Show simple item record

dc.contributor.authorSchulte, Matthias
dc.contributor.authorThäle, Christoph
dc.date.accessioned2015-03-27T12:00:01Z
dc.date.accessioned2016-10-05T14:14:00Z
dc.date.available2015-03-27T12:00:01Z
dc.date.available2016-10-05T14:14:00Z
dc.date.issued2014
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1090
dc.descriptionResearch in Pairs 2014en_US
dc.description.abstractConsider a homogeneous Poisson point process in a compact convex set in d-dimensional Euclidean space which has interior points and contains the origin. The radial spanning tree is constructed by connecting each point of the Poisson point process with its nearest neighbour that is closer to the origin. For increasing intensity of the underlying Poisson point process the paper provides expectation and variance asymptotics as well as central limit theorems with rates of convergence for a class of edge functionals including the total edge length.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2014,18
dc.subjectCentral limit theoremen_US
dc.subjectDirected spanning foresten_US
dc.subjectPoisson point processen_US
dc.subjectRadial spanningen_US
dc.subjecttree Random graphen_US
dc.titleCentral Limit Theorems for the Radial Spanning Treeen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2014-18
local.scientificprogramResearch in Pairs 2014
local.series.idOWP-2014-18
local.subject.msc60
dc.identifier.urnurn:nbn:de:101:1-2015032612466
dc.identifier.ppn1655702033


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record