Show simple item record

dc.contributor.authorKosakowska, Justyna
dc.contributor.authorSchmidmeier, Markus
dc.date.accessioned2014-04-25T12:00:00Z
dc.date.accessioned2016-10-05T14:13:57Z
dc.date.available2014-04-25T12:00:00Z
dc.date.available2016-10-05T14:13:57Z
dc.date.issued2014-04-25
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1074
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractGiven partitions $\alpha, \beta, \gamma$, the short exact sequences $0 \rightarrow N_\alpha \rightarrow N_\beta \rightarrow N_\gamma \rightarrow 0$ of nilpotent linear operators of Jordan types $\alpha, \beta, \gamma$, respectively, define a constructible subset $\mathbb{V}^\alpha_{\beta, \gamma}$ of an affine variety. Geometrically, the varieties $\mathbb{V}^\alpha_{\beta, \gamma}$ are of particular interest as they occur naturally and since they typically consist of several irreducible components. In fact, each Littlewood-Richardson tableaux $\Gamma$ of shape $(\alpha, \beta, \gamma)$ contributes one irreducible component $\overline{\mathbb{V}}_\Gamma$. We consider the partial order $\Gamma \leq^*_{closure} \tilde{\Gamma}$ on LR-tableaux which is the transitive closure of the relation given by $\mathbb{V}_{\tilde{\Gamma}} \cap \overline{\mathbb{V}_\Gamma} \neq 0$. In this paper we compare the closure-relation with partial orders given by algebraic, combinatorial and geometric conditions. In the case where the parts of $\alpha$ are at most two, all those partial orders are equivalent. We discuss how the orders differ in general.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,01
dc.subjectDegenerationsen_US
dc.subjectPartial ordersen_US
dc.subjectHall polynomialsen_US
dc.subjectNilpotent operatorsen_US
dc.subjectInvariant subspacesen_US
dc.subjectLittlewood-Richardson tableauxen_US
dc.titleVarieties of Invariant Subspaces Given by Littlewood-Richardson Tableauxen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2014-01
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2014-01
local.subject.msc14
local.subject.msc16
local.subject.msc05
local.subject.msc47


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record