Show simple item record

dc.contributor.authorKnieper, Gerhard
dc.contributor.authorPeyerimhoff, Norbert
dc.date.accessioned2013-04-10T12:00:00Z
dc.date.accessioned2016-10-05T14:13:54Z
dc.date.available2013-04-10T12:00:00Z
dc.date.available2016-10-05T14:13:54Z
dc.date.issued2013-04-10
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1057
dc.descriptionResearch in Pairs 2012en_US
dc.description.abstractThe Lichnerowicz conjecture asserts that all harmonic manifolds are either flat or locally symmetric spaces of rank 1. This conjecture has been proved by Z.I. Szab ́o [Sz] for harmonic manifolds with compact universal cover. E. Damek and F. Ricci [DR]provided examples showing that in the noncompact case the conjecture is wrong. However, such manifolds do not admit a compact quotient. The classification of all noncompact harmonic spaces is still a very difficult open problem. In this paper we provide a survey on recent results on non-compact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2013,08
dc.subjectHarmonic Manifoldsen_US
dc.subjectGeodesic Flowsen_US
dc.subjectLichnerowicz Conjectureen_US
dc.titleNoncompact harmonic manifoldsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2013-08
local.scientificprogramResearch in Pairs 2012
local.series.idOWP-2013-08
local.subject.msc37
local.subject.msc53
dc.identifier.urnurn:nbn:de:101:1-2024031912284995076583
dc.identifier.ppn1652237526


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record