Show simple item record

dc.contributor.authorBate, Michael
dc.contributor.authorHerpel, Sebastian
dc.contributor.authorMartin, Benjamin
dc.contributor.authorRöhrle, Gerhard
dc.date.accessioned2014-12-20T12:00:01Z
dc.date.accessioned2016-10-05T14:14:00Z
dc.date.available2014-12-20T12:00:01Z
dc.date.available2016-10-05T14:14:00Z
dc.date.issued2014-12-20
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1088
dc.descriptionResearch in Pairs 2012en_US
dc.description.abstractFor a field $k$, let $G$ be a reductive $k$-group and $V$ an affine $k$-variety on which $G$ acts. Using the notion of cocharacter-closed $G(k)$-orbits in $V$ , we prove a rational version of the celebrated Hilbert-Mumford Theorem from geometric invariant theory. We initiate a study of applications stemming from this rationality tool. A number of examples are discussed to illustrate the concept of cocharacter-closure and to highlight how it differs from the usual Zariski-closure.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,16
dc.subjectAffine G-varietyen_US
dc.subjectCocharacter-closed orbiten_US
dc.subjectRationalityen_US
dc.titleCocharacter-Closure and the Rational Hilbert-Mumford Theoremen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2014-16
local.scientificprogramResearch in Pairs 2012
local.series.idOWP-2014-16
local.subject.msc20
local.subject.msc14
dc.identifier.urnurn:nbn:de:101:1-2014121920949
dc.identifier.ppn1653971584


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record