dc.contributor.author | Genovese, Giuseppe | |
dc.contributor.author | Lucatti, Renato | |
dc.contributor.author | Valeri, Daniele | |
dc.date.accessioned | 2015-05-18T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:14:01Z | |
dc.date.available | 2015-05-18T12:00:00Z | |
dc.date.available | 2016-10-05T14:14:01Z | |
dc.date.issued | 2015-05-18 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1095 | |
dc.description | Research in Pairs 2014 | en_US |
dc.description.abstract | We study the one dimensional periodic derivative nonlinear Schrödinger (DNLS) equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion $\int h_k, k \in \mathbb{Z}_+$. In each $\int h_{2k}$ the term with the highest regularity involves the Sobolev norm $\dot{H}^k(\mathbb{T})$ of the solution of the DNLS equation. We show that a functional measure on $L^2(\mathbb{T})$, absolutely continuous w.r.t. the Gaussian measure with covariance $(\mathbb{I}+(-\Delta)^k)^{-1}$, is associated to each integral of motion $\int h_{2k}, k \geq 1$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2015,04 | |
dc.title | Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2015-04 | |
local.scientificprogram | Research in Pairs 2014 | |
local.series.id | OWP-2015-04 | |
dc.identifier.urn | urn:nbn:de:101:1-201505125086 | |
dc.identifier.ppn | 165683104X | |