dc.contributor.author | Lévay, Péter | |
dc.contributor.author | Planat, Michel | |
dc.contributor.author | Saniga, Metod | |
dc.date.accessioned | 2013-07-23T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:13:55Z | |
dc.date.available | 2013-07-23T12:00:00Z | |
dc.date.available | 2016-10-05T14:13:55Z | |
dc.date.issued | 2013-07-23 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1064 | |
dc.description | Research in Pairs 2013 | en_US |
dc.description.abstract | We invoke some ideas from finite geometry to map bijectively 135 heptads of mutually commuting three-qubit observables into 135 symmetric four-qubit ones. After labeling the elements of the former set in terms of a seven-dimensional Clifford algebra, we present the bijective map and most pronounced actions of the associated symplectic group on both sets in explicit forms. This formalism is then employed to shed novel light on recently-discovered structural and cardinality properties of an aggregate of three-qubit Mermin’s “magic” pentagrams. Moreover, some intriguing connections with the so-called black-hole–qubit correspondence are also pointed out. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,17 | |
dc.title | Grassmannian connection between three- and four-qubit observables, Mermin's contextualities and black holes | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-17 | |
local.scientificprogram | Research in Pairs 2013 | |
local.series.id | OWP-2013-17 | |
dc.identifier.urn | urn:nbn:de:101:1-2013071912633 | |
dc.identifier.ppn | 1652932178 | |