dc.contributor.author | Aue, Alexander | |
dc.contributor.author | Dubart Norinho, Diogo | |
dc.contributor.author | Hörmann, Siegfried | |
dc.date.accessioned | 2014-04-25T12:00:01Z | |
dc.date.accessioned | 2016-10-05T14:13:58Z | |
dc.date.available | 2014-04-25T12:00:01Z | |
dc.date.available | 2016-10-05T14:13:58Z | |
dc.date.issued | 2014-04-25 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1077 | |
dc.description | Research in Pairs 2013 | en_US |
dc.description.abstract | This paper addresses the prediction of stationary functional time series. Existing contributions to this problem have largely focused on the special case of first-order functional autoregressive processes because of their technical tractability and the current lack of advanced functional time series methodology. It is shown here how standard multivariate prediction techniques can be utilized in this context. The connection between functional and multivariate predictions is made precise for the important case of vector and functional autoregressions. The proposed method is easy to implement, making use of existing statistical software packages, and may therefore be attractive to a broader, possibly non-academic, audience. Its practical applicability is enhanced through the introduction of a novel functional final prediction error model selection criterion that allows for an automatic determination of the lag structure and the dimensionality of the model. The usefulness of the proposed methodology is demonstrated in a simulation study and an application to environmental data, namely the prediction of daily pollution curves describing the concentration of particulate matter in ambient air. It is found that the proposed prediction method often significantly outperforms existing methods. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2014,06 | |
dc.subject | Dimension reduction | en_US |
dc.subject | Final prediction | en_US |
dc.subject | error Forecasting | en_US |
dc.subject | Functional autoregressions | en_US |
dc.subject | Functional principal components | en_US |
dc.subject | Functional time series | en_US |
dc.subject | Particulate matter | en_US |
dc.subject | Vector autoregressions | en_US |
dc.title | On the prediction of stationary functional time series | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2014-06 | |
local.scientificprogram | Research in Pairs 2013 | |
local.series.id | OWP-2014-06 | |
local.subject.msc | 62 | |
local.subject.msc | 60 | |
dc.identifier.urn | urn:nbn:de:101:1-2014042310657 | |
dc.identifier.ppn | 1654986305 | |