
M , E∗ : RM → L2(Ω)

u 7→ (〈u, u1〉, . . . , 〈u, uM〉)⊤ (c1, . . . , cM )⊤ 7→
M∑

i=1

ciui,

the building block can in compact notation be written as

[Tλvt](x) := E∗(λ ⊙ E(vt))(x).(1)

Mappings E can be generalised to frame analysis and synthesis operators, where
{u1, . . . , uM} can be linearly dependent. Recently [9], propose using eigenfunctions
of the Laplacian. We refer to this as the Laplacian Operator Network (LONE).
The eigenfunctions are given as the solutions of the Laplacian eigenvalue problem:

−∆u = λu in Ω,

u = 0 on δΩ,
(2)
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where u ∈ C2(Ω) is the eigenfunction and λ ∈ R the corresponding eigenvalue.
Note that in (2) we use Dirichlet boundary conditions, though other choices are
possible. Eigenfunctions can be computed analytically on simple domains, e.g., on
a rectangle the eigenfunctions are given as sines or cosines. In this case eigenfunc-
tion decomposition corresponds to the discrete sine/cosine transform for regularly
spaced data. Further, eigenfunctions on the sphere are given by spherical Bessel
functions, in which case our architecture directly recovers the spherical-FNO [8].

Numerics. To highlight the ability of LONE to deal with arbitrary domains, we
study the Darcy Flow on different domains Ω ⊂ R2 given by

−∇(a(x)∇u(x)) = f(x), x ∈ Ω

u(x) = 0 on Ω,

with diffusion coefficient a ∈ L∞(Ω) and forcing function f ∈ L2(Ω). The goal is
to learn the parameter-to-solution map G† : L∞(Ω) → H1

0 (Ω) for a fixed forcing
function f . We consider a similar setting to [2] with f ≡ 1.

We compare LONE against DSE-FNO [6] and Geo-FNO [4] on three different
domains: rectangle, disk and L-shape. For all neural operators we use a similar
number of coefficients and the same training setup. For both Geo-FNO and DSE-
FNO we use 12× 12 Fourier modes, 32 channels and 4 layers. For LONE we use
the first 128 eigenfunctions, 32 channels and 4 layers.

Table 1. Darcy Flow: Comparison for different domains Ω.

Rectangle Disk L-shape

AE RE [%] AE RE [%] AE RE [%]

Geo-FNO 2.56e−4 4.49 2.01e−3 3.19 7.49e−5 3.20
DSE-FNO 1.44e−4 2.50 1.85e−3 2.92 5.02e−5 2.13
LONE 6.09e−5 1.05 1.26e−3 2.02 2.83e−5 1.20

The absolute and the relative L1-error are presented in Table 1. For all domain
types we see that LONE performs better than FNO approaches. The training of
Geo-FNO was more unstable, as the transformation has to be learned in parallel,
resulting in a worse performance across all domains. Even for the rectangle, there
is a slight increase in the performance when using LONE. This can be explained
by the fact that Laplace eigenfunctions directly encode the Dirichlet boundary
conditions of the Darcy Flow. This highlights an interesting feature of LONE:
eigenfunctions can be constructed for a specific PDE.

These initial results suggest that for applications involving diverse and complex
geometries, LONE may offer a more robust solution. In future work, we want to
extend this framework to time-dependent PDEs and evaluate other choices instead
of the Laplacian eigenfunctions.
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Solving PDE-related inverse problems with random feature models

Felix Dietrich

We discuss a sampling scheme for a data-dependent probability distribution of the
parameters of neural networks. Such sampled networks are provably dense in the
continuous functions, and have a convergence rate in the number of neurons that
is independent of the input dimension. Using sampled neurons as basis functions
in an ansatz allow us to effectively solve partial differential equations. In compu-
tational experiments comparing training speed and accuracy, the sampling scheme
outperforms iterative, gradient-based optimization by several orders of magnitude.
For inverse problems involving parameter fields, sampled neurons offer expressive
basis functions for the unknown field as well as the PDE solution.

1. Introduction

The setting we discuss concerns inverse problems that are related to partial differ-
ential equations (PDEs) with unknown parameter (fields). The forward problem
(cf. (1), left) involves the solution of a parameterized, elliptic PDE, on which we
have worked on before [2, 8]. The inverse problem (cf. (1), right) starts with a
set of values obtained from a solution of this PDE where the parameter field is
unknown and to be determined.

Inverse problems pose a challenge for iterative training methods because the
loss landscape is typically more complicated to navigate. Owing to the prob-
lems associated with overfitting to noisy data and high sensitivity of accuracy
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Table 1. Forward vs. inverse problem settings. In this extended
abstract, we discuss the inverse problem case, learning parameter
fields for parameterized PDEs.

Solving equations Learning equations
Given PDE (parameters) Given solution

Solve PDE Solve inverse problem
To get solution To get PDE (parameters)

(Forward problem) (Inverse problem)

with respect to the number of neurons in PIELM, [6] propose a Bayesian physics-
informed extreme learning machine (BPIELM) to solve both forward and inverse
linear PDE problems with noisy data. [4] use distributed PINNs to solve inverse
problems for predicting scalar coefficients of PDEs. [7] propose VC-PINN for PDE
problems with variable coefficients. [5] discuss PINNs for full-waveform inversion
problems. [3] use ELMs to solve inverse PDE problems involving predictions of
scalar coefficients in PDEs and space-varying coefficients.

2. Constructing the neural network ansatz without
gradient descent

We parameterize the approximation of a solution with a neural network with one
hidden layer, activation function σ = tanh, M neurons, so that

(1) û() = C[Φ(x),1] = cσ(Wx⊤ + b) + c0.

Here, c ∈ R1×M and c0 ∈ R are real-valued parameters of the “last layer” of
the network, W ∈ RM×d and b ∈ RM×1 are internal parameters of the single
“hidden layer”, and C := [c, c0] ∈ R1×(M+1). The activation functions are stacked
in Φ = [φ1, . . . , φM ], where φm(x) = σ(wmx

⊤ + bm).
To obtain the parameters of the hidden layer, we employ a recently developed

sampling approach [1]. It is different from the extreme learning machine (ELM)
framework, where the weight and bias space is the space RM×d × [−η, η], where η
is sufficiently large. Our approach, the sampling where it matters (SWIM) frame-
work, follows our previous work [1] and restricts the weight space to Ω × Ω. We
construct each weight and bias pair wm, bm by taking two points x(1), x(2) ∈ Ω and

construct the weight and bias as wm = s1
x(2)−x(1)

‖x(2)−x(1)‖2 , bm = −〈wm, x(1)〉 + s2,

where s1, s2 are constants dependent on the activation function. In the unsuper-
vised setting of solving PDEs, one can choose pairs of collocation points from a
uniform distribution over all possible pairs of collocation points, which is the de-
fault setting in this paper, as we do not know the solution of the PDE beforehand.

The key benefits of randomly sampling basis functions include much shorter
training times and improved accuracy compared to PINNs (both from one to five
orders of magnitude, see [2, 8]), nearly matching the numerical state-of-the-art
solvers. Moreover, the advantages compared to the classical numerical solvers such
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as finite elements, finite differences, or finite volume approaches include spectral
convergence (i.e., requiring much fewer basis functions) without requiring a mesh,
making it much easier to implement on complex geometries.

The suitability of each of the proposed approaches depends on the true PDE
solution’s gradient distribution. We empirically observe that ELM performs bet-
ter in approximating solutions with shallow gradients, while SWIM (by sampling
weights from close data points) performs better in approximating solutions with
steep gradients.

3. Computational experiments

We now demonstrate the efficacy of our approach in solving an inverse problem
involving the estimation of an unknown coefficient field. Here, we repeat the ex-
periment from [3] and set up an inverse problem involving the Helmholtz equation
on Ω = [0, 1.5]2 with Dirichlet (fixed-value) boundary conditions, and a space-
dependent parameter field γ, so that

∆u(x)− γ(x)u(x) = f(x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω.
For x = [x1, x2]

T ∈ Ω ⊂ R2, the true solution u and coefficient field γ involved in
the PDE are defined by

γ(x1, x2) = 100

(
1 +

1

4
sin (2πx1) +

1

4
sin (2πx2)

)
,(2a)

u(x1, x2) =

(
5

2
sin

(
πx1 −

2π

5

)
+

3

2
cos

(
2πx1 +

3π

10

))

×
(
5

2
sin

(
πx2 −

2π

5

)
+

3

2
cos

(
2πx2 +

3π

10

))
.

(2b)

The forcing term is constructed by substituting these functions in the PDE.

Table 2. Summary of results for the computational experiment.

Architecture (2,400,1) for u and γ
Relative L2 error (PDE) 1.85e-2 ± 1.5e-2
Rel. L2 error (γ) 1.23e-2 ± 9.10e-3
Training time (s) 5.2e-2 ± 1.6e-2

We solve the Helmholtz equation involving the inverse space-dependent coef-
ficient field on the domain Ω = [0, 1.5]2, where the true solution and coefficient
field of a manufactured solution are described in (2). We assume access to values
of u at N = 300 measurement points, distributed uniformly at random inside Ω.
The goal is to construct an accurate approximation of the solution u(x1, x2) and
space-dependent coefficient field γ(x1, x2) on Ω.
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We parametrize the solution of the Helmholtz equation and the coefficient field
with two different SWIM networks with a single hidden layer with tanh activation
functions with widths mu and mγ , respectively. We write u(x1, x2) = φu(X)c +
c0 = (φu(X), 1)C and γ(x1, x2) = φγ (X)d + d0 = (φγ (X) , 1) D, where, C :=
(cT , c0) ∈ Rmu+1, D := (dT , d0) ∈ Rmγ+1 and outputs of hidden layers φu(X) ∈
RN×mu and φγ(X) ∈ RN×mγ . Since the last layer parameters of both these
networks C and D, respectively, are unknown, the term γ × u in the Helmholtz
equation introduces a non-linearity in the coefficients, though the PDE is linear
in the solution u. We use the alternating least squares algorithm to solve for the
coefficients C and D. Our setting in the manuscript is much more challenging
compared to [3], as we neither distribute additional measurement points on the
boundary nor use domain decomposition and use multiple neural networks. So, we
cannot compare our results directly. (1) shows the resulting approximation with
a network of M = 400 neurons in one hidden layer. The relative error is plotted
over a grid of 101× 101 test points. (2) lists all results in this section.

Figure 1. Left: Ground truth solution and approximation for
the Helmholtz PDE. Right: Ground truth parameter field γ and
our approximation.
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New universal operator approximation result for deep
operator networks

Janek Gödeke

(joint work with Peter Maaß)

Learning operators between infinite-dimensional function spaces is highly desir-
able in fields like partial differential equations (PDEs). For instance, learning
parameter-to-state maps that map the parameter function of a PDE to the cor-
responding solution. Over the last five years, several deep learning frameworks
have ermerged, such as Deep Operator Networks (DeepONets) or (Fourier) Neu-
ral Operators. On the theoretical side, universal approximation theorems have
been derived, which state that networks of these types can approximate many
operators arbitrarily well in different topologies. A frequently considered type of
approximating continuous (non-linear) operators G : X → Y between suitable
(real) Banach spaces is the following: It has been shown that, for each compact
set K ⊂ X , there exists a sequence of networks Gn,K : X → Y (e.g., DeepONets
[2], [3]; (Fourier) Neural Operators [4], [6]) that converges uniformly to G on this
compact set, i.e.

sup
f∈K

∥∥G(f)−Gn,K(f)
∥∥ n→∞−→ 0.

However, it has been an open question whether a universal sequence Gn can be
chosen that approximates the operator as above, but on every compact set K.

We have found a proof for DeepONet-like architectures, which we state below in
Theorem 1. One of the keys is the bounded approximation property of separable
Banach spaces. For a definition, we follow [1].

Definition 1. A separable Banach space X is said to have the bounded approx-
imation property (BAP) if there exists a sequence of linear, bounded, finite rank
operators Tn : X → X such that for all compact K ⊂ X it holds that

sup
f∈X

∥∥f − Tnf
∥∥ n→∞−→ 0.

Theorem 1. Let G : X → Y be a continuous mapping between separable Banach
spaces. Assume that Y has a Schauder basis (bk)k∈N, and X has the BAP with
mappings Tn. Consider any isomorphisms ψn : Tn(X ) → Rdn, where dn is the
finite rank of Tn. Then there exists a sequence of neural networks ϕn : Rdn → R

n

such that for every compact K ⊂ X it is
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sup
f∈K

∥∥∥G(f)−
n∑

k=1

ϕn,k

(
(ψn ◦ Tn)f

)
bk

∥∥∥ n→∞−→ 0,

where ϕn,k denotes the kth output of the neural network ϕn.

Example 1. Let X be a Banach space having a Schauder basis (bk)k∈N, i.e. for
each f ∈ X there are unique coefficients ck(f) such that f =

∑
k ck(f)bk. Then X

has the BAP and suitable choices for Tn are the projections

Tnf =

n∑

k=1

ck(f)bk.

Further, one can choose ψn : Tn(X )→ Rn such that (ψn◦Tn)f =
(
c1(f), ..., cn(f)

)T
for all f ∈ X . Hence, the operator G in Theorem 1 can be approximated by

Gn(f) =

n∑

k=1

ϕn,k

(
(c1(f), ..., cn(f))

T
)
bk,

which is a special case of the MIONet introduced in [5].

Example 2. Let Ω be a compact subset of a Banach space Z. It is well-known
that the space of continuous real-valued functions C(Ω,R), equipped with the supre-
mum norm, has a Schauder basis and hence the BAP. However, the projections in
Example 1 are not the only possible choice for the mappings Tn in Definition 1.
In fact, one can find Tn and ψn such that for all f ∈ C(Ω,R) it holds that

(ψn ◦ Tn)f =
(
f(y1), ..., f(ydn)

)T
,

where the sampling points y1, ..., ydn are an 1
n -net of Ω. Hence, G : C(Ω,R) → Y

can be approximated by

Gn(f) =
n∑

k=1

ϕn,k

(
((f(y1), ..., f(ydn))

T
)
bk.

If, for example, Y = C(Ω2,R), one can approximate all bk by neural networks,
which leads to the classical form of a DeepONet [2], [3].

To sum up, Theorem 1 provides a stronger universal approximation result com-
pared to the literature, as the approximating sequence Gn does not depend on K.
Furthermore, it covers both taking Schauder basis coefficients and sampling points
as an input for the networks ϕn.
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Generative modeling for turbulent flows

Hanno Gottschalk

(joint work with Claudia Drygala, Francesca di Mare, Edmund Ross)

The rapid development of generative learning opened the way to envision new
methods in numerical simulation. If looking at physical dynamical systems from
a machine learning perspective, which is based on the statistical evaluation data,
the most natural system to start with are chaotic systems and turbulet flows,
in particular [3, 4, 5, 11, 12] . In fact, while statistical (machine) learning is
based on the stabilization of averages of functions evaluated on identically and
independently distributed random variables 1

n

∑n
j=1 f(Xi)→ EX∼µ[f(X)] as n→

∞ with X,Xi ∼ µ where µ is a measure on Ω ⊆ Rd, we have a similar kind of
stabilization for the chaotic flow ϕt(x) of a dynamical system due to the Birkhoff
ergodic theorem

1

T

∫ T

0

f(ϕt(x0)) dt→ EX∼µ[f(X)], as T →∞,

where µ is the invariant measure of the flow φt, i.e. µ = φt,∗µ = µ ◦ φ−1
t .

Many approaches in generative learning estimate a transport map φ : Ω → Ω
from the data, which maps an easy to simulate noise distribution ν on Ω to the
target distribution µ, i.e. φ∗ν ≈ µ. From a mathemtical standpoint, the analysis
has to start with proving the existence of a sufficiently regular map φ0 such that
φ0,∗ν = µ. Otherwise there would be little hope for consistent learning. This
relates generative learning to the field of optimal transport. In fact, under suitable
conditions on the regularity of densities fν and fµ of the source and target measure
ν and µ, respectively,the existence of φ0 and C

k,α Hölder regularity can be inferred
from the Beckmann problem in optimal transport [14] in combination with classical
elliptic regularity theory [1, 8].

Let thus HG be the hypothesis space of generaors, consisting of maps φ : Ω→
Rd which are capable to approximate Hölder uniformly bounded functions to pre-
cision, and let HG be another hypothesis space of discriminators, which consists
of maps D : Ω→ (0, 1) that assign a state x of the physical system the likelihood
of being a sanpshot from the invariant mesure µ vs being generated from φ∗ν.
Usually, both spaces are represented by neural networks. Following the approach
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Figure 1. Two snapshots of the turbulence strength in the
Kármán vortex street: from Large eddy simulation [15] (left),
and generated by DCGAN [5] (right).

of generative adversarial learning [10], we consider the empirical loss function

L(φ,D, T, n) =
1

2T

∫ T

0

log (D(ϕt(x0))) dt+
1

2n

n∑

j=1

log (1−D(φ(Uj))

where Uj ∼ ν are i.i.d. noise random variables. In the limit T, n → ∞ this
expression converges to the the theoretical loss

L(φ,D) =
1

2
EX∼µ[logD(X)] +

1

2
EX∼φ∗ν [log(1−D(X))],

which, when maximized over D : Ω→ (0, 1) with D∗ =
fµ

fµ+fφ∗ν
equals the Jensen

- Shannon divergence between µ and φ∗ν up to a constant log(2). During learning,
the JS-divergence is minimized through the two player game [10]

min
φ∈GG

max
D∈HD

L̂(φ,D, T, n).

Let φ̂T,n be the minimizer of the above problem, then using the usual decomposi-

tion of errors in generative adversarial learning one can show thet dJS(µ, φ̂∗ν)→ 0
almost surely as T, n→∞ provided one adaptively enlarges the hypothesis space
to control the model error by universal approximation [2, 5].

High quality training data for turbulent flows is produced by a large eddy
simulation [15]. To learn the vortex street, we employ the DCGAN architecture
and for the low pressure turbine half stage under the influence of a wake generator
the pix2pixHD architecture conditioned to the wake position. We show that GAN
generated flow snapshots not only have a realistic appearance, see Fig. 1, but also
learn physical quantities like average turbulence strenth or variation of turbulence
physically correctly, see [5] for a theoretical analysis. Note that the inference
speed and compute ressource requirements are considerably (often a factor 100 -
1000) below time and compute requirements of classical simulation. [7] provides
a comparison of GAN learned turbulence with turbulence generation by further
generative models like variational auto encoders or diffusion models.
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Recently, video GAN architectures have produced compelling results in the
generation of dynamic scenes. To leverage these capabilities for numerical simu-
lation, we first have to understand the nature of VideoGAN architectures. Often,
a tokenizer is employed to map the physical state into a sequence of coarse ’to-
kenized’ states. From a mathematical standpoint, this can be understood as a
low dimensional projection of the state space. The VideoGAN then learns the sys-
tem’s dynamics on sequences of such projected states and reconstructs the original
state using a superresolution module. If the system theoretic requitrement of ob-
servability is fulfilled, this dynamics and superresolution map can – in principle
– be learned by encoding the tokenized autoregressive dynamics with a universal
approximating family of functions, like neural networks. First experiments show
highly realistic dynamics for GAN-generated time dynamics of the turbulent flow
in the Kármán street including physically realistic time like correlations of the
turbulence strngth. We will revisit this point in a forthcoming paper.
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Multiscale methods for convolution neural networks

Eldad Haber

Abstract

Convolutional Neural Networks (CNNs) are the backbone of many deep learning
methods, but optimizing them remains computationally expensive. To address
this, we explore multiscale training frameworks and mathematically identify key
challenges, particularly when dealing with noisy inputs. Our analysis reveals that
in the presence of noise, the gradient of standard CNNs in multiscale training may
fail to converge as the mesh-size approaches to 0, undermining the optimization
process. This insight drives the development of Mesh-Free Convolutions (MFCs),
which are independent of input scale and avoid the pitfalls of traditional convo-
lution kernels. We demonstrate that MFCs, with their robust gradient behavior,
ensure convergence even with noisy inputs, enabling more efficient neural network
optimization in multiscale settings. To validate the generality and effectiveness of
our multiscale training approach, we show that (i) MFCs can theoretically deliver
substantial computational speedups without sacrificing performance in practice,
and (ii) standard convolutions benefit from our multiscale training framework in
practice.

1. Introduction

In this work, we consider the task of learning a functional y(x) = φ(u(x)), where
x is a position (in 2D x = (x1,x2) and in 3D x = (x1,x2,x3)), u(x) ∈ U and
y(x) ∈ Y are families of functions. To this end, we assume to have discrete samples
from U and Y, (uhi = ui(xh),y

h
i = φ(ui(xh))), i = 1, . . . ,M associated with some

resolution h. A common approach to learning the function is to parameterize the
problem, typically by a deep network, and replace φ with a function f(·, ·) that
accepts the vector uh and learnable parameters θ which leads to the problem of
estimating θ such that

(1) yhi ≈ f(uhi , θ), i = 1, . . . ,M.
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To evaluate θ, the following stochastic optimization problem is formed and solved:

(2) min
θ

Euh,yhℓ
(
f(uh, θ),yh

)
,

Where ℓ(·, ·) is a loss function, typically mean square error. Standard approaches
use variants of stochastic gradient descent (SGD) to estimate the loss and its gra-
dient for different samples of (uh,yh). In deep learning with convolutional neural
networks, the parameter θ (the convolutional weights) has identical dimensions,
independent of the resolution. Although SGD is widely used, its computational
cost can become prohibitively high as the mesh-size h decreases, especially when
evaluating the function f on a fine mesh for many samples uhi . This challenge is
worsened if the initial guess θ is far from optimal, requiring many costly iterations,
for large data sizes M . One way to avoid large meshes is to use small crops of
the data where large images are avoided, however, this can degrade performance,
especially when a large receptive field is required for learning [3]

Background and related work. Computational cost reduction can be achieved
by leveraging different resolutions, a concept foundational to multigrid and mul-
tiscale methods. These methods have a long history of solving partial differential
equations and optimization problems [27, 5, 22]. Techniques like multigrid [27]
and algorithms such as MGopt [22, 4] and Multilevel Monte Carlo [16, 15, 28] are
widely used for optimization and differential equations.

In deep learning, multiscale or pyramidal approaches have been used in image
processing tasks such as object detection, segmentation, and recognition, where
analyzing multiple resolutions is key [24, 6], reviewed in [11]. Recent methods
improve standard CNNs for multiscale computations by introducing specialized
architectures and training methods. For instance, [18] uses multigrid methods
in CNNs to boost efficiency and capture multiscale features, while [10] focuses
on multiscale channel space learning, and [29] unifies both. [21] introduced the
Fourier Neural Operator, enabling mesh-independent computations, and Wavelet-
NNs were explored to capture multiscale features via wavelets [13, 12, 9].

While often overlooked, it is important to note that these approaches, can be
divided into two families of approaches that leverage multiscale concepts. The
first is to learn parameters for each scale, and a separate set of parameters that
mix scales, as in UNet [23]. The second, called multiscale training, enables the
approximation of fine-scale parameters using coarse-scale samples [17, 30, 8, 14].
The second approach aims to gain computational efficiency, as it approximates
fine mesh parameters using coarse meshes, and it can be coupled with the first
approach, and in particular with UNets.

Our approach. This work falls into the second category of multiscale train-
ing. We study multiscale algorithms that use coarse meshes to approximate high-
resolution quantities, particularly the gradients of network parameters. Comput-
ing gradients on coarse grids is significantly cheaper than on fine grids, as noted
in [26]. However, for efficient multiscale training, parameters on coarse and fine
meshes must have ”similar meaning,” implying that both the loss and gradient on
coarse meshes should approximate those on fine meshes. Specifically, the loss and
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Figure 1. Illustration of our Multiscale-SGD, introduced in (2).

gradient with respect to parameters should converge to a finite value as h → 0.
In this work, we show that standard CNN gradients may not converge as the
mesh size h approaches 0, suggesting CNNs under-utilize multiscale training. This
motivates our development of mesh-free convolution kernels, whose values and gra-
dients converge as h → 0. Our approach builds on Differential-Operator theory
[31] to create a family of learnable, mesh-independent convolutions for multiscale
learning, resembling Fourier Neural Operators (FNO) [20] but with further ex-
pressiblity.

Our main contributions are:

(1) Propose a new multiscale training algorithm, Multiscale SGD.
(2) Analyze the limitations of standard CNNs within a multiscale framework.
(3) Introduce a family of mesh-independent CNNs inspired by differential op-

erators.
(4) Validate our approach on benchmark tasks, showcasing enhanced efficiency

and scalability.

2. Multiscale Stochastic Gradient Descent

We now present the standard approach of training CNNs, identify its major com-
putational bottleneck, and propose a novel solution called Multiscale Stochastic
Gradient Descent (Multiscale-SGD).

Standard training of neural networks. Suppose that we use a gradient
descent-based method to train a CNN, with input resolution h1 with trainable
parameters θ. The k-th iteration reads:

(3) θk+1 = θk − µkE
[
g(uh,yh, θk)

]
,

where ℓ is some loss function (e.g., the mean-squared-error function), and the gradi-
ent of the loss with respect to the parameters is g(uh,yh, θ) = ∇ℓ

(
f(uh, θk),y

h
)
.

The expectation E is taken with respect to the input-label pairs (uh,yh). Evalu-
ating the expected value of the gradient can be highly expensive. To understand

1In this paper, we define resolution h as the pixel size on a 2D uniform meshgrid, where smaller
h indicates higher resolution. For simplicity, we assume the same h across all dimensions, though
different resolutions can be assigned per dimension.
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Figure 2. Illustration of the Full Multiscale Training.

why, consider the estimation of the gradient obtained via the average over g with
a batch of N samples:

(4) Euh,yh

[
g(uh,yh, θ)

]
≈ 1

N

∑

i

g(uhi ,y
h
i , θk).

This approximation results in an error in the gradient. Under some mild assump-
tions on the sampling of the gradient value (see [19]), the error can be bounded
by:

(5)

∥∥∥∥∥E
[
g(uh,yh, θk)

]
− 1

N

∑

i

g(uhi ,y
h
i , θ

k)

∥∥∥∥∥
2

≤ C√
N
,

where C is some constant. Clearly, obtaining an accurate evaluation of the gradient
(that is, with low variance) requires sampling g across many data points with
sufficiently high resolution h. This tradeoff between the sample size N and the
accuracy of the gradient estimation, is the costly part of training a deep network on
high-resolution data. To alleviate the problem, it is common to use large batches,
effectively enlarging the sample size. It is also possible to use variance reduction
techniques [2, 7, 1]. Nonetheless, for high-resolution images, or 3D inputs, the
large memory requirement limits the size of the batch. However, a small batch
size can result in noisy, highly inaccurate gradients, and slow convergence [25].

2.1. Efficient training with multiscale stochastic gradient descent. To
reduce the cost of the computation of the gradient, we use a classical trick proposed
in the context of Multilevel Monte Carlo methods [16]. To this end, let h = h1 <
h2 < ... < hL be a sequence of mesh step sizes, in which the functions u and
y are discretized on. We can easily sample (or coarsen) u and y to some mesh
hj, 1 ≤ j ≤ L. We consider the following identity, based on the telescopic sum and
the linearity of the expectation:
(6)

E
[
gh1(θ)

]
= E

[
ghL(θ)

]
+ E

[
ghL−1(θ)− ghL(θ)

]
+ . . . + E

[
gh1(θ)− gh2(θ)

]
,

where for shorthand we define the gradient of θ with resolution hj by ghj (θ) =
g(uhj ,yhj , θ).
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The core idea of our Multiscale Stochastic Gradient Descent (Multiscale-SGD)
approach, is that the expected value of each term in the telescopic sum is approx-
imated using a different batch of data with a different batch size. This concept is
demonstrated in Figure 1 and it can be summarizes as:

E
[
gh1(θ)

]
≈ 1

NL

∑

i

ghL

i (θ) +
1

NL−1

∑

i

(
g
hL−1

i (θ)− ghL

i (θ)
)
+ . . .(7)

+
1

N1

∑

i

(
gh1

i (θ)− gh2

i (θ)
)
.

To understand why this concept is beneficial, we analyze the error obtained by
sampling each term in (7). Evaluating the first term in the sum requires evaluating
the function g on the coarsest mesh (i.e., lowest resolution) using downsampled
inputs. Therefore, it can be efficiently computed, while utilizing a large batch size,
NL. Thus, following (5), the approximation error of the first term in the (7) can
be bounded by:

(8)

∥∥∥∥∥E
[
ghL(θ)

]
− 1

NL

∑

i

ghL

i (θ)

∥∥∥∥∥

2

≤ C√
NL

.

Following this step, we need to evaluate the terms of the form

(9) rj = E
[
ghj−1(θ)− ghj (θ)

]
,

Similarly, this step can be computed by resampling, with a batch size Nj :

(10) r̂j =
1

Nj

∑

i

(
g
hj−1

i (θ)− g
hj

i (θ)
)
,

for j = 1, . . . , L − 1. The key question is: what is the error in approximating rj
by the finite sample estimate r̂j? Previously, we focused on error due to sample
size. However, note that the exact term rj is computed by evaluating g on two
resolutions of the same samples and subtracting the results.

If the evaluation of g on different resolutions yields similar results, then g
computed on mesh with step size hj can be utilized to approximate the gradient
g on mesh a mesh with finer resolution hj−1, making the approximation error r̂j
small. Furthermore, assume that

(11) ‖ghj−1

i (θ)− g
hj

i (θ)‖ ≤ Bhpj p > 0,

for some constant B > 0 and p > 0, both independent of the pixel-size hj . Then,
we can bound the error of approximating rj by r̂j , as follows:

(12) ‖rj − r̂j‖ ≤ BC
hpj√
Nj

.

Note that, under the assumption that (11) holds, the gradient approximation error
between different resolutions decreases as the resolution increases (i.e., h → 0).
Indeed, sum of the gradient approximation error between subsequent resolutions
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Algorithm 1 Multiscale Stochastic Gradient Descent (Multiscale-SGD)

Set batch size to NL and sample, NL samples of uh1 and yh1

Pool uhL = Rh1

hL
uh1 , yhL = Rh1

hL
yh1

Set loss = ℓ(uhL ,yhL , θ)
for j = 1, ..., L (in parallel) do

Set batch size to Nj and sample, Nj samples of uh1 and yh1

Pool uhj = Rh1

hj
uh1 , yhj = Rh1

hj
yh1 and uhj−1 = Rh1

hj−1
uh1 , yhj−1 =

Rh1

hj−1
yh1

Compute the losses ℓ(uhj ,yhj , θ) and ℓ(uhj−1 ,yhj−1 , θ)
loss← loss− ℓ(uhj ,yhj , θ) + ℓ(uhj−1 ,yhj−1 , θ)

end for

(where each is defined in (9)), where the approximation is obtained from the
telescopic sum in (7), can be bounded by:

(13) e = C


 1√

NL
+B

L−1∑

j=1

hpj√
Nj


 .

Let us look at an exemplary case, where p = 1 and hj = 2hj−1, i.e., the resolution
on each dimension increases by a factor of 2 between input representations. In this

case, the sampling error on the coarsest mesh contributes N
−1/2
L . It then follows

that, it is also possible to have the same order of error by choosing NL−1 = NL/4.
That is, to obtain the same order of error at subsequent levels, only 1/4 of the
samples are required at the coarser grid compared to the finer one.

Following our Multiscale-SGD approach in (7), the sample size needed on the
finest mesh is reduced by a factor of 4L from the original NL while maintaining
the same error order, leading to significant computational savings.

Beyond these savings, Multiscale-SGD is easy to implement. It simply requires
computing the loss at different input scales and batches, which can be done in
parallel. Since gradients are linear, the loss gradient naturally yields Multiscale-
SGD. The full algorithm is outlined in (1).
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Autoencoder-based global concave optimization for electrical
impedance tomography

Bastian Harrach

(joint work with Andrej Brojatsch, Johannes Wagner)

We report on some preliminary work-in-progress results that aim to derive globally
convergent reconstruction algorithms for the inverse coefficient problem of Electri-
cal Impedance Tomography (aka the famous Calderón problem) with finitely-many
measurements.

The Calderón problem with finitely-many measurements. Let Ω ⊆ R
k,

k ≥ 2 be a bounded domain with smooth boundary ∂Ω. Let σ ∈ L∞
+ (Ω) and let

Λ(σ) : L2
⋄(∂Ω)→ L2

⋄(∂Ω), g 7→ u(g)σ |∂Ω
be the Neumann-to-Dirichlet-operator (aka current-to-voltage map) for the EIT

equation, i.e., u
(g)
σ ∈ H1

⋄ (Ω) solves

∇ · (σ∇u(g)σ ) = 0 in Ω, σ∂νu
(g)
σ |∂Ω = g.

It is easily shown that Λ(σ) ∈ L(L2
⋄(∂Ω)) is a compact and selfadjoint operator.

The inverse problem

reconstruct σ ∈ L∞
+ (Ω) from Λ(σ) ∈ L(L2

⋄(∂Ω))

has become famous under the name Calderón problem. It is known to be a highly
non-linear and ill-posed problem. To introduce its variant with finitely many
measurements, we introduce a pixel partition

Ω =

n⋃

j=1

Pj

where P1, . . . , Pn ⊆ Ω are non-empty, pairwise disjoint subdomains with Lipschitz
boundaries. We assume that the coductivity coefficient σ ∈ L∞

+ (Ω) is piecewise
constant with respect to this partition, i.e. σ =

∑n
j=1 σjχPj

, with σ1, . . . , σn ∈ R+,
and χPj

denoting the characteristic function on the j-th pixel. With a slight abuse
of notation, we identify a piecewise constant function σ ∈ L∞

+ (Ω) with the vector
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σ = (σ1, . . . , σn)
T ∈ R

n
+. As a model for finitely-many measurements, we assume

that we can measure the symmetric matrix

F (σ) =

(∫

∂Ω

giΛ(σ)gjds

)

i,j=1,...,m

∈ Sm ⊂ R
m×m

for m given boundary currents g1, . . . , gm ∈ L2
⋄(∂Ω). This corresponds to measur-

ing the Galerkin projection of Λ(σ) to the span of g1, . . . , gm. The gap electrode
model in EIT can be written in this form by choosing gj to be the characteristic
function of the j-th electrode, and more sophisticated electrode models such as
the shunt model or the complete electrode model lead to similar properties of F .
We can thus state the Calderón problem with finitely many measurements

reconstruct σ ∈ R
n
+ from F (σ) ∈ Sm ⊂ R

m×m .

Concave data fitting formulation for EIT. Standard data-fitting formulations
for EIT lead to non-convex minimization problems in high dimensions for which
globally convergent algorithms may seem completely out-of-reach. However, the
recent result [2] shows that it is possible to reformulate the Calderón problem (with
sufficiently many measurements and known a-priori bounds on σ) as a convex
semidefinite optimization problem. The reformulation involves an unknown linear
cost functional so that its practical implementation is not immediate. We herein
use a different (and simpler) approach to formulate the problem as a concave
minimization problem over a convex set.

Lemma 1. The following holds:

(a) If σ ∈ R
n
+ fulfills F (σ) = Y then σ minimizes

trace(Y − F (σ))→ min! s.t. F (σ) � Y.
(b) The functional σ 7→ trace(Y − F (σ)) is concave.
(c) The constraint set {σ ∈ R

n
+ : F (σ) � Y } is convex.

Proof. This follows from the fact that F : R
n
+ → S

m is monotonically non-
increasing and convex with respect to the componentwise ordering “≤” on R

n and
the Loewner ordering “�” on Sm, cf. [2, Lemma 4.7]. �

In practical applications one usually also knows a-priori upper and lower bounds
of σ so that the constraint set becomes convex and bounded.

Globally convergent concave programming. Concave optimization problems
over convex bounded sets can be solved with globally convergent algorithms in
moderately low dimensions, cf. [3], and [5, Chp. 7.2]. The key idea is that global
minima of concave functionals on a polyhedra are attained in a corner. Thus, for
a bounded convex set, one starts with a polyhedron containing the constraint set,
finds the best corner, i.e. the global minimizer on this superset, and then cuts out
the best corner with a hyperplane to shrink the polyhedron. This approach should
also yields global convergence for our concave minimization problem in Lemma 1.
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Figure 1. Concave minimization in the latent space.

Ground Truth Iteration Plot Latent Variable Reconstruction

Concavity preserving autoencoder parametrization. As concave global
minimization is numerically feasible in moderately low dimensions, we now aim to
describe our unknown conductivies by moderately many parameters. In the work
[4], autoencoder techniques were used to find a 16-dimensional latent parametriza-
tion of lung images. The key idea is to train neural networks Φ and Ψ so that

Ψ ◦ Φ ≈ id on training set of lung images,

where Φ : Rn → R
d encodes n-pixel images with d latent parameters, and Ψ :

R
d → R

n decodes n-pixel images from d latent parameters. To solve the inverse
problem F (σ) = Y for a lung image σ, one then solves F (Ψ(p)) = Y for p ∈ R

d,
and obtains σ = Ψ(p).

Combining this idea with our concave optimization approach in Lemma 1 we
would thus minimize

trace(Y − F (Ψ(p)))→ min! s.t. F (Ψ(p)) � Y.

It is easily shown that this a concave minimization problem on a convex set,
if the decoder Ψ is concave. Since the decoder is a neural network that is a
concatenation of linear functions and activator functions, it can be ensured to be
convex by enforcing these linear functions and activator functions to be convex
and non-decreasing. Training the autoencoder with shifted negated images one
can thus construct a concave decoder Ψ.

Hence, we can reconstruct the conductivity by concave minimization in the
low-dimensional latent parameter space. Figure 1 shows a preliminary numerical
result for this approach using a 9-dimensional latent variable space and a FEM-
implemenation of the EIT forward problem with m = 31 electrodes following [1].
The first image shows the true lung image, and the second image the error of
the iterations (black line), and the (appropriately scaled) value of the objective
functional (blue line). The third image shows the reconstructed latent variable
p ∈ R

9 as a 3 × 3-image, and the last image shows the reconstructed lung image
σ = Ψ(p). Note that the objective functional converges monotonically to zero from
below as the iterates are the global minimizers of the concave objective functional
on a polygonal superset of the constraint set.
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Learned iterative reconstructions in photoacoustic tomography for the
acoustic and optical problem

Andreas Hauptmann

(joint work with Simon Arridge, Anssi Manninen, Ozan Öktem,
Carola-Bibiane Schönlieb)

1. Learned Reconstructions

We consider the general form of the underlying operator equation

(1) A(f) = g,

for the inverse problem with f ∈ X and g ∈ Y . Here, the forward operator
A : X → Y can be either linear, for the acoustic problem, or the nonlinear for
the optical problem. For the modelling of the forward problem in photoacoustic
tomograpgy we refer to [3].

In the following we concentrate on the inverse problem, which can be understood
as formulating a reconstruction operator R : Y → X . Such a reconstruction
operator should be ideally stable and provide a good estimate of the original signal
f for given data g, i.e., R(g) ≈ f . Classically, such a reconstruction operator
would be handcrafted based on the analytical knowledge of the forward operator,
or formulated in the variational framework as optimisation problem.

In recent years, the paradigm of data-driven reconstructions has gathered con-
siderable attention, due to its success in improving reconstruction quality, but
also computational speed-up. Nevertheless, the majority of such data-driven ap-
proaches still comes without a thorough mathematical understanding. While we
can not solve this shortcoming, we will provide a conceptual overview of data-
driven approaches in the following. For that, let first us define the concept of a
learned reconstruction operator.

Definition 1 (Learned reconstruction operator). A family of mappings Rθ : Y →
X parametrised by θ ∈ Θ is called a learned reconstruction operator for the inverse
problem in (1) if the parameters θ are determined (learned) from example data
(training data) that is generated in a way that is consistent with (1).
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With this general definition we can obtain a large class of different popular
data-driven approaches. For instance, in its simplest form we can define two-step
approaches by using a neural network Λθ either in image or data space:

Rθ = Λθ ◦ R, with Λθ : X → X (post-processing)

Rθ = R ◦ Λθ, with Λθ : Y → Y (pre-processing)

where R : Y → X is a hand-crafted reconstruction operator. Such two-step
approaches are popular due to their simplicity and success in mildly ill-posed
problems, but provide in its general form little methodological insights.

In contrast, a methodologically well motivated approach are learned regulariser.
Here, the neural network Λθ : X → R replaces a regulariser in the variational
formulation. The learned reconstruction operator is then given as

Rθ(g) = argmin
f∈X

D(A(f), g) + Λθ(f).

In this secondary case, one can impose various constraints on Λθ to obtain con-
vergence results, see [4] for a review.

2. Learned iterative reconstructions

Let us now turn to the concept of learned iterative reconstructions, in which hand-
crafted model and data-driven components are intertwined. More concretely, neu-
ral networks are sequentially combined with the evaluation of the forward operator,
its adjoint in the linear case, or the Fréchet derivative for the nonlinear case.

Thus, in learned iterative reconstruction we aim to learn a reconstruction op-
erator defined by the result of the iterative procedure, i.e., Rθ(g) = fN , where
θ = {θ0, . . . , θN−1} and
(2) fk+1 = Λθk(f

k, h), with k = 0, . . . , N − 1,

with Λθk : X ×X → X . In the above formulation, the neural network combines
a current iterative fk ∈ X with a model-informed update direction h ∈ X . This
update direction should contain model parameters and ideally information on “how
to improve reconstructions”. For linear inverse problems this leads to the usual
choice of h = A∗(Af − g) = ∇1

2‖Af − g‖22 and defines a learned gradient scheme
[1].

2.1. Learned Gauss-Newton. Clearly the formulation in (2) is not limited to
gradient type directions. Thus, we will now shortly discuss choices of the up-
date directions h motivated by Newton type approaches which are often used for
nonlinear inverse problems.

We remind that for the unregularised least-squares problem, the Newton up-
dates with Hessian Hk and Jacobian Jk are given by

fk+1 = fk − βkH−1
k (JTk (A(f

k)− g),
this would be a straight-forward extension of the learned gradient descent before.
Unfortunately, in inverse problems the Hessian may be ill-conditioned and on
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top for high-dimensional problems expensive to compute. Thus, we consider the
regularised version of the cost functional

E(f) = ‖A(f)− g‖22 + αR(f).
Additionally, in practice a full Newton method is rarely used and rather Quasi-
Newton or Newton-type approaches, such as the Gauss-Newton where we use an
approximation of the Hessian as H ≈ (JTJ). This leads to the update directions
h = (JTk Jk + Γ−1

R )−1∇E
(
fk
)
, with ΓR the covariance matrix of the regulariser,

and defines a Learned Gauss-Newton [2]:

fk+1 = Λθk
(
fk, (JTk Jk + ΓR)−1∇E

(
fk
))
.

Additionally, we can explore the impact of different choices for the update direc-
tion. In the following we will explore the 3 choices for the optical problem:

i.) Gradient descent: h = ∇E(f)
ii.) Gauss-Newton: h = (JTJ + ΓR)−1∇E (f)
iii.) Quasi-Newton: h = BT∇E (f)

For the Quasi-Newton update we choose the symmetric-rank 1 (SR1) updates.

2.2. Training schemes. Finally, a major computational challenge is the training
of the learned reconstruction operator Rθ. Ideally, we would like to train end-to-
end given supervised training data {fi, gi} by minimising

θ∗ = argmin
θ∈Θ

∑

i

L(Rθ(gi), fi).

Nevertheless, this requires evaluation of the update directions h, including, the
forward model A and computation of A∗ or J in each forward as well as backward
pass N -times for each training iterations, which will be well in ten thousands.

To avoid the computational demanding evaluation in each training iteration
we can make use of a greedy training approach that has been earlier utilised for
training in the linear acoustic problem [5], where the forward operator takes 12
seconds to evaluate in 3D. Instead of the above loss function, we now only compute
iterate-wise optimality, thus the terminology greedy, by

θ∗k = argmin
θ∈Θ

∑

i

L(Λθ(f
k
i , h

k
i )− fi),

where fki = Λθ∗
k−1

(fk−1
i , hk−1

i ) and hki are pre-computed. This allows decoupling

of the network training from the evaluation of the model components and enables
efficient training even for computationally demanding inverse problems.

3. Performance comparison for choice of update directions

A major question that remains is how the choice of update directions influences the
performance of the learned reconstruction operator. Additionally, how greedy vs.
end-to-end influences this performance. In ongoing work we explore this question
in the context of the nonlinear optical problem, a preliminary result of the network
performance can be seen in 1. This indicates that for the Gauss-Newton directions
that there is only little difference between end-to-end and greedy training, while
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for the less informative directions end-to-end training is necessary to obtain good
performance.

Figure 1. Performance comparison in reconstruction quality
for absorption and scattering for different update directions and
training schemes in the nonlinear optical problem.
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Solving ill-posed inverse problems using iResNets

Nick Heilenkötter

(joint work with Clemens Arndt, Alexander Denker, Sören Dittmer, Meira Iske,
Tobias Kluth, Peter Maaß, Judith Nickel)

In the context of Bayesian inverse problems, the goal is to reconstruct an unknown
source x ∈ X = RdX from noisy measurements

yδ = Âx+ η̂,

where both data and noise are assumed to follow (potentially unknown) probability
distributions. Here, the measurement process is modeled by a linear operator
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Â : X → Y, Y = RdY . As usual in the Bayesian setting, we assume x ∼ pX and
η̂ ∼ pH , where pX , pH : X → R≥0 are probability density functions with existing
first and second moments. Furthermore, x and η are required to be stochastically
independent, with zero-mean noise: E(η̂) = 0.

Since inverse problems are often ill-posed, incorporating data distributions into
the reconstruction process is crucial. As a result, deep-learning-based approaches
have shown promising results among many applications [3]. A method that ensures
stability of the reconstructions is to employ invertible neural networks ϕθ : X → X .
To this end, we modify the inverse problem and solve the normal equation

zδ = Â∗yδ = Â∗(Âx+ η̂) = Ax+ η,

where we define A := Â∗Â and η = Â∗η. Reconstruction is performed by first
optimizing ϕθ such that ϕθ ≈ A, followed by applying the inverse provided by the
architecture of the neural network to obtain the estimate x∗ = ϕ−1

θ (zδ).
The optimization task for approximating the forward operator is given by

ϕ∗
θ = arg min

ϕθ∈F
E(x,zδ)(ℓ[ϕθ](x, z

δ)).

This allows to choose a network architecture, determined by the inductive bias F ,
as well as the loss function ℓ. In recent work [1, 2], we have studied a variety of
possible choices and their properties as regularization methods.

In [1], we have investigated approximation training, i.e. a MSE loss that forces
the network to approximate the forward operator A:

ϕ∗
θ = arg min

ϕθ∈F
Ex∼pX ,η∼pH (‖ϕθ(x)− (Ax + η)‖2)

= arg min
ϕθ∈F

Ex∼pX ,η∼pH (‖ϕθ(x)−Ax‖2).

We notice that the training outcome is independent of the noise level and equals
A whenever the network is able to approximate all linear operators. As we are
interested in invertible architectures, we study a set of simple networks that fol-
low the iResNet [4] approach in [1]. For restricted F , the learned reconstruction
scheme becomes data-dependent. However, in the case of sufficiently expressive
architectures, the solution depends only on the first or at most second moments
of the prior pX .

A second approach that increases data-dependence was studied in [2]. By re-
construction training, we denote the objective

ϕ∗
θ = arg min

ϕθ∈F
E(x,zδ)(‖ϕ−1

θ (zδ)− x‖2)

= arg min
ϕθ∈F

E(x,zδ)(‖ϕ−1
θ (zδ)− Ex∼pX (x|zδ)‖2).

Here, the optimal solution is the posterior expectation Ex∼pX (x|zδ), provided it
can be approximated by the network. The resulting reconstruction method de-
pends on the noise as well as the data distribution. These properties were also
analyzed theoretically and numerically in [2].

A third and new approach is to study regularization terms of the approximation
training to enhance data-dependency. More specifically, we assume Gaussian noise,
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i.e. η ∼ N (0, δ2), and study the (vector-field) divergence of the network as a
regularization term:

ϕ∗
θ = arg min

ϕθ∈F
Ex∼pX ,η∼pH (‖ϕθ(x)− (Ax + η)‖2 − δ2∇ · ϕθ(x))

= arg min
ϕθ∈F

Ex∼pX ,η∼pH (‖ϕθ(x)− (Ax − δ2∇(log ◦ pX)(x))‖2).

As a result, the network approximates the regularized normal equation that arises
for the maximum-a-posteriori (MAP) estimator. If the MAP estimator is invertible
and can be approximated, this implies that the inverse of the network learns the
MAP, thus serving as a data-dependent regularization. Moreover, the noise level
introduces an additional regularization parameter, while the training data noise
does not influence the outcome.
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Fast kernel summation via slicing and Fourier transforms

Johannes Hertrich

(joint work with Tim Jahn, Michael Quellmalz)

Let K : R
d×R

d → R be a radial kernel defined by K(x, y) = F (‖x− y‖) for some

basis function f : R≥0 → R. For given points x1, ..., xN ∈ R
d and y1, ..., yM ∈ R

d

and weights w1, ..., wN ∈ R, we are interested in computing the kernel sums

(1) sm =

N∑

n=1

wnK(xn, ym), m = 1, ...,M.

Generally, the evaluation of sm for all m = 1, ...,M involves MN summands and
has therefore computational complexity of O(MN). In the following, we want to
approximate this sum to reduce the complexity to O(M+N). In dimension d ≤ 3,
this problem can be efficiently solved by fast Fourier summations [7] based on the
non-equispaced fast Fourier transform [2] or by fast multipole methods [3]. For
the negative distance kernel, we presented in [4, 6] an efficient sorting algorithm to
compute the sm with complexity O((M +N) log(M +N)). However, the runtime
of these algorithms depends exponentially on the dimension, such that they are
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computationally intractable for higher dimensions, which we addressed in [4, 5] as
follows.

