MFO Repository
http://publications.mfo.de:8080
The DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.Tue, 04 Dec 2018 04:50:47 GMT2018-12-04T04:50:47ZMFO Repositoryhttp://publications.mfo.de/themes/Mirage2/images/apple-touch-icon.png
http://publications.mfo.de:8080
Criteria for Algebraicity of Analytic Functions
http://publications.mfo.de/handle/mfo/1392
Criteria for Algebraicity of Analytic Functions
Bochnak, Jacek; Gwoździewicz, Janusz; Kucharz, Wojciech
We consider functions defined on an open subset of a nonsingular, either real or complex, algebraic set. We give criteria for an analytic function to be a Nash (resp. regular, resp. polynomial) function. Our criteria depend only on the behavior of such a function along irreducible nonsingular algebraic curves passing trough a given point. In the proofs we use results on algebraicity of formal power series, which are also established in this paper.
Mon, 12 Nov 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13922018-11-12T00:00:00ZBochnak, JacekGwoździewicz, JanuszKucharz, WojciechWe consider functions defined on an open subset of a nonsingular, either real or complex, algebraic set. We give criteria for an analytic function to be a Nash (resp. regular, resp. polynomial) function. Our criteria depend only on the behavior of such a function along irreducible nonsingular algebraic curves passing trough a given point. In the proofs we use results on algebraicity of formal power series, which are also established in this paper.Global Variants of Hartogs' Theorem
http://publications.mfo.de/handle/mfo/1391
Global Variants of Hartogs' Theorem
Bochnak, Jacek; Kucharz, Wojciech
Hartogs' theorem asserts that a separately holomorphic function, defined on an open subset of $\mathbb{C}^n$, is holomorphic in all the variables. We prove a global variant of this theorem for functions defined on an open subset of the product of complex algebraic manifolds. We also obtain global Hartogs-type theorems for complex Nash functions and complex regular functions.
Tue, 06 Nov 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13912018-11-06T00:00:00ZBochnak, JacekKucharz, WojciechHartogs' theorem asserts that a separately holomorphic function, defined on an open subset of $\mathbb{C}^n$, is holomorphic in all the variables. We prove a global variant of this theorem for functions defined on an open subset of the product of complex algebraic manifolds. We also obtain global Hartogs-type theorems for complex Nash functions and complex regular functions.Real Analyticity is Concentrated in Dimension 2
http://publications.mfo.de/handle/mfo/1390
Real Analyticity is Concentrated in Dimension 2
Bochnak, Jacek; Kucharz, Wojciech
We prove that a real-valued function on a real analytic manifold is analytic whenever all its restrictions to $2$-dimensional analytic submanifolds are analytic functions. We also obtain analogous results in the framework of Nash manifolds and nonsingular real algebraic sets. These results can be regarded as substitutes in the real case for the classical theorem of Hartogs, asserting that a complex-valued function defined on an open subset of $C^n$ is holomorphic if it is holomorphic with respect to each variable separately. In the proofs we use methods of real algebraic geometry even though the initial problem is purely analytic.
Mon, 05 Nov 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13902018-11-05T00:00:00ZBochnak, JacekKucharz, WojciechWe prove that a real-valued function on a real analytic manifold is analytic whenever all its restrictions to $2$-dimensional analytic submanifolds are analytic functions. We also obtain analogous results in the framework of Nash manifolds and nonsingular real algebraic sets. These results can be regarded as substitutes in the real case for the classical theorem of Hartogs, asserting that a complex-valued function defined on an open subset of $C^n$ is holomorphic if it is holomorphic with respect to each variable separately. In the proofs we use methods of real algebraic geometry even though the initial problem is purely analytic.Computing Congruence Quotients of Zariski Dense Subgroups
http://publications.mfo.de/handle/mfo/1389
Computing Congruence Quotients of Zariski Dense Subgroups
Detinko, Alla; Flannery, Dane; Hulpke, Alexander
We obtain a computational realization of the strong approximation theorem. That is, we develop algorithms to compute all congruence quotients modulo rational primes of a finitely generated Zariski dense group $H \leq \mathrm{SL}(n, \mathbb{Z})$ for $n \geq 2$. More generally, we are able to compute all congruence quotients of a finitely generated Zariski dense subgroup of $\mathrm{SL}(n, \mathbb{Q})$ for $n > 2$.
Fri, 26 Oct 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13892018-10-26T00:00:00ZDetinko, AllaFlannery, DaneHulpke, AlexanderWe obtain a computational realization of the strong approximation theorem. That is, we develop algorithms to compute all congruence quotients modulo rational primes of a finitely generated Zariski dense group $H \leq \mathrm{SL}(n, \mathbb{Z})$ for $n \geq 2$. More generally, we are able to compute all congruence quotients of a finitely generated Zariski dense subgroup of $\mathrm{SL}(n, \mathbb{Q})$ for $n > 2$.On the Invariants of the Cohomology of Complements of Coxeter Arrangements
http://publications.mfo.de/handle/mfo/1388
On the Invariants of the Cohomology of Complements of Coxeter Arrangements
Douglass, J. Matthew; Pfeiffer, Götz; Röhrle, Gerhard
We refine Brieskorn's study of the cohomology of the complement of the reflection arrangement of a finite Coxeter group W. As a result we complete the verification of a conjecture by Felder and Veselov that gives an explicit basis of the space of W-invariants
in this cohomology ring.
Mon, 22 Oct 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13882018-10-22T00:00:00ZDouglass, J. MatthewPfeiffer, GötzRöhrle, GerhardWe refine Brieskorn's study of the cohomology of the complement of the reflection arrangement of a finite Coxeter group W. As a result we complete the verification of a conjecture by Felder and Veselov that gives an explicit basis of the space of W-invariants
in this cohomology ring.Demailly’s Notion of Algebraic Hyperbolicity: Geometricity, Boundedness, Moduli of Maps
http://publications.mfo.de/handle/mfo/1387
Demailly’s Notion of Algebraic Hyperbolicity: Geometricity, Boundedness, Moduli of Maps
Javanpeykar, Ariyan; Kamenova, Ljudmila
Demailly's conjecture, which is a consequence of the Green-Griffiths-Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to provide evidence for Demailly's conjecture by verifying several predictions it makes. We first define what an algebraically hyperbolic projective variety is, extending Demailly's definition to (not necessarily smooth) projective varieties over an arbitrary algebraically closed field of characteristic zero, and we prove that this property is stable under extensions of algebraically closed fields. Furthermore, we show that the set of (not necessarily surjective) morphisms from a projective variety Y to a projective algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed subvariety of X is finite. As an application, we obtain that Aut(X) is finite and that every surjective endomorphism of X is an automorphism. Finally, we explore "weaker" notions of hyperbolicity related to boundedness of moduli spaces of maps, and verify similar predictions made by the Green-Griffiths-Lang conjecture on hyperbolic projective varieties.
Mon, 08 Oct 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13872018-10-08T00:00:00ZJavanpeykar, AriyanKamenova, LjudmilaDemailly's conjecture, which is a consequence of the Green-Griffiths-Lang conjecture on varieties of general type, states that an algebraically hyperbolic complex projective variety is Kobayashi hyperbolic. Our aim is to provide evidence for Demailly's conjecture by verifying several predictions it makes. We first define what an algebraically hyperbolic projective variety is, extending Demailly's definition to (not necessarily smooth) projective varieties over an arbitrary algebraically closed field of characteristic zero, and we prove that this property is stable under extensions of algebraically closed fields. Furthermore, we show that the set of (not necessarily surjective) morphisms from a projective variety Y to a projective algebraically hyperbolic variety X that map a fixed closed subvariety of Y onto a fixed closed subvariety of X is finite. As an application, we obtain that Aut(X) is finite and that every surjective endomorphism of X is an automorphism. Finally, we explore "weaker" notions of hyperbolicity related to boundedness of moduli spaces of maps, and verify similar predictions made by the Green-Griffiths-Lang conjecture on hyperbolic projective varieties.Affine Space Fibrations
http://publications.mfo.de/handle/mfo/1386
Affine Space Fibrations
Gurjar, Rajendra V.; Masuda, Kayo; Miyanishi, Masayoshi
We discuss various aspects of affine space fibrations. Our interest will be focused in the singular fibers, the generic fiber and the propagation of properties of a given smooth special fiber to nearby fibers.
