Zur Kurzanzeige

dc.contributor.authorLévay, Péter
dc.contributor.authorPlanat, Michel
dc.contributor.authorSaniga, Metod
dc.date.accessioned2013-07-23T12:00:00Z
dc.date.accessioned2016-10-05T14:13:55Z
dc.date.available2013-07-23T12:00:00Z
dc.date.available2016-10-05T14:13:55Z
dc.date.issued2013-07-23
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1064
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractWe invoke some ideas from finite geometry to map bijectively 135 heptads of mutually commuting three-qubit observables into 135 symmetric four-qubit ones. After labeling the elements of the former set in terms of a seven-dimensional Clifford algebra, we present the bijective map and most pronounced actions of the associated symplectic group on both sets in explicit forms. This formalism is then employed to shed novel light on recently-discovered structural and cardinality properties of an aggregate of three-qubit Mermin’s “magic” pentagrams. Moreover, some intriguing connections with the so-called black-hole–qubit correspondence are also pointed out.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2013,17
dc.titleGrassmannian connection between three- and four-qubit observables, Mermin's contextualities and black holesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2013-17
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2013-17
dc.identifier.urnurn:nbn:de:101:1-2013071912633
dc.identifier.ppn1652932178


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige