Show simple item record

dc.contributor.authorIvanov, Anatoli F.
dc.contributor.authorTrofimchuk, Sergei I.
dc.date.accessioned2014-05-13T12:00:00Z
dc.date.accessioned2016-10-05T14:13:58Z
dc.date.available2014-05-13T12:00:00Z
dc.date.available2016-10-05T14:13:58Z
dc.date.issued2014-05-13
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1079
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractSeveral aspects of global dynamics and the existence of periodic solutions are studied for the scalar differential delay equation $x'(t) = a(t)f(x([t-K]))$, where $f(x)$ is a continuous negative feedback function, $x \cdot f(x) < 0 x \neq 0, 0\leq a(t)$ is continuous $\omega$-periodic, $[\cdot]$ is the integer part function, and the integer $K \geq 0$ is the delay. The case of integer period $\omega$ allows for a reduction to finite-dimensional difference equations. The dynamics of the latter are studied in terms of corresponding discrete maps, including the partial case of interval maps $(K = 0)$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,08
dc.subjectPeriodic differential delay equationsen_US
dc.subjectDiscretizationsen_US
dc.subjectDifference equationsen_US
dc.subjectPeriodic solutions and their stability/instabilityen_US
dc.subjectGlobal dynamicsen_US
dc.subjectReduction to discrete and one-dimensional mapsen_US
dc.subjectInterval mapsen_US
dc.titleOn periodic solutions and global dynamics in a periodic differential delay equationen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2014-08
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2014-08
local.subject.msc34
local.subject.msc37
local.subject.msc39


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record