dc.contributor.author | Knieper, Gerhard | |
dc.contributor.author | Peyerimhoff, Norbert | |
dc.date.accessioned | 2013-04-10T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:13:54Z | |
dc.date.available | 2013-04-10T12:00:00Z | |
dc.date.available | 2016-10-05T14:13:54Z | |
dc.date.issued | 2013-04-10 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1057 | |
dc.description | Research in Pairs 2012 | en_US |
dc.description.abstract | The Lichnerowicz conjecture asserts that all harmonic manifolds are either flat or locally symmetric spaces of rank 1. This conjecture has been proved by Z.I. Szab ́o [Sz] for harmonic manifolds with compact universal cover. E. Damek and F. Ricci [DR]provided examples showing that in the noncompact case the conjecture is wrong. However, such manifolds do not admit a compact quotient. The classification of all noncompact harmonic spaces is still a very difficult open problem. In this paper we provide a survey on recent results on non-compact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,08 | |
dc.subject | Harmonic Manifolds | en_US |
dc.subject | Geodesic Flows | en_US |
dc.subject | Lichnerowicz Conjecture | en_US |
dc.title | Noncompact harmonic manifolds | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-08 | |
local.scientificprogram | Research in Pairs 2012 | |
local.series.id | OWP-2013-08 | |
local.subject.msc | 37 | |
local.subject.msc | 53 | |
dc.identifier.urn | urn:nbn:de:101:1-2024031912284995076583 | |
dc.identifier.ppn | 1652237526 | |