Fast kernel summation via slicing. In order to compute the sm, from (1)
efficiently, we proceed in three steps. First, we choose a random direction ξ from
the uniform distribution USd−1 on the unit sphere Sd−1 and project the whole
problem onto the subspace spanned by ξ. Second, we apply a fast method for
the one-dimensional case to solve the projected problems. And third, we take the
expectation over all possible directions ξ. From a mathematical viewpoint this
corresponds to considering a kernel K of the form

(2) K(x, y) = Eξ∼U
Sd−1

[k(〈ξ, x〉, 〈ξ, y〉)]
for some one-dimensional kernel k : R×R → R. Then, the kernel sum from (1)
can be rewritten and approximated as

(3) sm = Eξ∼U
Sd−1

[
N∑

n=1

wnk(〈ξ, x〉, 〈ξ, y〉)
]
≈ 1

P

P∑

p=1

N∑

n=1

wnk(〈ξp, x〉, 〈ξp, y〉),

where ξ1, ..., ξP are iid samples from USd−1 . Consequently, we can approximate sm
by computing P one-dimensional kernel sums instead of one d-dimensional. Using
the fast algorithms for the one-dimensional kernel summation this has computa-
tional complexity O(P (M +N)).

Sliced kernels. For applying the slicing algorithm for some given kernel K, we
have to find a one-dimensional kernel k such that (2) is fulfilled. For radial kernels
K(x, y) = F (‖x − y‖) and k(x, y) = f(|x − y|), this can be rewritten in terms of
the basis functions as

(4) F (‖x‖) = Eξ∼U
Sd−1

[f(|x|)].
Then, we proved in [4], that a pair (F, f) fulfills the relation (4) if and only if F
is the generalized Riemann-Liouville fractional integral transform of f given by

F (t) =
2Γ(d2 )√
πΓ(d−1

2 )

∫ 1

0

f(ts)(1− s2) d−3
2 ds.

Considering that the functions f(x) = xr are eigenfunctions of this integral trans-
form, we obtain that for analytic basis functions of the form F (x) =

∑∞
n=0 anx

n

for x ≥ 0, the function f(x) =
∑∞

n=0 bnx
n with bn =

√
πΓ(n+d

2 )

Γ( d
2 )Γ(

n+1
2 )

an fulfills (4).

In this way, the one-dimensional basis function f and corresponding kernel k can
be derived for many common kernels like Gauss, Laplace, Matérn and negative
distance kernel.

An alternative way for deriving k was outlined in [9] via a change of variables
in the Fourier space. Assuming that all involved terms exist, we have that the
functions G(x) = F (‖x‖) and g(x) = f(|x|) are related by g = cdF1[x

d−1F−1
d [G]]

for some dimension-dependent constant cd, where F1 and Fd are the one- and
d-dimensional Fourier transform. The existence assumptions are fulfilled, e.g.,
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for continuous, positive definite kernels. This also links the slicing approach to
random Fourier features [8], see [9] for details.

Slicing error. In (3), we approximated the expectation over all directions by a
finite sum. We now want to bound the error which is introduced by this approxi-
mation. To this end, we note that by Bienaymé’s identity it holds that

Eξ1,...,ξP∼U
Sd−1



(

1

P

P∑

p=1

f(|〈ξp, x〉|) − F (‖x‖)
)2

 =

Vd[f ](x)

P
,

where Vd[f ](x) := Eξ∼U
Sd−1

[
(f(|〈ξ, x〉|) − F (‖x‖))2

]
is the variance of f . Then,

we proved several bounds on Vd[f ](x) in [4, 5].

• If K(x, y) = F (‖x− y‖) is continuous and positive definite with F (0) = 1
and f is the corresponding one-dimensional basis function, then it holds
that Vd[f ](x) ≤ 1− F (‖x‖)2 ≤ 1.
• For K(x, y) = −‖x− y‖, then Vd[f ](x) ≤ π

2 ‖x‖.
In both cases, the mean squared error decays with a rate of O(P−1), i.e., the
absolute error decays with rate O( 1√

P
). It is always independent of d, but for the

negative distance kernel it depends on ‖x‖. For details, we refer to [5, Thm 1].

QMC slicing. So far, we assumed that the directions ξ1, ..., ξP are random iid
samples from USd−1 . In order to improve the convergence error rate of O( 1√

P
),

we now drop this assumption and choose them by quasi-Monte Carlo designs.
Following [1], we mainly consider the directions maximizing the pairwise distance∑P
p,q=1 ‖ξp − ξp‖. Under certain smoothness assumptions, the authors of [1] show

that this gives a worst case error of O(P
−d

2(d−1) ). We verify these smoothness
assumptions and consider other QMC designs in [5]. While we numerically observe
better error rates, a formal proof of this remains an open question.

Numerical comparison. Finally, we compare our (QMC) slicing approach nu-
merically with random Fourier features [8]. To this end, we the MNIST dataset
with N =M = 60000 data points, which is reduced to d = 20 dimensions by PCA.
We choose the (xn)

N
n=1 and (ym)Mm=1 both to be the whole dataset. As kernel, we

use the Gauss, Laplace and negative distance kernel and set the weights wn to
one. Then, we compute the relative L1-error of the corresponding kernel sums
and visualize the results in Figure 1. The computation time is measured on a
single CPU thread. We observe that for the Gaussian kernel, the slicing and RFF
show a similar performance, while for the Laplace kernel, slicing shows a smaller
error. This can be explained that for smooth kernels the Fourier transform decays
faster such that very few features in RFF are sufficient, while for the non-smooth
Laplace kernel more features are required to achieve a certain accuracy. For the
negative distance kernel, RFFs are not applicable, since it is not positive definite.
In all cases QMC slicing reduces the error significantly. Additional numerical
comparisons are provided in [4, 5].
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Figure 1. Comparison (error vs time) of RFF with (QMC) slic-
ing with N =M = 60000 and d = 20.
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Conductivity imaging using deep neural networks

Bangti Jin

(joint work with Zhi Zhou)

Parameter identifications for differential equations represent a wide class of inverse
problems. In terms of mathematical theory, many deep results on conditional sta-
bility have been established for concrete PDE parameter identification problems.
Meanwhile, a large variety of inversion schemes have been proposed, often based
on Tikhonov regularization. Thus, it is natural to ask whether one can use con-
ditional stability results to analyze relevant numerical procedures. Conditional
stability has been employed to derive convergence rates for Tikhonov regulariza-
tion.

We aim to exploit “stability” results for deriving convergence rates for a discrete
scheme for recovering a spatially dependent diffusion coefficient q. Let Ω ⊂ Rd
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(d = 1, 2, 3) be a convex polyhedral domain with a boundary ∂Ω. Consider the
following elliptic problem:

(1)

{
−∇ · (q∇u) = f, in Ω,

u = 0, on ∂Ω,

where the function f denotes a given source term. The solution to problem (1) is
denoted by u(q). The inverse problem is to recover the exact diffusion coefficient q†

from the pointwise observation zδ, with a noise level δ, ‖zδ−u(q†)‖L2(Ω) ≤ δ. The
diffusion coefficient q is assumed to satisfy q ∈ A := {q : 0 < c0 ≤ q ≤ c1 in Ω}.
The goal is to develop robust discretization schemes for the inverse problems with
provable error bounds.

1. FEM discretization

Now we describe one inversion scheme based on Tikhonov regularization and
Galerkin FEM approximation. Let Th be a shape regular quasi-uniform trian-
gulation of the domain Ω into d-simplexes with a mesh size h. Over Th, we define
two finite element spaces: Xh = {vh ∈ H1

0 (Ω) : vh|K ∈ P1(K) ∀K ∈ Th} and
Vh = {vh ∈ H1(Ω) : vh|K ∈ P1(K) ∀K ∈ Th}, which are used to approximate the
state u and the diffusion coefficient q, respectively. Now the inversion scheme for
problem (1) reads

(2) min
qh∈Ah

Jγ,h(qh) =
1

2
‖uh(qh)− zδ‖2L2(Ω) +

γ

2
‖∇qh‖2L2(Ω),

with Ah = {qh ∈ Vh : c0 ≤ qh(x) ≤ c1 in Ω} and uh(qh) satisfying
(qh∇uh(qh),∇vh) = (f, vh), ∀vh ∈ Xh.(3)

Then in the work [4], the following weighted error estimate was proved using
an energy argument, with a novel test function.

Theorem 1. Let the exact diffusion coefficient q† ∈ H2(Ω)∩W 1,∞(Ω), u(q†) the
solution to problem (1) with f ∈ L∞(Ω), and q∗h ∈ Ah a minimizer of problem

(2)-(3). Then with η = h2 + δ + γ
1
2 , there holds

∫

Ω

(q† − q∗h)2
(
q†|∇u(q†)|2 + fu(q†)

)
dx ≤ c(hγ− 1

2 η +min(h+ h−1η, 1))γ−
1
2 η.

Theorem 1 allows deriving the standard L2(Ω) bound, under condition (4),
which holds for certain problem data.

Corollary 1. Let q† ∈ H2(Ω)∩W 1,∞(Ω) and f ∈ L∞(Ω), and assume that there
exists some β ≥ 0 such that

(4) (q†|∇u(q†)|2 + fu(q†))(x) ≥ c dist(x, ∂Ω)β a.e. in Ω.

Then the approximation q∗h satisfies

‖q† − q∗h‖L2(Ω) ≤ c((hγ−
1
2 η +min(h−1η, 1))γ−

1
2 η)

1
2(1+β) .

For any δ > 0, the choices γ ∼ δ2 and h ∼
√
δ imply ‖q† − q∗h‖L2(Ω) ≤ cδ

1
4(1+β) .



56 Oberwolfach Report 48/2024

The analysis combines the consistency errors, and the stability estimates for
the inverse problem, and fixing the norm gap between different the two types of
results using inverse estimates for the finite element space.

2. Neural network approximation

Deep neural networks (DNNs) represent a powerful tool for approximating func-
tions living in high-dimensional spaces, and have received much attention within
the inverse problems community. However, the discretization requires different
treatment due to a lack of inverse estimates. We resort to an alternative approach.
Upon letting σ = q∇u, we recast problem (1) (with the Neumann boundary con-
dition q∂nu = g on ∂Ω into a first-order system

(5)





σ = q∇u, in Ω,

−∇ · σ = f, in Ω,

σ · n = g, on ∂Ω.

To identify q, we employ a noisy observation zδ (of the exact data u(q†)) in Ω,
with δ := ‖∇(u(q†)− zδ)‖L2(Ω). Then we employ a residual minimization scheme
based on the first-order system (5), approximate both σ and q using DNNs, and
substitute zδ for the scalar field u. For q, we use a DNN function class (of depth
Lq and width Wq) with the parametrization Pp,ǫq (with p ≥ 2 and tolerance ǫq).
Similarly, for σ, we employ d identical DNN function classes (of depth Lσ and
width Wσ) with the parametrizations P2,ǫσ (with tolerance ǫσ), and stack them
into one DNN. θ and κ denote the parameters of DNN approximations to q and
σ, respectively. To enforce the box constraint on q, we employ a cutoff operator
PA defined by PA(v) = min(max(c0, v), c1). Using the least-squares formulation
on the equality constraints, we obtain

(6)
Jγ(θ, κ) =‖σκ − PA(qθ)∇zδ‖2L2(Ω) + γσ‖∇ · σκ + f‖2L2(Ω)

+ γb‖σκ · n− g‖2L2(∂Ω) + γq‖∇qθ‖2L2(Ω).

Then the DNN reconstruction problem reads

(7) min
(θ,κ)∈(Pp,ǫq ,P

⊗d
2,ǫσ

)
Jγ(θ, κ),

where the superscript ⊗d denotes the d-fold direct product, γσ > 0, γb > 0 and
γq > 0 are penalty parameters, and γ = (γσ, γb, γq) ∈ R3

+.
Let X = {Xj}nr

j=1 and Y = {Yj}nb

j=1 be independent and identically distributed

(i.i.d.) samples drawn from the uniform distributions U(Ω) and U(∂Ω), respec-
tively, where nr and nb are the numbers of sampling points in Ω and on ∂Ω,
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respectively. Then the empirical loss Ĵγ(θ, κ) is given by

Ĵγ(θ, κ) =: n−1
r |Ω|

nr∑

j=1

‖σκ(Xj)− PA(qθ(Xj))∇zδ(Xj)‖2ℓ2(8)

+ γσn
−1
r |Ω|

nr∑

j=1

(
∇ · σκ(Xj) + f(Xj)

)2

+ γbn
−1
b |∂Ω|

nb∑

j=1

(
σκ(Yj) · n− g(Yj)

)2
+ γqn

−1
r |Ω|

nr∑

j=1

‖∇qθ(Xj)‖2ℓ2 .

Then we have the following (weighted) L2(Ω) error bounds on the DNN ap-
proximation q∗θ via the population loss Jγ(θ, κ) [5, Theorem 3.3].

Theorem 2. Let q† ∈ W 2,p(Ω) ∩ A, f ∈ H1(Ω) ∩ L∞(Ω) and g ∈ H
3
2 (∂Ω) ∩

L∞(∂Ω), with p = max(2, d + ν) for small ν > 0. For any ψ ∈ H1(Ω), there
exists a solution vψ of the equation ∇u† · ∇vψ = ψ almost everywhere in Ω and
it satisfies ‖vψ‖H1(Ω) ≤ c‖ψ‖H1(Ω). Fix small ǫq, ǫσ > 0, and let (q∗θ , σ

∗
κ) be the

DNN realization of a minimizer (θ∗, κ∗) ∈ (Pp,ǫq ,P
⊗d
2,ǫσ

) of problem (7). Then

with η := ǫq + (γ
1
2
σ + γ

1
2

b + 1)ǫσ + δ + γ
1
2
q , there holds

‖q† − PA(q
∗
θ)‖L2(Ω) ≤ c(1 + γ

− 1
4

σ + γ
− 1

4

b )(1 + γ
− 1

4
q η

1
2 )η

1
2 .

Now we analyze the error of the approximation q̂∗θ via the empirical loss Ĵγ(θ, κ)

[5, Theorem 3.5]. The loss Ĵγ(θ, κ) involves also quadrature errors arising from
approximating the integrals via Monte Carlo methods. The key of the analysis is to

bound the error supqθ∈Nq,σκ∈Nσ

∣∣Jγ(qθ, σκ)−Ĵγ(qθ, σκ)
∣∣ for suitable DNN function

classes Nq and Nσ (corresponding to the sets Pp,ǫq and P⊗d
2,ǫσ

, respectively), which
are also known as statistical errors in statistical learning theory. The proof uses
PAC-type generalization bounds, which boils down to Rademacher complexity of
the DNN function classes Nq and Nσ.
Theorem 3. Let the assumptions in Theorem 2 hold, f ∈ L∞(Ω), and zδ ∈
W 1,∞(Ω). Fix small ǫq, ǫσ > 0, and let (θ̂∗, κ̂∗) ∈ (Pp,ǫq ,P

⊗d
2,ǫσ

) be a minimizer

of the empirical loss (8), and q̂∗θ and σ̂∗
κ their NN realizations. Let the bounds

ed, eσ, eb and eq be quadrature errors for each term. Further define η by η :=
ed + γσeσ + γbeb + γqeq + ǫ2q + (γσ + γb + 1)ǫ2σ + δ2 + γq. Then there holds

‖q† − PA(q̂
∗
θ )‖L2(Ω)

≤c
(
(ed + η)

1
2 + (eσ + γ−1

σ η)
1
2 + (eb + γ−1

b η)
1
2 + (eq + γ−1

q η)
1
2 δ
) 1

2
(
eq + γ−1

q η)
1
4 .

The numerical experiments in two and high-dimension show that the approach
is very promising for noisy data, e.g., up to 10% noise in the data, and has re-
cently been extended to anisotropic conductivity [1]. The idea of using conditional
stability for error analysis has also been successfully employed for the hybrid DNN-
FEM discretization scheme [2] and point source identification [3], and thus appear
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more broadly applicable to nonlinear PDE inverse problems for which conditional
stability results are available.
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Lipschitz duality in shallow neural networks

Yury Korolev

(joint work with Francesca Bartolucci, Marcello Carioni, José Iglesias,
Emanuele Naldi, Stefano Vigogna)

Universal approximation theorems like [8, 14] state that any continuous function

on a compact set K ⊂ R
d can be approximated arbitrary closely by a neural

network with a single hidden layer and a non-polynomial activation function; in
other words, universal approximation theorems are density results. This makes
such networks a reasonable function class to approximate continuous functions.

However, universal approximation alone cannot explain empirical success of neu-
ral networks in approximating functions in very high dimensions (d ≫ 1). Many
other function classes have their own versions of universal approximation, which
may come, e.g., in the form of the Stone-Weierstrass theorem. For example, [15]
gives the following, very general version.

