Show simple item record

dc.contributor.authorMayer, Volker
dc.contributor.authorUrbański, Mariusz
dc.date.accessioned2014-08-20T12:00:01Z
dc.date.accessioned2016-10-05T14:13:59Z
dc.date.available2014-08-20T12:00:01Z
dc.date.available2016-10-05T14:13:59Z
dc.date.issued2014-08-20
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1084
dc.descriptionResearch in Pairs 2013en_US
dc.description.abstractThis work concerns random dynamics of hyperbolic entire and meromorphic functions of finite order and whose derivative satisfies some growth condition at infinity. This class contains most of the classical families of transcendental functions and goes much beyond. Based on uniform versions of Nevanlinna’s value distribution theory we first build a thermodynamical formalism which, in particular, produces unique geometric and fiberwise invariant Gibbs states. Moreover, spectral gap property for the associated transfer operator along with exponential decay of correlations and a central limit theorem are shown. This part relies on our construction of new positive invariant cones that are adapted to the setting of unbounded phase spaces. This setting rules out the use of Hilbert’s metric along with the usual contraction principle. However these cones allow us to apply a contraction argument stemming from Bowen’s initial approach.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,12
dc.titleRandom dynamics of transcendental functionsen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2014-12
local.scientificprogramResearch in Pairs 2013
local.series.idOWP-2014-12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record