• Infinite dimensional Kähler manifolds 

      [OWS-31] Huckleberry, Alan; Wurzbacher, Tilmann (Birkhäuser Basel, 2001)
      Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and ...
    • Information bounds and nonparametric maximum likelihood estimation 

      [OWS-19] Groeneboom, Piet; Wellner, Jon A. (Birkhäuser Basel, 1992)
      This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric ...
    • The ingram conjecture 

      [OWP-2010-02] Barge, M.; Bruin, H.; Štimac, S. (Mathematisches Forschungsinstitut Oberwolfach, 2010-03-8)
      We prove the Ingram Conjecture, i.e., we show that the inverse limit spaces of every two tent maps with different slopes in the interval [1,2] are non-homeomorphic. Based on the structure obtained from the proof, we also ...
    • The Initial and Terminal Cluster Sets of an Analytic Curve 

      [OWP-2016-25] Gauthier, Paul Montpetit (Mathematisches Forschungsinstitut Oberwolfach, 2016-12-21)
      For an analytic curve $\gamma : (a,b) \to \mathbb{C}$, the set of values approaches by $\gamma(t)$, as $t ↘a$ and as $t↗b$ can be any two continuua of $\mathbb{C} \cup \{\infty\}$.
    • Instability of point defects in a two-dimensional nematic liquid crystal model 

      [OWP-2015-05] Ignat, Radu; Nguyen, Luc; Slastikov, Valeriy; Zarnescu, Arghir (Mathematisches Forschungsinstitut Oberwolfach, 2015-07-29)
      We study a class of symmetric critical points in a variational 2$D$ Landau - de Gennes model where the state of nematic liquid crystals is described by symmetric traceless $3 \times 3$ matrices. These critical points play ...
    • Interpolation in Bernstein and Paley-Wiener Spaces 

      [OWP-2008-04] Olevskij, Aleksandr M.; Ulanovskii, Alexander (Mathematisches Forschungsinstitut Oberwolfach, 2008-03-08)
      We construct closed sets S of arbitrarily small measure with the property: given any discrete set L, every l-function on L can be interpolated by an L-function with spectrum on F. This should be contrasted against ...
    • Introduction to coding theory and algebraic geometry 

      [OWS-12] Lint, Jacobus Hendricus van; Geer, Gerard van der (Birkhäuser Basel, 1988)
    • An introduction to heavy-tailed and sibexponential distributions 

      [OWP-2009-13] Foss, Sergey; Koršunov, Dmitrij; Zachary, Stan (Mathematisches Forschungsinstitut Oberwolfach, 2009-03-07)
      This text studies heavy-tailed distributions in probability theory, and especially convolutions of such distributions. The mail goal is to provide a complete and comprehensive introduction to the theory of long-tailed ...
    • Invariant Four-forms and Symmetric Pairs 

      [OWP-2012-03] Moroianu, Andrei; Semmelmann, Uwe (Mathematisches Forschungsinstitut Oberwolfach, 2012-04-24)
      We give criteria for real, complex and quaternionic representations to define $s$-representations, focusing on exceptional Lie algebras defined by spin representations. As applications, we obtain the classification of ...
    • Invariants of Closed Braids via Counting Surfaces 

      [OWP-2012-15] Brandenbursky, Michael (Mathematisches Forschungsinstitut Oberwolfach, 2012)
      A Gauss diagram is a simple, combinatorial way to present a link. It is known that any Vassiliev invariant may be obtained from a Gauss diagram formula that involves counting subdiagrams of certain combinatorial types. In ...
    • Jahresbericht | Annual Report - 2007 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2008)
    • Jahresbericht | Annual Report - 2005 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2006)
    • Jahresbericht | Annual Report - 2006 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2007)
    • Jahresbericht | Annual Report - 2008 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2009)
    • Jahresbericht | Annual Report - 2009 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2010)
    • Jahresbericht | Annual Report - 2010 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2011)
    • Jahresbericht | Annual Report - 2011 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2012)
    • Jahresbericht | Annual Report - 2012 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2013)
    • Jahresbericht | Annual Report - 2013 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2014)
    • Jahresbericht | Annual Report - 2014 

      Mathematisches Forschungsinstitut Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, 2015)