Theorem 1 ([15]). Let K be compact and B be a linear subspace of C(K) that
contains constant functions and separates points of K. If h ∈ C(R) is a non-affine
function that operates on B (that is, if f ∈ B then h ◦ f ∈ B) then B = C(K).

For h(t) = t2 we recover the “usual” Stone-Weierstrass theorem, for h(t) = |t|
its “lattice version”.

While universal approximation doesn’t make neural networks stand out from
other approximators, what does is that, for functions in certain subspaces of C(K),
they can achieve approximation rates that are independent of the dimension of K.
The first result in this direction is due to Barron

Theorem 2 ([4]). Let f : [0, 1]d → R be a function and f̂(ξ) its Fourier transform.
Suppose that ∃C > 0 such that ∫

|ξ|
∣∣∣f̂(ξ)

∣∣∣ dξ < C.



Deep Learning for PDE-based Inverse Problems 59

Suppose that σ : R → R is sigmoidal. Then for any n ∈ N there exists a neural
network

(1) fn(x) :=
∑n

i=1
aiσ(〈ωi, x〉+ bi), ωi ∈ R

d, ai, bi ∈ R,

such that

‖f − fn‖L2 ≤ 2C√
n
.

The coefficients {ai}ni=1 can be chosen to satisfy
∑n

i=1 |ai| ≤ 2C.

While the above theorem gives a sufficient condition for dimension-independent
approximation rates, there are larger spaces admitting such rates, notably the
variation norm spaces [12, 13, 3, 2]. In particular, [2] proposed to parametrise a
shallow neural network using a Radon measure over the parameter space rather
than the parameter values themselves. The resulting construction, a so-called
infinite-width shallow neural network, is given by

(2) fµ(x) =

∫

Θ

σ(〈w, x〉 + b) dµ(w, b), x ∈ R
d,

where µ ∈ M(Θ) is a signed Radon measure on the parameter space Θ = {(w, b) ∈
R
d+1 : w ∈ R

d, b ∈ R}. By choosing the discrete measure µ =
∑N

i=1 aiδ(ωi,bi) in
(2), one recovers a shallow neural network with N neurons (1). Moreover, by
identifying x with (x, 1) one can consider (w, b) as a single variable and write

fµ(x) =

∫

Θ

σ(〈θ, x〉) dµ(θ), x ∈ R
d×{1} ⊂ R

d+1 .(3)

The space of infinite-width shallow neural networks was called the Barron space
in [9]. The integral in (3) can be interpreted as a duality pairing

fµ(x) = 〈µ, σ(〈·, x〉)〉,(4)

where the meaning of the brackets depends on the parameter space Θ. If this
space is compact then the pairing can be understood as that between continuous
functions C(Θ) and finite Radon measures M(Θ). If the space is only locally
compact (as is often the case with neural networks), [6] proposed to use a mea-
surable weighting function β : Θ → R such that supθ∈Θ |ρ(x, θ)β(θ)| = Dx < ∞
for all x ∈ X and interpret the pairing (4) as that between continuous functions
vanishing at infinity C0(Θ) and finite Radon measuresM(Θ):

fµ(x) = M(Θ)〈µ, σ(〈·, x〉)〉C0(Θ) =

∫

Θ

σ(〈θ, x〉)β(θ) dµ(θ).

At this point, the weighting β seems to be artificial and a technical artefact.
We propose another interpretation of the pairing (4) in the case when the activa-

tion function σ is Lipschitz (which is true for all activation functions of practical
interest), which is a version of the famous Kantorovich-Rubinstein duality. Let
Lip(Θ) denote the space of Lipschitz functions on Θ. Choose a fixed base point
e ∈ Θ and set

(5) ‖f‖Lip := max {|f(e)| , L(f)} ,
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where L(f) is the Lipschitz constant. Lipschitz spaces are always dual spaces and
in many cases the predual is unique [16, Sect. 3.4]. This predual goes by several
names, e.g. the Arens-Eells space [1] or the Lipschitz-free space [10]; it also has
connections to (and roots in) optimal transport.

Denote by M(Θ) the space of finite Radon measures over Θ and by M0(Θ)
the subspace of balanced measures, i.e. those with µ(Θ) = 0. Let Mp(Θ), with
p ∈ (0,+∞), be the subspace of measures in M(Θ) with finite p-moments. For
p = 1, an alternative norm onM1(Θ) can be defined as follows [7, Sect. 8.10(viii)]

(6) ‖µ‖KRu := |µ(Θ)|+ sup

{∫

Θ

f dµ(θ) : f(e) = 0, L(f) ≤ 1

}
.

For balanced measures the norm (6) is known as the Kantorovich-Rubinstein
norm [11, Sec. VIII.4] denoted by ‖·‖KR. In our notation ‖·‖KRu we emphasize the
fact that the measure can be unbalanced. The spaceM1(Θ) is not complete under
this norm, and its completion will be denoted by KRu(Θ). For balanced mea-
sures, the completion of the space of balanced measures with a finite first moment
(which we denote byM0

1(Θ)) in the norm (6) is the more standard Kantorovich-
Rubinstein space KR(Θ). It can be checked that Lip(Θ) with the norm (5) is the
dual of KRu(Θ).

Since many popular activation functions are Lipschitz, it seems reasonable to
interpret the pairing in (4) as the dual pairing

fµ(x) = KRu(Θ)〈µ, σ(〈·, x〉)〉Lip(Θ).(7)

In the context of empirical risk minimisation, compactness plays an important
role in ensuring the existence of minimisers. It is known that for a compact space
Θ, the unit ball with respect to the total variation norm is strongly compact in
the Kantorovich-Rubinstein space [11, Thm. VIII.4.3]. Moreover, one can show
that for a non-compact Θ the result holds under certain moment conditions on
the measures, which are also necessary to ensure such compactness.

Theorem 3 ([5, Thm. 20]). Suppose that p > 1. Then the following set is compact
in KRu(Θ)

Bp =

{
µ ∈M(Θ) :

∫

Θ

(1 + d(θ, e)p)d|µ|(θ) ≤ 1

}
,

where d(·, e) denotes the distance to the base point e ∈ Θ.

With this compactness result at hand, we consider, for p > 1, the following
regularised empirical risk minimisation problem

inf
µ∈KRu(Θ)

1

N

N∑

i=1

L(yi, fµ(xi)) +Gα,β(µ),(8)

where {xi, yi}Ni=1 are the training data, α ≥ 0 and β > 0 are parameters and the
regularizer Gα,β : KRu(Θ)→ [0,∞] is defined by

(9) Gα,β(µ) :=




α‖µ‖KRu + β

∫

Θ

(1 + d(θ, e)p) d |µ| (θ) if µ ∈ Mp(Θ),

+∞ otherwise.
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In [5], we study this problem and prove a representer theorem, showing the
existence of solutions of finite width. We study large data limits (N → ∞) and
show strong KRu convergence of the solutions µN , which implies uniform conver-
gence of the corresponding functions fµN

on bounded sets. We also show how
the regulariser can be modified to describe network distillation and fusion. We
generalize the framework further using the duality between continuous functions
with controlled growth and weighted measures, which allows us to clarify the role
of weights used in [6].
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Unveiling the role of the Wasserstein distance in generative modelling

Lisa Kreusser

Generative models have gained remarkable popularity in the machine learning
community over the last few years due to their ability to create realistic and
complex data in a variety of applications. For instance, they are used to generate
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photorealistic images in computer vision, synthesize natural-sounding speech in
audio processing, and even produce coherent and contextually relevant text in
natural language processing tasks. These models are typically categorized into
three major classes: likelihood-based models, such as variational autoencoders
(VAEs); implicit models, like generative adversarial networks (GANs); and score-
based models, which leverage probabilistic approaches for data generation. In this
talk, I shared insights into our recent research advancements focusing on two key
areas: (i) Wasserstein generative adversarial networks (WGANs) and (ii) score-
based diffusion models, both of which represent significant progress in the domain
of generative modelling.

Wasserstein GANs were originally inspired by the idea of minimizing the Wasser-
stein distance between the real and generated data distributions, which was pro-
posed as a theoretically robust alternative to traditional GAN loss functions. How-
ever, through theoretical analysis and empirical experiments, we demonstrate that
the WGAN loss fails to provide a meaningful approximation of either the true dis-
tributional Wasserstein distance or the batch Wasserstein distance. We argue that
the apparent success of WGANs arises precisely from this failure, which prevents
the batch Wasserstein distance from being approximated effectively, resulting in
unique learning dynamics that contribute to the model’s empirical performance.

On the other hand, score-based diffusion models have emerged as one of the most
promising approaches in deep generative modelling, showcasing state-of-the-art
performance across a wide range of generative tasks. These models are grounded in
robust mathematical principles, employing stochastic differential equations (SDEs)
and their deterministic counterparts, ordinary differential equations (ODEs), to
model the data generation process. Our research systematically explores the rela-
tionship between the ODE and SDE dynamics in score-based diffusion models. By
linking these dynamics to the Fokker–Planck equation, we derive a theoretical up-
per bound on the Wasserstein 2-distance between the distributions induced by the
ODE and SDE formulations. This bound is expressed in terms of the residual error
in the Fokker–Planck equation, providing valuable insights into the approximation
quality of each approach.

Furthermore, we conduct numerical experiments to evaluate the practical impli-
cations of this theoretical analysis. By incorporating the Fokker–Planck residual
as an additional regularization term during training, we observe that the gap
between the ODE- and SDE-induced distributions can be significantly reduced.
While this regularization improves the quality of distributions generated by the
ODE, it comes with a trade-off: the sample quality of the SDE-based distributions
may degrade.

Overall, our research provides new theoretical and practical insights into the func-
tioning of WGANs and score-based diffusion models, shedding light on their re-
spective strengths, limitations, and unique properties. These findings contribute
to a deeper understanding of generative modelling and pave the way for further
advancements in the design of robust and efficient generative frameworks.
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Efficient diffusion models for MRI reconstruction

Yolanne Yi Ran Lee

Lumbar spine disorders are a prevalent health issue, motivating research into tar-
geted imaging for treatment planning and guided interventions. Magnetic Reso-
nance Imaging (MRI) captures bone and soft tissue structures without radiation,
albeit with prolonged acquisition times. To address the tradeoff between image
quality and acquisition efficiency, thick-slice MRI has emerged as a practical so-
lution, offering fast acquisition with high in-plane resolution but suffering from
limited through-plane resolution and inconsistent contrast [1, 2]. Recent work in
[3] proposes the Latent Space Diffusion Energy-Based Model (LSDEBM), which
integrates an energy-based prior into a latent space diffusion process to refine re-
constructions from thick-slice data. By leveraging the generative capabilities of
diffusion models and employing a latent-space representation, LSDEBM overcomes
the computational inefficiencies associated with traditional diffusion models, offer-
ing a computationally efficient and high-quality solution for 3D medical imaging.

Figure 1. The schematic diagram of our network structure and
proposed LEBM. The input is encoded into the latent space z,
where a forward diffusion process is constructed and a reverse
process with a conditional energy-prior is learned. z0 is then
decoded back into the image dimensions.

The architecture of the LSDEBM is visualized in Fig. 1[3]. An inference network
ϕ uses convolutional layers to encode the image into a latent vector, which is then
optimized by the energy-based diffusion and denoising processes. The generation
network β then reconstructs the images via a series of deconvolutional layers with
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higher resolution from the learned latent. Here, a conditional energy-based prior
is applied in the denoising process instead of the approximation by a U-Net [4].
This latent-space formulation reduces computational overhead by constraining the
diffusion process to a lower-dimensional representation, facilitating stable and ef-
ficient optimization. The reverse diffusion process is realized via Markov Chain
Monte Carlo (MCMC) sampling using Langevin dynamics [5, 6]. The energy func-
tion, parameterized by a neural network, governs the denoising process, ensuring
high fidelity in the reconstructed images.

LSDEBM outperforms VAEs and Latent Energy-Based Models (LEBMs) in re-
constructing lumbar vertebrae from low-quality MRI, achieving higher Dice scores
and improved performance across various metrics [3]. It matches VAE training
times while being 50% faster than LEBMs, addressing the high computational
demands of 3D medical imaging efficiently.

Beyond its application to vertebrae modeling, LSDEBM establishes a foun-
dation for leveraging latent space diffusion processes in broader medical imaging
tasks. Current work now explores other alternatives to further condition the latent
space by leveraging similar concepts from [7]. We propose to use the pseudo-metric
tensor, JacobianTJacobian, to similarly induce sparsity and orthogonality in the
latent space. This would encourage a meaningful latent space representation in a
similar way that the energy-based model in [3] learns a ‘low energy’ representa-
tion with the added interpretation of a more efficient representation thanks to the
sparse and orthogonal regularization.
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Dynamical systems-based structured networks

Davide Murari

(joint work with Priscilla Canizares, Carola-Bibiane Schönlieb, Ferdia Sherry,
Zakhar Shumaylov)

Structured neural networks inspired by dynamical systems offer a powerful ap-
proach to solving problems where preserving qualitative properties, such as conser-
vation laws, is crucial. A notable example, detailed in [1], are Lipschitz-constrained
network denoisers, which ensure convergent fixed-point iterations when employed
in Plug-and-Play algorithms. Another property to enforce over a network is sym-
plecticity. As we will see in Section 1, this property can significantly improve the
long-term stability of a network-based differential equation solver.

This extended abstract presents a procedure to enforce a specific structure over
Residual Neural Networks (ResNets). ResNets have gained popularity because
they provide a much more stable training process compared to feedforward neural
networks. The fundamental layer of a ResNet takes the form

(1) R
d ∋ x 7→ x+ F(x; θi) ∈ R

d,

where F(· ; θi) : Rd → Rd is a vector field depending on some parameters collected
in θi. We can interpret the map in (1) as a single step of size 1 of the explicit
Euler method applied to the parametric initial value problem

(2)

{
y′(t) = F(y(t) ; θi)
y(0) = x.

We use the notation ′ = d/dt here and throughout this abstract. Based on this
insight, we can generalise the standard ResNet architecture with layers as in (1) to
encode additional structure. To do so, we can replace the explicit Euler method in
(1) with any other one-step numerical method, and the differential equation in (2)
can be designed as needed. For example, to get a network preserving the ℓ2−norm
of the input, we could choose F(x ; θ) to be a vector field tangent to a sphere
and then use a norm-preserving integrator to replace the map in (1). To suitably
choose how to replace these two building blocks and develop different ResNet-like
architectures, we can rely on the well-developed fields of Dynamical Systems and
Geometric Numerical Integration. We now present such an approach to design
symplectic neural networks.

1. Time-dependent Symplectic Neural Networks

We now focus on time-dependent canonical Hamiltonian systems on R2d, which
can be described with the differential equations

(3) x′(t) = J∇xH(x(t), t), J =

(
0 I
−I 0

)
,

where I, 0 ∈ Rd×d are the identity and zero matrices, respectively. In (3), the
function H : R2d × R→ R is the Hamiltonian energy, and the matrix J is the so-
called canonical symplectic matrix. We denote with φH,t : R

2d → R2d the time−t
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flow map of (3) starting from time 0, i.e., x(t) = φH,t(x(0)). The map φH,t is
symplectic for every t ≥ 0, meaning that

(∂x0φH,t(x0))
⊤
J (∂x0φH,t(x0)) = J

for every t ≥ 0 and x0 ∈ R2d. By the chain rule, it is also easy to verify that
composing symplectic maps leads to symplectic maps. These two properties allow
us to build time-dependent symplectic neural networks by composing the exact
flows of easily solvable parametric Hamiltonian systems.

We consider the Hamiltonian functions Hq and Hp defined as

(4) Hq(q, p, t ; θq) = ∂tU(q, t ; θq) and Hp(q, p, t ; θp) = ∂tK(p, t ; θp),

where the state variable x ∈ R2d is split into x = (q, p) with q, p ∈ Rd, whereas θq
and θp are the parameters determining the two energy functions. The equations
of motion defined by Hq and Hp can be exactly integrated, leading to

φHq ,t(q0, p0) =

(
q0

p0 − (∇qU(q0, t ; θq)−∇qU(q0, 0 ; θq))

)
,

φHp,t(q0, p0) =

(
q0 + (∇pK(p0, t ; θp)−∇pK(p0, 0 ; θp))

p0

)
.

(5)

We then define a time-dependent symplectic network of 2L layers as

(6) N (x, t ; θ) = φHL
p ,t
◦ φHL

q ,t
◦ · · · ◦ φH1

p ,t
◦ φH1

q ,t
(x).

The superscripts in Hi
q and Hi

p indicate that these are layer-specific functions,

each with its own parameters. In practice, we define Hi
q(q, p, t ; θ

i
q) = ∂tU(q, t ; θiq)

and Hi
p(q, p, t ; θ

i
p) = ∂tK(p, t ; θip) where U and K are modelled by small neural

networks depending respectively on the parameters θiq and θ
i
p. The parameter θ, on

which N depends, collects all layer-specific weights θiq and θip. The network in (6)
has the same structure described at the beginning of this abstract. In this specific
case, we are in the “lucky” situation where no numerical method is required, as
we can directly access the exact solutions of the differential equations defining the
network layers. We provide more details on this network architecture, which we
call SympFlow, in [2].

