Zur Kurzanzeige

dc.contributor.authorKosakowska, Justyna
dc.contributor.authorSchmidmeier, Markus
dc.date.accessioned2014-04-25T12:00:00Z
dc.date.accessioned2016-10-05T14:13:57Z
dc.date.available2014-04-25T12:00:00Z
dc.date.available2016-10-05T14:13:57Z
dc.date.issued2014-04-25
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1074
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractGiven partitions $\alpha, \beta, \gamma$, the short exact sequences $0 \rightarrow N_\alpha \rightarrow N_\beta \rightarrow N_\gamma \rightarrow 0$ of nilpotent linear operators of Jordan types $\alpha, \beta, \gamma$, respectively, define a constructible subset $\mathbb{V}^\alpha_{\beta, \gamma}$ of an affine variety. Geometrically, the varieties $\mathbb{V}^\alpha_{\beta, \gamma}$ are of particular interest as they occur naturally and since they typically consist of several irreducible components. In fact, each Littlewood-Richardson tableaux $\Gamma$ of shape $(\alpha, \beta, \gamma)$ contributes one irreducible component $\overline{\mathbb{V}}_\Gamma$. We consider the partial order $\Gamma \leq^*_{closure} \tilde{\Gamma}$ on LR-tableaux which is the transitive closure of the relation given by $\mathbb{V}_{\tilde{\Gamma}} \cap \overline{\mathbb{V}_\Gamma} \neq 0$. In this paper we compare the closure-relation with partial orders given by algebraic, combinatorial and geometric conditions. In the case where the parts of $\alpha$ are at most two, all those partial orders are equivalent. We discuss how the orders differ in general.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,01
dc.subjectDegenerationsen_US
dc.subjectPartial ordersen_US
dc.subjectHall polynomialsen_US
dc.subjectNilpotent operatorsen_US
dc.subjectInvariant subspacesen_US
dc.subjectLittlewood-Richardson tableauxen_US
dc.titleVarieties of Invariant Subspaces Given by Littlewood-Richardson Tableauxen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2014-01
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2014-01
local.subject.msc14
local.subject.msc16
local.subject.msc05
local.subject.msc47
dc.identifier.urnurn:nbn:de:101:1-2014042210630
dc.identifier.ppn1654985872


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige