• Abstract Bivariant Cuntz Semigroups 

      [OWP-2017-04] Antoine, Ramon; Perera, Francesc; Thiel, Hannes (Mathematisches Forschungsinstitut Oberwolfach, 2017-02-13)
      We show that abstract Cuntz semigroups form a closed symmetric monoidal category. Thus, given Cuntz semigroups $S$ and $T$, there is another Cuntz semigroup $((S,T))$ playing the role of morphisms from $S$ to $T$. Applied ...
    • The algebra of differential operators for a Gegenbauer weight matrix 

      [OWP-2015-07] Ignacio Nahuel Zurrián (Mathematisches Forschungsinstitut Oberwolfach, 2015-07-29)
      In this work we study in detail the algebra of differential operators $\mathcal{D}(W)$ associated with a Gegenbauer matrix weight. We prove that two second order operators generate the algebra, indeed $\mathcal{D}(W)$ is ...
    • Cluster structures on simple complex lie groups and the Belavin-Drinfeld classification 

      [OWP-2011-10] Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek (Mathematisches Forschungsinstitut Oberwolfach, 2011-05-12)
      We study natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structutures compatible with these cluster structures. According to our main conjecture, each class in the ...
    • Criteria for Algebraicity of Analytic Functions 

      [OWP-2018-25] Bochnak, Jacek; Gwoździewicz, Janusz; Kucharz, Wojciech (Mathematisches Forschungsinstitut Oberwolfach, 2018-11-12)
      We consider functions defined on an open subset of a nonsingular, either real or complex, algebraic set. We give criteria for an analytic function to be a Nash (resp. regular, resp. polynomial) function. Our criteria depend ...
    • Dominance and Transmissions in Supertropical Valuation Theory 

      [OWP-2011-07] Izhakian, Zur; Knebusch, Manfred; Rowen, Louis (Mathematisches Forschungsinstitut Oberwolfach, 2011)
      This paper is a sequel of [IKR1], where we defined supervaluations on a commutative ring $R$ and studied a dominance relation $\Phi >= v$ between supervaluations $\varphi$ and $\upsilon$ on $R$, aiming at an enrichment of ...
    • Geometry of Free Loci and Factorization of Noncommutative Polynomials 

      [OWP-2017-23] Helton, J. William; Klep, Igor; Volčič, Jurij; Helton, J. William (Mathematisches Forschungsinstitut Oberwolfach, 2017-10-02)
      The free singularity locus of a noncommutative polynomial f is defined to be the sequence $Z_n(f)=\{X\in M_n^g : \det f(X)=0\}$ of hypersurfaces. The main theorem of this article shows that f is irreducible if and only if ...
    • Infeasibility certificates for linear matrix inequalities 

      [OWP-2011-28] Klep, Igor; Schweighofer, Markus (Mathematisches Forschungsinstitut Oberwolfach, 2011-05-25)
      Farkas' lemma is a fundamental result from linear programming providing linear certi cates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly ...
    • Linear Syzygies, Hyperbolic Coxeter Groups and Regularity 

      [OWP-2017-15] Constantinescu, Alexandru; Kahle, Thomas; Varbaro, Matteo (Mathematisches Forschungsinstitut Oberwolfach, 2017-05-24)
      We build a new bridge between geometric group theory and commutative algebra by showing that the virtual cohomological dimension of a Coxeter group is essentially the regularity of the Stanley–Reisner ring of its nerve. ...
    • A McKay Correspondence for Reflection Groups 

      [OWP-2018-14] Buchweitz, Ragnar-Olaf; Faber, Eleonore; Ingalls, Colin (Mathematisches Forschungsinstitut Oberwolfach, 2018-07-02)
      We construct a noncommutative desingularization of the discriminant of a finite reflection group $G$ as a quotient of the skew group ring $A=S*G$. If $G$ is generated by order two reflections, then this quotient identifies ...
    • The Minimal Resolution Conjecture on a general quartic surface in $\mathbb P^3$ 

      [OWP-2017-21] Boij, Mats; Migliore, Juan; Miró-Roig, Rosa M.; Nagel, Uwe (Mathematisches Forschungsinstitut Oberwolfach, 2017-07-27)
      Mustaţă has given a conjecture for the graded Betti numbers in the minimal free resolution of the ideal of a general set of points on an irreducible projective algebraic variety. For surfaces in $\mathbb P^3$ this conjecture ...
    • Monoid valuations and value ordered supervaluations 

      [OWP-2011-17] Izhakian, Zur; Knebusch, Manfred; Rowen, Louis (Mathematisches Forschungsinstitut Oberwolfach, 2011)
      We complement two papers on supertropical valuation theory ([IKR1], [IKR2]) by providing natural examples of m-valuations (= monoid valuations), after that of supervaluations and transmissions between them. The supervaluations ...
    • Numerical Invariants and Moduli Spaces for Line Arrangements 

      [OWP-2017-02] Dimca, Alexandru; Ibadula, Denis; Măcinic, Daniela Anca (Mathematisches Forschungsinstitut Oberwolfach, 2017-02-01)
      Using several numerical invariants, we study a partition of the space of line arrangements in the complex projective plane, given by the intersection lattice types. We offer also a new characterization of the free plane ...
    • On the Gauss Algebra of Toric Algebras 

      [OWP-2018-07] Herzog, Jürgen; Jafari, Raheleh; Nasrollah Nejad, Abbas (Mathematisches Forschungsinstitut Oberwolfach, 2018-04-25)
      Let $A$ be a $K$-subalgebra of the polynomial ring $S=K[x_1,\ldots,x_d]$ of dimension $d$, generated by finitely many monomials of degree $r$. Then the Gauss algebra $\mathbb{G}(A)$ of $A$ is generated by monomials of ...
    • Positive Margins and Primary Decomposition 

      [OWP-2012-06] Kahle, Thomas; Rauh, Johannes; Sullivant, Seth (Mathematisches Forschungsinstitut Oberwolfach, 2012)
      We study random walks on contingency tables with fixed marginals, corresponding to a (log-linear) hierarchical model. If the set of allowed moves is not a Markov basis, then there exist tables with the same marginals that ...
    • Supertropical Quadratic Forms I 

      [OWP-2013-27] Knebusch, Manfred; Rowen, Louis; Izhakian, Zur (Mathematisches Forschungsinstitut Oberwolfach, 2013)
      We initiate the theory of a quadratic form q over a semiring $R$. As customary, one can write $q(x+y)=q(x)+q(y)+b(x,y)$, where b is a companion bilinear form. But in contrast to the ring-theoretic case, the companion ...
    • Supertropical semirings and supervaluations 

      [OWP-2010-05] Izhakian, Zur; Knebusch, Manfred; Rowen, Louis (Mathematisches Forschungsinstitut Oberwolfach, 2010)
      We interpret a valuation $\upsilon$ on a ring $R$ as a map $\upsilon:R \rightarrow M$ into a so called bipotent semiring $M$ (the usual max-plus setting), and then define a supervaluation $\varphi$ as a suitable map into ...