A one-step numerical method ψh with step size h > 0 is called symplectic
if it preserves the symplectic structure when applied to a Hamiltonian system,
i.e., it satisfies (∂xψ

h(x))⊤J(∂xψh(x)) = J . A well-known result in geometric
numerical integration (see [3, Section IX.8]) guarantees that a symplectic method
approximating the solutions of a time-independent Hamiltonian system of the form
x′(t) = J∇H(x(t)), will almost conserve the Hamiltonian energy H for exponen-
tially long time intervals. Motivated by this result, we aim to design a symplectic
neural network that approximates φH,t while preserving the structure of the Hamil-
tonian system. We consider a time-dependent symplectic neural network as in (6)
and train it to approximate φH,t over a compact set Ω × [0,∆t] ⊂ R

2d × R. We
train the network by minimising the residual between the left and right-hand sides
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of the target differential equation, i.e., the loss function

L(θ) =
1

N

N∑

i=1

∥∥∥∥
d

dt
N (xi0, t ; θ)

∣∣∣∣
t=ti
− J∇H(N (xi0, t

i ; θ))

∥∥∥∥
2

2

,

for N sampled initial conditions xi0 ∈ Ω and time instants ti ∈ [0,∆t], i = 1, ..., N .
We include in Figure 1 the results for the simple harmonic oscillator. In this case

we set Ω = [−1, 1]2 and ∆t = 1. To make predictions up to time T = 500, we com-
pose the network with itself sufficiently many times, as one would do with the exact
flow map φH,t. For example, to predict the state at t = ∆t + ∆t/2, we evaluate
N (N (x,∆t ; θ),∆t/2 ; θ), recursively applying the network over smaller intervals.
The figure compares the results obtained with our symplectic network, SympFlow,
with a reference Runge–Kutta (5,4) solver and an unstructured ResNet. We see
that, similarly to what occurs for numerical methods, the symplectic property
improves the long-term energy behaviour. This demonstrates the practical ad-
vantage of incorporating symplecticity into the network design, particularly for
systems requiring accurate long-term energy conservation. While these results are
encouraging, further investigation is needed to extend backward error analysis,
commonly used for numerical methods, to neural networks. This could provide
deeper insight into the improved energy behaviour observed in our experiments.
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Figure 1. Comparison of the predicted orbit and the correspond-
ing energy. The Hamiltonian of the target system is H(q, p) =
(q2 + p2)/2, and we integrate up to the final time T = 500.
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Spatially adaptive Ridge regularizers: Stability and performance

Sebastian Neumayer

Inverse problems in imaging amount to reconstructing an (unknown) image x ∈ R
d

from a (noisy) observation y ∈ R
m determined by the linear relation

(1) y = Hx+ n,

where H ∈ R
m×d encodes the underlying data acquisition process and the noise

n ∈ R
m accounts for imperfections in this description. As the matrixH in equation

(1) is often ill-conditioned or even non-invertible in practice, which implies that
(1) is ill-posed in the sense of Hadamard, reconstructing x from y is usually a
highly challenging task. In the past years, deep-learning-based approaches have
become the state-of-the-art for this inversion task in many applications, see [2]
for an overview. Although they are able to achieve impressive results, several
concerns regarding their trustworthiness remain. In particular, we should keep in
mind that, aside from reconstruction performance in terms of some quality metric,
the following properties are usually also desirable:

• universality, i.e., that H and the noise model are input parameters of the
method;

• data consistency, namely that (1) is approximately satisfied;

• Lipschitz continuity of the data-to-reconstruction map y 7→ xrec;

• interpretability, e.g., in the sense that there exists an explicit underlying
model.

Recent works reveal the troublesome issues that potentially arise for deep-learning-
based approaches if these principles are not met [1]. On the other hand, we know
that these principles are (usually) met by classical variational solutions

(2) x̂ = argmin
x∈Rd

D(Hx,y) + λR(x),

where the data fidelity D : R
m×R

m → R ensures data consistency and the reg-
ularizer R : R

d → R incorporates prior information about the unknown x. Un-
fortunately, hand-crafted regularizers such as the the (convex) Tikhonov [9] or
total-variation (TV) [8] ones cannot achieve the same reconstruction quality as
data-driven approaches. Recent works attempts to close this performance gap by
learning a regularizer R from data.

A pioneering approach is the fields of experts [7], where R is the sum of nonlinear
1D functions composed with convolutional filters

(3) R : x 7→
NC∑

j=1

〈1d, ψj(Wjx)〉..

In (3), the potentials ψj : R → R
+ are applied pixelwise, the Wj ∈ R

d×d are
convolution matrices, and j indexes along the NC channels. Recently, we proposed
an efficient scheme to learn both the filters and the 1D functions based on linear
splines [3, 4]. Over the years, it has been observed that the use of a spatially varying
regularization mask (as opposed to a constant weight λ1d) can significantly boost
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the performance for models of the form (2). More precisely, we modify (3) by

using a spatially varying regularization mask Λ : R
m → R

d
+ that depends on the

data y according to some heuristic, which leads to

(4) Ry : x 7→
NC∑

j=1

〈
Λj(y), ψj(Wjx)

〉
.

In Figure 1, we observe that indeed both the noise and the structure in the ground
truth xgt lead to high cost. Consequently, to avoid oversmoothing, the values of
Λ should be smaller at structures. In [6], we proposed to compute Λ based on an
unconditional reconstruction xest ∈ R

d associated to (2) with regularizer (3), which
is then plugged into a mask-generating NN G : R

d → [0, 1]dNC . This significantly
boosts the performance compared to the unconditional regularizer (3).

Figure 1. The first three images correspond to the pixelwise cost
Rpix(x) for x ∈ {xgt,y, x̂}, respectively, where black corresponds
to high values. The last two depict the adapted cost Ry,pix(x) =
Λ(y) ⊙Rpix(x), and the mask.

Further, we studied three classic properties of the reconstruction model (2) and
the associated reconstructions x̂ in [5]:

• We show existence of minimizers based on geometric arguments that do
not require the coercivity of R.
• We prove Lipschitz continuity of the (set-valued) data-to-reconstruction
map x̂(y) for the convex and data-independent case. If Ry is data-
dependent, we only obtain a weaker notion of Lipschitz continuity (Aubin
property).
• We show that given a solution x̂ with Hx̂ = y and noisy data ‖yδ−y‖ ≤ δ,
we can find a parameter choice rule λ : R → R with λ(δ) → 0 as δ → 0
such that

(5) lim
δ→0

argmin
x∈Rd

D(Hx,yδ) + λ(δ)Ryδ
(x) = x̂.

In words, this means that we approach x̂ in the low noise regime.
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Deep learning meets direct sampling methods for inverse
scattering problems

Jianfeng Ning

(joint work with Fuqun Han, Jun Zou)

Problem formulation. Consider the inverse scattering problems governed by
the Helmholtz equation:

(1) ∆u+ k2n(x)u = 0 in R
d , d = 2, 3.

where u = ui+us is the total field. ui and us are the incident and scattered fields,
respectively. Denote u∞ ∈ Sd−1 as the far-field pattern of us, then

(2) us(x) =
exp(ik|x|)
|x|(N−1)/2

{
u∞(x̂) +O(1/|x|)

}
, |x| → ∞ .

The inverse scattering problem of our interest involves recovering unknown scat-
terers, i.e., n(x), from the measurement of us(equivalently u) or u∞, corresponding
to some incident fields.

Direct sampling methods (DSM). The DSMs can provide robust approxima-
tions for the shapes and locations of the unknown scatterer. They involve the
computation of the indicator functions:

IDSM(z) := |〈G(z, x), us(x)〉L2(Γ)| =
∣∣∣∣
∫

Γ

G(z, x)us(x)ds(x)

∣∣∣∣,(3)

(4) I∞DSM(z) := |〈G∞(z, x), u∞(x)〉L2(SN−1)| =
∣∣∣∣
∫

SN−1

G∞(z, x)u∞(x)ds(x)

∣∣∣∣,

for z ∈ Ω and us, u∞ data.
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If the indicator functions take a relatively large value at a point z, the point
z is likely to be within or near the scatterer, otherwise the point z is likely to be
away from the scatterer.

Given phaseless total field data |u|, we proposed a DSM with the following
indicator function[2]:

(5) IphaselessDSM (z) :=

∣∣∣∣
∫

Γr

G(z, xr)
|u(xr)|2 − |ui(xr)|2

ui(xr)
ds(xr)

∣∣∣∣, ∀ z ∈ Ω,

and we have shown the following asymptotic relationships between the above three
indicator functions:

(6) IphaselessDSM (z) = IDSM(z) +O(R(1−N)/2
r ) = CNI∞DSM(z) +O(R(1−N)/2

r ) .

Learned post processing with DSM. We proposed a deep learning approach
integrating the DSM for inverse scattering problems[1, 2]. With Nin incident

fields, we can get their corresponding Nin indicator functions {Ii}Nin

i=1 . We employ

the indicator functions {Ii}Nin

i=1 as input to a network GΘ, and the output is a
reconstruction of the unknown medium n(x). I.e.,

(7) n(x) ≈ GΘ(I1, I2, · · · , INin
).

A very effective network for this problem is the well-designed convolutional net-
work: U-Net. With some properties of the indicator functions, the proposed learn-
ing approach has several attractive advantages.

• The computation of the indicator functions is very simple, cheap, and
parallel.
• The DSM is very robust to noise, as the high-frequency noise is likely to
be smoothed out in the DSM process, which makes the proposed learning
scheme also very robust to noise.
• Denote ID1 and ID2 the indicator functions for scatterer D1 and D2,
respectively. Then we have ID1∪D2 = ID1+ID2+O(dist(D1, D2)

(1−N)/2).
This means that the relation between the indicator function and the true
image is mainly local, which is rather consistent with the local nature of
CNNs.
• Based on the asymptotic properties (6), when the radius of the measure-
ment surface is large enough, a network trained with us can also be applied
to problems with data u∞ or |u| available.
• The DSM does not require a prior knowledge of the type of the unknown
scatterer. The proposed learning approach can solve problems when both
penetrable and impenetrable scatterers coexist.

Learning the probing functions for direct sampling methods for limited-
aperture data. Consider the problem with far-field data u∞, in (4) we employ
G∞(z, x̂) as the probing function for full-aperture data, However, given limited-
aperture data u∞|Γ measured from partial area Γ, directly employing G∞(z, x̂) as
the probing function can only provide low-resolution reconstruction[3]. Our aim
is then to parameterize the desired probing function with a network NNΘ(z, x̂)
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and train it without any training data by introducing a proper loss function.
Specifically, we hope the network can meet the following approximation property
for any far-field data u∞:

(8) 〈NN ϑ(z, x̂), u
∞(x̂)〉L2(Γ) ≈ 〈G∞(z, x̂), u∞(x̂)〉L2(S1), ∀z ∈ Ω.

By the linearity of the inner product and the following important expression for
u∞:

(9) u∞(x̂) =

∫

RN

G∞(y, x̂)I(y)dy, where I(y) = (n(y)− 1)k2u(y),

it would be reasonable to require the following in order to meet the approximation
property (9) for an appropriately selected integer N :

〈NN ϑ(z, x̂),

N∑

n=1

cn exp(−ikx̂ · yn)〉L2(Γ)

≈ 〈exp(−ikx̂ · z),
N∑

n=1

cn exp(−ikx̂ · yn)〉L2(S1), ∀yn, z ∈ Ω, ∀cn ∈ C.(10)

Thus, we can introduce the following loss function[3]:

Loss(ϑ) =
1

ML

M∑

m=1

L∑

l=1

∣∣∣∣
|Γ|
Q

Q∑

q=1

NNϑ(zl, x̂q)vδm(x̂q)

− 2π

N∑

n=1

cnmJ0(k|zl − ynm|)
∣∣∣∣
2

,(11)

where vm(x̂) =
∑N
n=1 cnm exp(−ikx̂ · ynm) and vδm(x̂) is obtained by polluting

vm(x̂) with noise. In each iteration ℜ(cnm) and ℑ(cnm) are randomly chosen from
the normal distribution, {ynm} are randomly chosen from the uniform distribution
of Ω. L is a fixed number and points {zl}Ll=1 are randomly chosen from Ω in each

iteration. {x̂q}Qq=1 are some uniformly distributed points on Γ.
It is easy to see the training process does not require any training data. In

addition, given a new problem with the same measurement area, we do not need
to retrain the network.

We also developed a finite space framework to construct probing functions for
limited-aperture data[3]. However, in this non-learning approach, we must care-
fully choose a regularization parameter, while the proposed deep probing network
can escape the need to choose a regularization parameter.
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Learning priors for Bayesian inverse problems in imaging

Thomas Pock

(joint work with Muhamed Kuric)

Inverse problems in imaging [1] aim to recover unknown signals from observed
measurements, often described as y = A(x) + η, where y are the given measure-
ments, A is a known forward operator, x the signal of interest, and η represents
noise. The Bayesian framework expresses the posterior distribution of possible
image reconstructions using Bayes’s theorem as

pX|Y (x|y) ∝ pY |X(y|x)pX(x),

where pX(x) is the prior, pY |X(y|x) is the likelihood, and pX|Y (x|y) is the posterior.
In practice, the likelihood is usually defined through the physics of the imaging
process and the noise distribution. For example in MRI, the likelihood is simply
a multivariate Gaussian distribution of the form

pY |X(y|x) ∝ exp

(
− 1

2σ2
‖SFx− y‖2

)
,

where F is the Fourier transform and S is a sampling operator [2]. However,
the image prior pX(x) is much harder to model by hand due to the structural
complexity of images (natural or medical). Hence, machine learning approaches
are needed in order to learn expressive image priors from data.

In this talk, we present a general method for learning priors from data based on
marginal feature statistics and the principle of maximum entropy [3]. The idea is
to learn a prior pX(·, θ) that maximizes its entropy (and hence is least restrictive)
but has the same marginal feature statistics as the training data. This amounts
for solving the following constraint optimization problem:

max
p

Ex∼p[− log p(x)]︸ ︷︷ ︸
H[p]

, Ex∼p[1] = 1, p(x) ≥ 0, Ex∼p[φk(x)] = µk, k = 1, ...,K,

where H [p] is the entropy, φk(x) are some features (scalars, vectors or functions)
and µk are the corresponding feature expectations computed on the training data.
It turns out that ths solution to this problem yields Gibbs-like priors of the form

pX(x; θ) ∝ exp

(
−

K∑

k=1

〈θk, φk(x)〉
)
,

where θk are the Lagrangian multiplier functions, which act as the potential func-
tions in the energy of the Gibbs distribution. Interestingly, the Lagrangian dual
problem of maximum entropy is equivalent to minimum negative log-likelihood
learning.
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In initial experiments, we used simple function-valued features φk, which are
obtained as an image histogram of the result of convolution of the image with
small convolution kernels fk. The kernels fk were taken from the basis functions
of a 2D discrete cosine transformation of size 7× 7. Mathematically, the features
φk are given by

φk(x, z) =
1
P

P∑

p=1

δ((fk ∗ x)p − z), z ∈ R

where p = 1, ..., P are the image pixels.

Figure 1. The first row shows sampled 96 × 96 patches from a
natural image database. The second row presents similar patches
sampled from the learned model using a Gibbs-like sampler for
approximating the partition function. The next three rows display
7 × 7 convolutional filters. Following this, three rows compare
feature histograms from the training data (blue) with those from
the learned prior (orange). The final three rows depict the learned
Lagrange multiplier functions, which define the energy potential
functions in the prior.

Figure 1 shows preliminary results of learning a maximum entropy prior. The first
row shows some sample patches of size 96×96 extracted from a database of natural
images. The second row shows sample patches of the same size extracted from the
learned model using a Gibbs-like sampler. These samples are used during learning
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to approximate the partition function. The next block of three rows shows the
7× 7 convolutional filters extracted from the discrete cosine transform. Note that
the filters vary between low-frequency and high-frequency filters. The next block
of three rows compares the feature histograms of the training data (in blue) with
the corresponding histograms computed from the learned prior (in orange). It can
be seen that the histograms match very closely, especially for the features with
lower frequencies. The last block of three rows shows the shape of the learned
Lagrangian multiplier functions that define the potential functions of the energy
in the learned prior. It can be observed that the learned functions are much more
oscillatory, especially around the zero point, in contrast to the common manually
created potential functions.

Future directions will include applying the learned priors for solving inverse
problems in imaging, extending this framework to non-linear features extracted
from pre-trained neural networks and improving sampling algorithms for broader
applicability.
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Training data reconstruction

Christina Runkel

(joint work with Kanchana Vaishnavi Gandikota, Jonas Geiping,
Carola-Bibiane Schönlieb, Michael Moeller)

Abstract

Being able to reconstruct training data from the parameters of a neural network
is a major privacy concern. Previous works have shown that reconstructing train-
ing data, under certain circumstances, is possible. As further detailed in [1], we
analyse such reconstructions empirically and propose a new formulation of the re-
construction as a solution to a bilevel optimisation problem. We demonstrate that
our formulation as well as previous approaches highly depend on the initialisation
of the training images x to reconstruct. In particular, we show that a random
initialisation of x can lead to reconstructions that resemble valid training samples
while not being part of the actual training dataset. Thus, our experiments on affine
and one-hidden layer networks suggest that when reconstructing natural images,
yet an adversary cannot identify whether reconstructed images have indeed been
part of the set of training samples.
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Problem formulation

The empirical success of modern deep learning heavily relies on training on large
datasets which may potentially contain private and sensitive data. The trained
models can memorise [2] and replicate samples from training data [3]. Several
recent works have focused on evaluating the vulnerabilities of deep networks in
leaking information about training data using different attacks. In this work, we
study the training data reconstruction problem, i.e., trying to reconstruct (parts
of) the data a network was trained on without additional knowledge about network
gradients or the initialisation.

Let us assume one has trained a neural network Φ(xi, θ
∗) with training examples

(xi, yi) ∈ R
K×R, i ∈ {1, . . . ,m}, by minimizing the expectation of a loss function

L over all training examples. Then we expect that θ∗ = θ(x, y) for

(1) θ(x, y) ∈ argmin
θ

1

m

m∑

i=1

L(Φ(xi; θ), yi).

Therefore, the natural way to recover the training data {(xi, yi)} a network Φ is
trained on if the final weights θ∗ are known, is to consider the bi-level optimization
problem

(2) min
x,y

l(θ∗, θ(x, y)) s. t. θ(x, y) solves (1).

Interestingly, previous works in this area, most prominently [4] and [5], did
not consider (2). Instead, the authors used an analysis of Karush-Kuhn-Tucker
(KKT) conditions on certain equivalent margin maximisation problems to propose
an approach which - in our notation - could be phrased as

min
x
‖∇θE(x, y; θ∗)‖22(3)

for E(x, y; θ) =
1

m

m∑

i=1

L(Φ(xi; θ), yi).(4)

As shown in [6], the above can be interpreted as an approximation to the original
cost function. More specifically, (3) becomes a majoriser of (2) (and can be used
in iterative algorithms) if the costs E are strongly convex and the upper-level loss
l is strongly smooth.

While [4, 5] demonstrated quite remarkable reconstructions of training data us-
ing (3) in image classification, we focus on the robustness and the faithfulness of
such reconstruction with respect to different initialisations for both (2) and (3).
Our numerical experiments demonstrate that while a carefully chosen initialisa-
tion allows recovering some examples xi from the training data, there also exist
cases where somewhat realistically looking data samples xi are recovered that are
not part of the training data: The energy landscapes of both (2) and (3), seem
to have many minima, and initializing either approach with realistically looking
images that have not been part of the training data quickly leads to a (numerical)
convergence without resembling the training data at all. Thus, we argue that -
despite the ability to reconstruct some training examples - some privacy remains
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in the uncertainty of whether realistically looking images have actually been part
of the training data.
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Numerical linear algebra networks for solving linear inverse problems

Otmar Scherzer

(joint work with Andrea Aspri)

1. Introduction

We consider solving a potentially ill-conditioned linear operator equation:

(1) Fx = y,

where x ∈ R
m and y ∈ R

m. Following the terminology of [3, 1], we refer to R
m as

the image space and R
m as the data space. The main assumption of this work is

that the operator F is not modeled by physical laws but indirectly via training
pairs P := {(xi,yi) : i = 1, . . . , N}, which satisfy

Fxi = yi, i = 1, . . . , N.

The integer N is called the sampling size. We study methods for learning the
linear operator F and its inverse through encoding and decoding. After learning the
linear operator F , we can solve Equation 1 for arbitrary data y ∈ R

m. Operator
learning is currently a very active field of research. Various methods have been
developed, such as:

• Black-box strategies for linear operator learning (see, for instance, [11]).
• The use of deep neural networks for learning nonlinear operators (see
[7, 9, 8, 10]).

https://openreview.net/forum?id=TatRHT_1cK
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We denote the spans of the training images and data by

XN := span {xi : i = 1, . . . , N} ⊆ R
m, YN := span {yi : i = 1, . . . , N} ⊆ R

m .

We assume that the training images xi are linearly independent and that F has a
trivial null space, so that the training data yi are also linearly independent.

2. Coders for Operator Learning

In manifold learning, a fundamental tool in machine learning, coding refers to
representing data points that are assumed to lie on a low-dimensional manifold
(see, for instance, [5, 4]). This setting, which does not involve an operator con-
necting data, is illustrated in Figure 1. Our approach for linear operator learning

N−1

Y
NX

�✁✂✄☎✁✆ ✝✞✂✄☎✁✆

✟✠✡☛✁

✆✁☞✆✁✌✁✞✍✡✍✎✄✞

✏✆✎✞✂✎☞✡✑

☛✁✄☎✁✌✎✂ ✡✞✡✑✒✌✎✌✓

✂✄✠☞✆✁✌✌✎✄✞

✔✁✡✍✕✆✁

✆✁☞✆✁✌✁✞✍✡✍✎✄✞

✟✠✡☛✁

✆✁☞✆✁✌✁✞✍✡✍✎✄✞ ✖✎✡

✞✁✕✆✡✑ ✞✁✍✗✄✆✘✌

Figure 1. Variational encoding and decoding with neural net-
works: The image data are represented via a neural network,
transformed into a feature space by the operatorNX , compressed
using principal geodesic analysis, and are then decoded with N−1

Y .

is conceptually similar but employs different techniques (compare Figures 1 and
2). Specifically, we base our strategy on orthonormalization of the training im-
ages and perform principal component analysis (PCA) on the data obtained
by applying F to these orthonormalized images, as illustrated in Figure 2.

F−1 F

�✁✂✄☎✁✆ ✝✞✂✄☎✁✆

✟✠✡☛✁

✆✁☞✆✁✌✁✞✍✡✍✎✄✞

✏✆✎✞✂✎☞✡✑

✂✄✠☞✄✞✁✞✍ ✡✞✡✑✒✌✎✌✓

✂✄✠☞✆✁✌✌✎✄✞

�✡✍✡ ✄✔

✄✆✍✕✄✞✄✆✠✡✑✎✖✁☎

✎✠✡☛✁✌

✗✆✍✕✄✞✄✆✠✡✑✎✖✡✍✎✄✞

✄✔ ✎✠✡☛✁✌

Figure 2. Proposed encoding and decoding scheme for linear
operators: The image data are orthonormalized, and the corre-
sponding data are computed by applying F - without utilizing any
physical model for the forward operator. PCA is then applied to
the resulting data to compress the data space. The decoder com-
putes the inverse for given data in the compressed space.

3. Results

The main results of our work, based on [2], are as follows:

(1) We show that orthonormalization and coder strategies are interconnected
concepts. In particular, we show that orthonormalization can be formu-
lated as a customized neural network; see Figure 3.
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x1

x2

x3

xn

x1 = σε(x1)

ρ(x2) = x2 − w1,2x1 x2 = σε(ρ(x2))

ρ(x3) = x3 − w1,3x1 − w2,3x2 x3 = σε(ρ(x3))

1

1

1

w1,2 := −〈x2,x1〉
w1,3

w2,3

Figure 3. Neural network structure of the Gram-Schmidt or-
thonormalization. We use the function σε(x) as an approximation
of the projection operator x/‖x‖ in Gram-Schmidt.

(2) The double orthonormalization strategy, consisting of Gram-Schmidt or-
thonormalization of images and PCA of data, yields the singular value
decomposition (SVD) of the linear operator F . Consequently, this strat-
egy serves as a regularization method (see, for instance, [6]).

References

[1] A. Aspri, L. Frischauf, Y. Korolev, and O. Scherzer, Data driven reconstruction using
frames and riesz bases, Deterministic and Stochastic Optimal Control and Inverse Problems
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Lie Algebra Canonicalization: Equivariant Neural Operators under
arbitrary Lie Groups

Zakhar Shumaylov

(joint work with P. Zaika, J. Rowbottom, F. Sherry, M. Weber, C. B. Schönlieb)

The quest for robust and generalizable machine learning models has driven recent
interest in exploiting symmetries through equivariant neural networks. In the con-
text of PDE solvers, recent works have shown that Lie point symmetries can be
a useful inductive bias for Physics-Informed Neural Networks (PINNs) through
data [1] and loss [2] augmentation. Despite this, directly enforcing equivariance
within the model architecture for these problems remains elusive. This is because
many PDEs admit non-compact symmetry groups, which do not act in representa-
tions and oftentimes are not studied beyond their infinitesimal generators, making
them incompatible with most existing equivariant architectures. For example, the
heat equation was only recently shown by [3] to admit a group of point symme-
tries SL(2,R) ⋉φ H(1,R), which is not only non-compact, it also does not act in
a representation on the underlying jet space. This renders most of the currently
available equivariant architectures unusable.

In [4], we propose Lie aLgebrA Canonicalization (LieLAC), a novel approach
that exploits only the action of infinitesimal generators of the symmetry group,
circumventing the need for knowledge of the full group structure. Motivated by
limitations of existing equivariant architectures, we turn to energy-based canoni-
calization as a means for inducing equivariance in existing models. This approach
was first introduced in [5], but remains largely unexplored. Here, we revisit and
extend this approach, and explore its utility in scientific machine learning appli-
cations.

Noting that many existing definitions and results in the prior literature do not
extend readily to the general setting, we extend and refine existing definitions to

(a) DeepONet operator for
the Heat equation.

(b) DeepONet operator for
the Burgers’ equation.

(c) Poseidon operator for
the Allen–Cahn equation.

Figure 1. Canonicalization pipeline for numerical PDE evolu-
tion.
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handle non-discrete and non-compact groups. The proposed energy-based canon-
icalization approach provides a unifying theoretical framework for constructing
frames and canonicalizations. This new framework encapsulates prior work of [6]
on weighted frames, and our energy-based canonicalizations live naturally in this
framework. We showcase all the different notions of canonicalization and framing
together, shown in 2.

Figure 2. Connections between the notions of frames and
canonicalizations introduced previously and in this work. Top
row: finite frames and canonicalizations, mapping vertically into
weighted versions via normalized counting measures. Inside each,
contained a sequentially closed subspace of those that preserve
continuity.

1. Frames and Canonicalizations

The two main ways of imposing equivariance on arbitrary models: frame averaging
and canonicalization, both arise from the study of the Reynolds operator. Frames
are defined, for each element x ∈ X , as a subset of the group G for which to
average over, with an equivariance condition detailed below to ensure equivariance
of the resulting function. Canonicalizations1 are the opposite perspective, for each
element x ∈ X , directly providing a subset of X over which to directly average
the function over with an invariance condition to ensure the resulting function is
equivariant.

Definition 1.
Frames are functions F : X → 2G \ {∅} such that for any x ∈ X and g ∈ G:
F(gx) = gF(x). We call the space of frames FraG(X).
Canonicalizations are functions C : X → 2X \ {∅} s.t. ∀x ∈ X, g ∈ G : C(gx) =
C(x). We call the space of canonicalizations CanG(X). Their action on functions

1Original proposal of [5] relied on these being singletons, requiring authors to introduce relaxed
equivariance. Treating these as sets turns out to be natural for both energy canonicalizations, and for
providing (equivalence) isomorphism of (weighted) canonicalizations with (weighted) frames [7].
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φ is:

F(φ)(x) = 1

|F(x)|
∑

g∈F(x)

φ(g−1x) C(φ)(x) = 1

|C(x)|
∑

y∈C(x)
φ(y)

As F(x) = GxF(x) for any frame, frame averaging is limited to the case that the
frames are finite at each point, i.e. that the set F(x) is finite ∀x ∈ X . For frames
this can only be the case when the group acts with finite stabilizers at all points.
This leads to the following definition of [6], which we extend to canonicalizations.

Definition 2.
(Weakly)-equivariant weighted frames are functions µ[·] : X → PMeas(G) s.t. ∀x ∈
X, g ∈ G : µgx = g∗µx (respectively: ∀x ∈ X, g ∈ G.(πgx)∗µgx = (πgx)∗g∗µx where
πgx : G → G/Ggx is the quotient map. We call the space of weakly-equivariant
weighted frames WFraG(X).
Weighted canonicalizations are G-invariant functions κ[·] : X → PMeas(X). We
call the space of weighted canonicalizations WCanG(X). Their action on φ is:

µ(φ)(x) =

∫

G

φ(g−1 · x) dµx(g) κ(φ)(x) =

∫

X

φdκx

As in the non-weighted case, weighted orbit canonicalizations and weakly-
equivariant weighted frames can be shown to be equivalent [4].

2. Energy Canonicalization

For constructing frames and canonicalization we turn to energy canonicalization.
We start with an energy function E : X → [0,+∞] which we then minimize over
the orbits of the group action Gx. First, in the case where G is finite, every
orbit in X necessarily has a minimum of E, and we note that energy minimization
naturally results in a frame:

(1) FE(x) = argmin
g∈G

E(g−1x) CE(x) = argmin
y∈Gx

E(y)

In the non-compact cases we wish to consider, the classical definitions aren’t suit-
able for two main reasons: the set of minima may not be finite or there may be
no minima. Moving to their weighted versions turns out to be beneficial, however
further care needs to be taken due to the non-compactness. We refer the reader to
[4] for a full discussion. In turn, by performing the minimization in (1), canonical-
izations can efficiently be found. We showcase the effectiveness of our method on
image classification tasks under homography and affine group invariance in. We
further discuss turning neural operators Lie point symmetry equivariant on three
examples, including the pre-trained Poseidon foundation model [8].

We emphasize that our proposed approach is generic, in that it has the potential
to apply to a wide range of models and learning tasks. The energy canonicalization
framework developed here is readily applicable for an arbitrary group with an
arbitrary action, including those not acting linearly, therefore being extendable
to gauge and local symmetries. For Lie groups with smooth actions, one only
requires knowledge of the action of some basis of the Lie algebra, without requiring
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a global parametrization of the group. This flexibility stems from the choice of
energy functional, which directly influences empirical performance and the size of
resulting canonicalizations. We offer guidelines for constructing energy functionals
and for performing Lie group optimization in [4].
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Neural sampling from Boltzmann densities: Fisher-Rao curves in the
Wasserstein geometry

Gabriele Steidl

(joint work with Jannis Chemseddine, Christian Wald, Richard Duong)

We are interested in sampling from a Boltzmann density ρD = e−fD/ZD with
unknown normalizing constant ZD. We aim to construct a curve

ρt = e−ft/Zt, Zt :=

∫

Rd

e−ft dx

interpolating between a simple density ρZ and the target ρD, i.e., ρ0 = ρZ and
ρ1 = ρD. In this case, straightforward computation gives

∂µt = ∂tρt = − (∂tft − Eρt [∂tft]) ρt,

where it maybe useful to note that Eρt [∂tft] = −∂t logZt. This differential equation
is a Fisher-Rao flow equation. For more information on Fisher-Rao flows see, e.g.,
[2, 7].

If such curve admits a velocity field vt and there exists a solution ϕ of

(1) ∂tϕt = vt(ϕt), ϕ0 = Id

and (ϕt)♯(ρZdx) = ρtdx. Then we can use ϕ1 and ρZ to sample from ρD. An
important question is, whether for a given family of functions ft, such velocity
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fields exists. While, for a fixed time t, the existence of such velocity fields is
well established, see e.g. [3], we addressed global existence with integrability of

v : [0, 1] × R
d → R

d in time and space in [1]. This is directly related to the
question whether a large class of Fisher-Rao curves ρt is absolutely continuous in
the Wasserstein geometry, and in particular, fulfills a continuity equation

∂tµt +∇ · (µtvt) = 0.

Note that for Boltzmann densities, the second summand of the continuity equation
reads as

(2) ∇ · (µtvt) = ∇ · (ρtvt) = (−〈∇ft, vt〉+∇ · vt) ρt.
This can be reduced to finding solutions of a family of PDEs

(∂tft − Eρt [∂tft]) ρt = ∇ · (ρtvt).
In the ideal case that we can find a vector field vt = ∇st, this can be rewritten
with (2) and ρt > 0 as the family of Poisson equations

(∂tft − Eρt [∂tft]) = −〈∇ft,∇st〉+∆st,

which needs to be solved for st. For fixed time t, the solution of the Poisson
equation has already been examined, e.g., in [3] and for more recent work, see
also [5, 6]. However, the pointwise solution for each fixed t does not ensure that
(ρt,∇st) gives rise to an absolutely continuous Wasserstein curve, since by defini-

tion this requires additional properties of ∇xs : [0, 1]× R
d → R

d globally in t: i)

∇xs is Borel measurable on [0, 1]×R
d, and ii) t 7→ ‖∇xs(t, ·)‖2L2(ρt,Rd)

∈ L1([0, 1]).

