Zur Kurzanzeige

dc.contributor.authorIvanov, Anatoli F.
dc.contributor.authorVerriest, Erik I.
dc.date.accessioned2014-05-13T12:00:01Z
dc.date.accessioned2016-10-05T14:13:58Z
dc.date.available2014-05-13T12:00:01Z
dc.date.available2016-10-05T14:13:58Z
dc.date.issued2014-05-13
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1080
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractWe prove the existence of periodic solutions of the differential delay equation $\varepsilon\dot{x}(t) + x(t)= f(x(t-1)), \varepsilon>0$ under the assumptions that the continuous nonlinearity $f(x)$ satisfies the negative feedback condition, $x \cdot f(x) < 0, x \neq 0$, has sufficiently large derivative at zero $|f'(0)|$, and possesses an invariant interval $I \ni 0, f(I) \subseteq I$, as a dimensional map. As $\varepsilon \to 0+$ we show the convergence of the periodic solutions to a discontinuous square wave function generated by the globally attracting 2-cycle of the map $f$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,09
dc.subjectSingular differential equations with delayen_US
dc.subjectOscillation and instabilityen_US
dc.subjectExistence of periodic solutionsen_US
dc.subjectSchauder fixed point theoremen_US
dc.subjectInterval mapsen_US
dc.subjectGlobally attracting cyclesen_US
dc.subjectAsymptotic shape of periodic solutionsen_US
dc.titleSquare wave periodic solutions of a differential delay equationen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2014-09
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2014-09
local.subject.msc34
dc.identifier.urnurn:nbn:de:101:1-201405125278
dc.identifier.ppn1656147955


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige