dc.contributor.author | Kosakowska, Justyna | |
dc.contributor.author | Schmidmeier, Markus | |
dc.date.accessioned | 2014-04-25T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:13:57Z | |
dc.date.available | 2014-04-25T12:00:00Z | |
dc.date.available | 2016-10-05T14:13:57Z | |
dc.date.issued | 2014-04-25 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1074 | |
dc.description | Research in Pairs 2013 | en_US |
dc.description.abstract | Given partitions $\alpha, \beta, \gamma$, the short exact sequences $0 \rightarrow N_\alpha \rightarrow N_\beta \rightarrow N_\gamma \rightarrow 0$ of nilpotent linear operators of Jordan types $\alpha, \beta, \gamma$, respectively, define a constructible subset $\mathbb{V}^\alpha_{\beta, \gamma}$ of an affine variety. Geometrically, the varieties $\mathbb{V}^\alpha_{\beta, \gamma}$ are of particular interest as they occur naturally and since they typically consist of several irreducible components. In fact, each Littlewood-Richardson tableaux $\Gamma$ of shape $(\alpha, \beta, \gamma)$ contributes one irreducible component $\overline{\mathbb{V}}_\Gamma$. We consider the partial order $\Gamma \leq^*_{closure} \tilde{\Gamma}$ on LR-tableaux which is the transitive closure of the relation given by $\mathbb{V}_{\tilde{\Gamma}} \cap \overline{\mathbb{V}_\Gamma} \neq 0$. In this paper we compare the closure-relation with partial orders given by algebraic, combinatorial and geometric conditions. In the case where the parts of $\alpha$ are at most two, all those partial orders are equivalent. We discuss how the orders differ in general. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2014,01 | |
dc.subject | Degenerations | en_US |
dc.subject | Partial orders | en_US |
dc.subject | Hall polynomials | en_US |
dc.subject | Nilpotent operators | en_US |
dc.subject | Invariant subspaces | en_US |
dc.subject | Littlewood-Richardson tableaux | en_US |
dc.title | Varieties of Invariant Subspaces Given by Littlewood-Richardson Tableaux | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2014-01 | |
local.scientificprogram | Research in Pairs 2013 | |
local.series.id | OWP-2014-01 | |
local.subject.msc | 14 | |
local.subject.msc | 16 | |
local.subject.msc | 05 | |
local.subject.msc | 47 | |
dc.identifier.urn | urn:nbn:de:101:1-2014042210630 | |
dc.identifier.ppn | 1654985872 | |