dc.contributor.author | Holweck, F. G. | |
dc.contributor.author | Saniga, Metod | |
dc.contributor.author | Lévay, Péter | |
dc.date.accessioned | 2013-12-09T12:00:01Z | |
dc.date.accessioned | 2016-10-05T14:13:57Z | |
dc.date.available | 2013-12-09T12:00:01Z | |
dc.date.available | 2016-10-05T14:13:57Z | |
dc.date.issued | 2013-12-09 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1072 | |
dc.description | Research in Pairs 2013 | en_US |
dc.description.abstract | Employing the fact that the geometry of the $N$-qubit ($N\geq 2$) Pauli group is embodied in the structure of the symplectic polar space $\mathcal{W}(2N-1, 2)$ and using properties of the Lagrangian Grassmannian $LGr(N, 2N)$ defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the $N$-qubit Pauli group and a certain subset of elements of the $2^{N-1}$-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases $N=3$ (also addressed recently by Lévay, Planat and Saniga (JHEP 09 (2013) 037)) and $N=4$ are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space $PG(2^N-1, 2)$ of the $2^{N-1}$-qubit Pauli group in terms of $G$-orbits, where $G\equiv SL(2,2) \times SL(2,2) \times \cdot \cdot \cdot \times SL(2,2) \rtimes S_N$, to decompose $\underline{\pi}(LGr(N,2N))$ into non-equivalent orbits. This leads to a partition of $LGr(N, 2N)$ into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2013,25 | |
dc.subject | Multi-Qubit | en_US |
dc.subject | Pauli Groups | en_US |
dc.subject | Symplectic Polar Spaces W(2N − 1, 2) | en_US |
dc.subject | Lagrangian Grassmannians LGr(N, 2N) over the smallest Galois field | en_US |
dc.title | A Relation Between N-Qubit and 2N-1-Qubit Pauli Groups via Binary LGr(N,2N) | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2013-25 | |
local.scientificprogram | Research in Pairs 2013 | |
local.series.id | OWP-2013-25 | |
dc.identifier.urn | urn:nbn:de:101:1-2013120623145 | |
dc.identifier.ppn | 1653153458 | |