Wed, 05 Sep 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13862018-09-05T00:00:00ZGurjar, Rajendra V.Masuda, KayoMiyanishi, MasayoshiWe discuss various aspects of affine space fibrations. Our interest will be focused in the singular fibers, the generic fiber and the propagation of properties of a given smooth special fiber to nearby fibers.Some Results Related to Schiffer's Problem
http://publications.mfo.de/handle/mfo/1385
Some Results Related to Schiffer's Problem
Kawohl, Bernd; Lucia, Marcello
We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain $\Omega$ with analytic boundary $\partial\Omega$ having at least one bounded connected component \begin{eqnarray*} \left\{ \begin{array}{l} - \Delta u = g(u) \quad \hbox{in } \Omega,\\ \frac{\partial u}{\partial \nu} =0 \, \hbox{ and } \, u = c \hbox{ on } \partial \Omega, \end{array} \right. \end{eqnarray*} where $c$ is a constant. When $g(c) =0$ the constant solution $u \equiv c$ is the unique solution. For $g(c) \not =0$, we show that the boundary is a circle if and only if the problem admits a solution that has constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved.
Thu, 16 Aug 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13852018-08-16T00:00:00ZKawohl, BerndLucia, MarcelloWe consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain $\Omega$ with analytic boundary $\partial\Omega$ having at least one bounded connected component \begin{eqnarray*} \left\{ \begin{array}{l} - \Delta u = g(u) \quad \hbox{in } \Omega,\\ \frac{\partial u}{\partial \nu} =0 \, \hbox{ and } \, u = c \hbox{ on } \partial \Omega, \end{array} \right. \end{eqnarray*} where $c$ is a constant. When $g(c) =0$ the constant solution $u \equiv c$ is the unique solution. For $g(c) \not =0$, we show that the boundary is a circle if and only if the problem admits a solution that has constant third or fourth normal derivative along the boundary. A similar result involving the fifth normal derivative is proved.Topological Complexity, Robotics and Social Choice
http://publications.mfo.de/handle/mfo/1384
Topological Complexity, Robotics and Social Choice
Carrasquel, José; Lupton, Gregory; Oprea, John
Topological complexity is a number that measures
how hard it is to plan motions (for robots, say) in
terms of a particular space associated to the kind of
motion to be planned. This is a burgeoning subject
within the wider area of Applied Algebraic Topology.
Surprisingly, the same mathematics gives insight into
the question of creating social choice functions, which
may be viewed as algorithms for making decisions by
artificial intelligences.
Fri, 10 Aug 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13842018-08-10T00:00:00ZCarrasquel, JoséLupton, GregoryOprea, JohnTopological complexity is a number that measures
how hard it is to plan motions (for robots, say) in
terms of a particular space associated to the kind of
motion to be planned. This is a burgeoning subject
within the wider area of Applied Algebraic Topology.
Surprisingly, the same mathematics gives insight into
the question of creating social choice functions, which
may be viewed as algorithms for making decisions by
artificial intelligences.A short story on optimal transport and its many applications
http://publications.mfo.de/handle/mfo/1381
A short story on optimal transport and its many applications
Santambrogio, Filippo
We present some examples of optimal transport problems
and of applications to different sciences (logistics,
economics, image processing, and a little bit of
evolution equations) through the crazy story of an
industrial dynasty regularly asking advice from an
exotic mathematician.
Wed, 08 Aug 2018 00:00:00 GMThttp://publications.mfo.de/handle/mfo/13812018-08-08T00:00:00ZSantambrogio, FilippoWe present some examples of optimal transport problems
and of applications to different sciences (logistics,
economics, image processing, and a little bit of
evolution equations) through the crazy story of an
industrial dynasty regularly asking advice from an
exotic mathematician.