If also, iii) ∇xs(t, ·) ∈ TρtP2(R
d) for a.e. t ∈ [0, 1], then it is known that the ve-

locity field ∇xs is the minimal one. With the appropriate Hilbert spaces at hand,
we showed the existence of the solutions of these PDEs and the existence of an
integrable velocity field vt in time and space which admits moreover a minimality
property of ‖vt‖L2(Rd,ρt) in [1].

Finding ϕ1 requires both determining a curve ft and the associated vector field
vt. One way is to choose a curve interpolating between fZ and fD first, and then
to learn the velocity field. For the linear interpolation

ft = (1− t)fZ + tfD

we showed that there exists indeed an integrable velocity field implying the ab-
solute continuity of the curve in the Wasserstein space. This approach leads to
learning neural networks (vθ1t , C

θ2
t ) by minimizing the loss function

L(θ) := Et∈U [0,1],x∈U [a,b]d [E(θ, x, t)] ,
E(θ, x, t) := |f1 − f0 − Cθ2t + 〈∇ft, vθ1t 〉 − ∇ · vθ1t |2, θ := (θ1, θ2).

Unfortunately, the velocity field corresponding to the linear interpolation can ad-
mit an exploding norm ‖vt‖L2(Rd,ρt), leading to a “non-smooth” particle transport,
see Figure 1.
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Figure 1. Sampling results for m = 8 (top) and m = 15 (bot-
tom): source (black), target (red) and estimated (blue). We can-
not learn a meaningful vector field for the linear interpolation for
both sampling strategies (uniform and along trajectories). Sam-
pling along the trajectories leads to mode collapse for the learned
interpolation. While the learned interpolation with uniform sam-
pling covers the modes for m = 8, increasing m leads to mode
collapse again. In contrast, the gradient flow interpolation does
not mode collapse for both m.

Another approach, recently proposed by [4], considers learned interpolation

ft = (1− t)fZ + tfD + t(1− t)ψt

with unknown ψ and learns (ψt, vt) simultaneously. However, it is theoretically
unclear whether the learned curve is well-behaved or the velocity field is optimal
with respect to the above norm.

As an alternative approach, we propose instead to deal directly with a mathe-
matically accessible curve on [0, T ] and consider the gradient flow interpolation

ft =
T − t
T

fD + tψt.

Fixing the velocity field as vt := ∇(ft − fZ) we only have to learn ψt. The result-
ing PDE is the well-known Fokker-Planck equation related to Langevin dynamics
which has a solution with Boltzmann densities ρt, if, e.g., ρZ is a Gaussian. Then,
the corresponding SDE is the Ornstein-Uhlenbeck (OU) process. Here, the back-
ward ODE of (1) must be applied for sampling. We learned the networks for the
above three cases and demonstrated by numerical examples the effectiveness of
our approach in [1].
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[2] T. O. Gallouët and L. Monsaingeon. A JKO splitting scheme for Kantorovich–Fisher–Rao
gradient flows. SIAM Journal on Mathematical Analysis, 49(2):1100–1130, 2017.

[3] R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson’s equation in nonlinear
filtering. arXiv preprint arXiv:1412.5845, 2014.
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Abstract

Diffusion models have been widely studied as effective generative tools for solving
inverse problems. The main ideas focus on performing the reverse sampling process
conditioned on noisy measurements, using well-established numerical solvers for
gradient updates. Although diffusion-based sampling methods can produce high-
quality reconstructions, challenges persist in nonlinear PDE-based inverse prob-
lems and sampling speed. In this work, we explore solving PDE-based travel-time
tomography based on subspace diffusion generative models. Our main contribu-
tions are twofold: First, we propose a posterior sampling process for PDE-based
inverse problems by solving the associated adjoint-state equation in a plug-and-
play fashion. Second, we present a subspace-based dimension reduction technique,
enabling solving the PDE-based inverse problems from coarse to refined grids, for
conditional sampling acceleration. Our numerical experiments showed satisfac-
tory advancements in improving the travel-time imaging quality and reducing the
sampling time for reconstruction.

Keywords: Score-based diffusion models; Diffusion posterior sampling; Subspace
diffusion generative models; Nonlinear PDE-based inverse problems; Travel-time
tomography; Adjoint-state method.

1. Introduction

In the context of solving inverse problems [8], we aim to recover the original pa-
rameter data x0 from the noisy or incomplete measurement yδ, correlated through
the forward model A and the measurement noise n:

(1) yδ = A(x0) + n.
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In the application of diffusion models to solving inverse problems, the conditional
reverse sampling process for reconstruction is framed as Bayesian posterior sam-
pling [2]. This approach models the conditional score function ∇xt

log pt(xt|yδ)
as a factorization based on Bayes’ rule:

(2) ∇xt
log pt(xt|yδ) = ∇xt

log pt(xt) +∇xt
log pt(y

δ|xt)

Various studies [2, 6, 1] have been devoted to approximating the intractable gra-
dient term ∇xt

log pt(y
δ|xt) to enable sampling from the posterior distribution

p(x0|yδ).
However, applying these methods directly to nonlinear PDE-based scenarios is

challenging, which stems from the following two aspects:

• Nonlinear PDE-based constraints. The inherent nonlinearity of the for-
ward operator A leads to the dependence of the corresponding Fréchet
derivatives (∂A)x0 on the data x0, that is:

(3) ∇x0

∥∥yδ −A(x0)
∥∥2
2
= 2(∂A)∗x0

(
A(x0)− yδ

)

under the l2 norm. Auto-differentiation approach fails due to the implicit
dependence of A(x0) on x0 in the field of PDE-based inverse problems.
• Computational cost. During the conditional reverse sampling process, each
gradient evaluation step requires solving the forward and adjoint PDEs
multiple times under different boundary conditions, making the inference
much slower than the unconditional sampling. The dimensionality of both
numerical PDE solvers and score functions [4] is critical in determining
the computational complexity of each sampling step, thereby influencing
the overall runtime.

Specifically, we consider solving the PDE-based travel-time tomography [7] prob-
lem within the diffusion posterior sampling (DPS) [2] framework. In the case of
single point source condition, N different source points {(usn, vsn)}Nn=1 are placed
in Ω := [0, 1]2 or on ∂Ω, and for each source point, the governing first travel-time
field Yn(u, v) can be described as the following Eikonal equation [5]

(4)
X0(u, v)‖∇Yn(u, v)‖2 = 1, ∀(u, v) ∈ Ω,

s.t. Yn(un, vn) = 0, when (u, v) = (usn, v
s
n).

where ‖ · ‖2 refers to the L2 norm, X0(u, v) refers to the positive speed field in the
square Ω, and its value is normalized into the range [0, 1]. If we further denote the
Eikonal operator Pn : X0(u, v) −→ Yn(u, v) given by (4) and collect the travel-
time information on the finite receiver subset Ωr := {(urm, vrm)}Mm=1 ⊂ ∂Ω, the
forward model for the source-receiver pair {(usn, vsn), (urm, vrm)} can be stated as:

yδm,n := Pn(X0)(u
r
m, v

r
m) + δηm,n, X0(u, v) : R

2 7→ R,(5)
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where ηm,n ∈ R is an unknown noise model and δ controls the noise level. The
collected data yδm,n from multiple source-receiver pairs constitutes a data matrix

yδ ∈ R
M×N , and the objective of travel-time tomography is to reconstruct the

underlying speed field X0(u, v) from yδ.

2. Methods

For problem-solving, we consider solving the PDE-based inverse problems within
the DPS framework. The adjoint-state method will be introduced in Section 2.1
as the formulation is designed to tackle this issue. The multi-resolution and dis-
cretization will be presented in Section 2.2 to capture the transition from the con-
tinuous multi-resolution formulation of the PDE to the discrete subspace diffusion
settings.

For sampling acceleration, we propose integrating the subspace-based technique
into the PDE-based diffusion posterior sampling process in Section 2.3

2.1. Adjoint-state method for travel-time tomography. For the associated
inverse problem, we aim to minimize the following misfit functional on receivers

(6) J (X0) =
1

2

N∑

n=1

M∑

m=1

(
yδm,n − ym,n

)2
,

To minimize (6), we perturb the speed field X0 by εX̃0 and the resulting change

of the travel-time field εỸn satisfies the following perturbation PDE:

(7) ∇Yn · ∇Ỹn = −X̃0

X3
0

.

Here, Λn is required to satisfy the following adjoint PDE

(8) ∇ · (Λn∇Yn) = 0

with the Dirichlet boundary condition

(9)
∂Yn

∂n
Λn =

M∑

m=1

δ(u− urm, v − vrm)(yδm,n − ym,n)

where n is the unit outward normal of the boundary. Then, we conclude that

(10) ∂J (X0)(X̃0) =
N∑

n=1

∫

Ω

X̃0Λn

X3
0

dudv.

To obtain the well-posed descent direction, we use the elliptical smoothing regu-
larization to choose the descent direction

(11) X̃0 = −(I− µ∆)−1

(
N∑

n=1

Λn

X3
0

)
,

where ∆ refers to the Laplacian operator.
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2.2. Multi-resolution and discretization. Given the continuous speed field
X0 as the parameter distribution of (4), we use the following notations based on
convolution with downsampling and upsampling to define the multi-resolution:

(12) (ϕ ∗X0)(u, v) =

∫

R2

ϕ(ũ, ṽ)X0(u− ũ, v − ṽ) dũdṽ

with downsampling and upsampling operators

(13)
(↓ X0)(u, v) := X0(2u, 2v),

(↑ X0)(u, v) := X0(2
−1u, 2−1v).

We continue to define the resolution reduction operator Φ(·), which maps from the
(k − 1)-th resolution to the k-th resolution, as follows:

(14) Xk
0 := Φ(Xk−1

0 )(u, v) =
1

2
↓
(
ϕ ∗Xk−1

0

)
,

Since the diffusion generative process is defined on the discrete grids, we should
consider the discretization of the k-th resolution speed field samples Xk

0 as the pro-
jection onto the subspaces. For the corresponding inverse problem in downsampled

subspace, the misfit function J hk (·) : R2s−k×2s−k 7→ R:

(15) J hk (xk0) =
1

2

N∑

n=1

M∑

m=1

(
yδm,n − ykn[i

r,k
m , jr,km ]

)2

is defined on the discrete sample xk0 . With the help of Theorem 2.6 in [3], we can
derive the upper bound estimate of the gap between J hk (xk0) and J (X0):

Theorem 1. For the given convolution kernel

ϕh(u, v) =
1

4

∑

(a,b)∈{0,1}2

δ(u+ ah, v + bh),

the gap between J hk (xk0) and J (X0) is upper bounded by

(16) |J hk (xk0)− J (X0)| ≤ C1

√
h+ Ck,µh‖X̃0‖2H1

µ(Ω)‖X0‖H2
µ(Ω) +O(h)

where Ck,µ is a fixed constant given k, µ, and C1 depends on Xk
0 and yδ.

2.3. Subspace diffusion posterior sampling. we consider utilizing the discrete

regularized adjoint-state method to provide ∇x̂0

∥∥yδ −A (x̂0)
∥∥2
2
for guidance dur-

ing the diffusion posterior sampling process, that is

(17)

∇xt
log p(yδ|x̂0(xt)) ≃ −2ρ

∂x̂0 (xt)

∂xt
(I− µ∆)−1∇x̂0

J h0 (x̂0)

= 2ρ
∂x̂0 (xt)

∂xt
(I− µ∆)−1

(
N∑

n=1

λn/x̂
3
0

)

where (I− µ∆)−1 is defined in (11) with a homogeneous boundary condition. To
accelerate the sampling process, we consider the reverse posterior SDE with the
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same form for t ∈ [tk, tk−1] in each subspace. Besides, xkt is obtained via

(18) xkt := UT
k xt =

1

2k

(
k−1∏

l=0

Dl
)
xt

where the average-pooling operator Dk. Here,we choose the surrogate misfit func-
tion J hk (·) for sampling, that is

(19) −2ρk
∂x̂k0

(
xkt
)

∂xkt
(I− µ∆)−1

(
∇x̂k

0
J hk (x̂k0)

)
,

We should note that the primary benefit of the subspace-based diffusion poste-
rior sampling lies in its capability to simultaneously reduce the dimensionality of
score function evaluations and the complexity of solving numerical PDEs. Further-
more, it is important to emphasize that this subspace posterior sampling approach
is applicable to other PDE-based inverse problems, as long as the adjoint
equations can be explicitly formulated.

3. Experiment Results

Figure 1. There are three geometries for placing the source-
receiver pairs: (a)(b) For the Marmousi dataset, they are arranged
in horizontal and vertical patterns; (c) For the KIT4 dataset,
they are arranged in a circular pattern. As illustrated, the red
pentagrams represent the locations of the sources, and the white
triangles represent the locations of the receivers.

Marmousi (horizontal) Marmousi (vertical) KIT4 (surround)

Method RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑ RMSE ↓ SSIM ↑

L-BFGS 0.128 0.457 0.166 0.359 0.054 0.713

DIP 0.147 0.351 0.166 0.264 0.066 0.342

RED-Diff 0.173 0.193 0.178 0.168 0.105 0.085

Supervised Post-Processing 0.039 0.655 0.104 0.491 0.031 0.925

PDE-based Full-space DPS 0.014 0.768 0.089 0.525 0.050 0.864

PDE-based Subspace DPS 0.024 0.679 0.113 0.462 0.062 0.837

Table 1. The quantitative results (RMSE, SSIM) are evaluated
on the Marmousi and KIT4 test datasets for different methods.
Bold: best, underline: second best.
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Figure 2. The reconstruction results for each Marmousi test
sample are compared across comparison methods and ours, us-
ing measurements from horizontally placed sources and receivers.

KIT4 (surround) Marmousi (vertical) Marmousi (horizontal)

Method 32→ 64→ 128 64→ 128 32→ 64→ 128 64→ 128 32→ 64→ 128 64→ 128

PDE-based Subspace DPS
Average Time (sec)

351.06 583.01 193.39 301.11 190.12 293.58

PDE-based Full-space DPS
Average Time (sec)

(1060.75) (1060.75) (551.73) (551.73) (548.46) (548.46)

Average Time Ratio 0.331 0.550 0.350 0.546 0.346 0.535

Table 2. The computational times of the PDE-based full-space
and subspace DPS methods are compared on the Marmousi and
KIT4 test datasets, respectively.

4. Conclusions

We introduce a Diffusion Posterior Sampling (DPS) strategy for general PDE-
based inverse problems, combined with a subspace diffusion technique for faster
sampling. This method uses the adjoint-state approach with diffusion generative
priors to solve PDE problems and allows PDE-constrained sampling across sub-
space sequences, reducing acquisition times. This framework can be generalized to
general PDE-based problems once the adjoint equations are known. Experiments
on Marmousi and KIT4 datasets, along with different geometries, demonstrate
significant improvements in imaging quality over existing methods.
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Department of Mathematics
KTH - Royal Institute of Technology
Stockholm, Sweden
10044 Stockholm
SWEDEN

Prof. Dr. Brynjulf Owren

Department of Mathematical Sciences
NTNU
7491 Trondheim
NORWAY



96 Oberwolfach Report 48/2024

Prof. Dr. Thomas Pock

Institute of Computer Graphics
and Vision
Graz University of Technology
Inffeldgasse 16/II
8010 Graz
AUSTRIA

James Rowbottom

Mathematical Institute
University of Cambridge
16, Mill Lane
Cambridge CB2 1SB
UNITED KINGDOM

Christina Runkel

Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Prof. Dr. Otmar Scherzer

Fakultät für Mathematik
Universität Wien
Oskar-Morgenstern-Platz 1
1090 Wien
AUSTRIA

Prof. Dr. Carola-Bibiane Schönlieb

Department of Applied Mathematics and
Theoretical Physics (DAMTP)
Centre for Mathematical Sciences
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM

Dr. Zebang Shen

Institute for Machine Learning,
Department of Computer Science,
ETH-Zürich
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SWITZERLAND

Zakhar Shumaylov

Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Prof. Dr. Gabriele Steidl

TU Berlin
Institute of Mathematics
Straße des 17. Juni
10623 Berlin
GERMANY

Lukas Weigand

DESY
Deutsches Elektronen-Synchroton
Notkestr. 85
22607 Hamburg
GERMANY

Prof. Dr. Xiaoqun Zhang

Institute of Natural Sciences
Shanghai Jiao Tong University
No. 6 Science Building
800, Dongchuan Road
Shanghai 200 240
CHINA


