Show simple item record

dc.contributor.authorLupton, Gregory
dc.contributor.authorSmith, Samuel Bruce
dc.date.accessioned2015-04-10T12:00:00Z
dc.date.accessioned2016-10-05T14:14:00Z
dc.date.available2015-04-10T12:00:00Z
dc.date.available2016-10-05T14:14:00Z
dc.date.issued2015-04-10
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1091
dc.descriptionResearch in Pairs 2014en_US
dc.description.abstractWhich spaces occur as a classifying space for fibrations with a given fibre? We address this question in the context of rational homotopy theory. We construct an infinite family of finite complexes realized (up to rational homotopy) as classifying spaces. We also give several non-realization results, including the following: the rational homotopy types of $\mathbb{C}P^2$ and $S^4$ are not realized as the classifying space of any simply connected, rational space with finite-dimensional homotopy groups.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2015,01
dc.subjectClassifying Space for Fibrationsen_US
dc.subjectRational Homotopyen_US
dc.subjectType Derivationsen_US
dc.subjectMinimal Modelen_US
dc.subjectFinite H-Spaceen_US
dc.titleRealizing Spaces as Classifying Spacesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2015-01
local.scientificprogramResearch in Pairs 2014
local.series.idOWP-2015-01
local.subject.msc55
dc.identifier.urnurn:nbn:de:101:1-201504135400
dc.identifier.ppn1655746618


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record