Zur Kurzanzeige

dc.contributor.authorCurbera, Guillermo P.
dc.contributor.authorRicker, Werner J.
dc.date.accessioned2013-04-23T12:00:00Z
dc.date.accessioned2016-10-05T14:13:54Z
dc.date.available2013-04-23T12:00:00Z
dc.date.available2016-10-05T14:13:54Z
dc.date.issued2013-04-23
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1061
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractWe introduce and study the largest Banach space of analytic functions on the unit disc which is solid for the coefficient-wise order and to which the classical Ces`aro operator $\mathcal{C}:H^2 \to H^2$ can be continuously extended, while still maintaining its values in $H^2$. Properties of this Banach space $\mathcal{H}(ces_2)$ are presented as well as a characterization of individual analytic functions which belong to $\mathcal{H}(ces_2)$. In addition, both the multiplier space of $\mathcal{H}(ces_2)$ and the spectrum of $\mathcal{C}:\mathcal{H}(ces_2) \to \mathcal{H}(ces_2)$ are determined.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2013,11
dc.subjectCesàro Operatoren_US
dc.subjectHardy Spaceen_US
dc.subjectSolid Core Multipliersen_US
dc.titleSolid extensions of the Cesàro operator on the Hardy space H2(D)en_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2013-11
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2013-11
local.subject.msc30
local.subject.msc47
local.subject.msc46
dc.identifier.urnurn:nbn:de:101:1-2024031912401508692356
dc.identifier.ppn1652311319


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige