Low rank differential equations for hamiltonian matrix nearness problems

View/ Open
Date
2013-02-08MFO Scientific Program
Research in Pairs 2012Series
Oberwolfach Preprints;2013,01Author
Guglielmi, Nicola
Kreßner, Daniel
Lubich, Christian
Metadata
Show full item recordOWP-2013-01
Abstract
For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that so me or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axis, we look for a nearest Hamiltonian matrix that has a pair of imaginary eigenvalues. The Hamiltonian matrices can be allowed to be complex or restricted to be real. Such Hamiltonian matrix nearness problems are motivated by applications such as the analysis of passive control systems. They are closely related to the problem of determining extremal points of Hamiltonian pseudospectra. We obtain a characterization of optimal perturbations, which turn out to be of low rank and are attractive stationary points of low-rank differential equations that we derive. This permits us to give fast algorithms - which show quadratic convergence - for solving the considered Hamiltonian matrix nearness problems.