Show simple item record

dc.contributor.authorIgnat, Radu
dc.contributor.authorNguyen, Luc
dc.contributor.authorSlastikov, Valeriy
dc.contributor.authorZarnescu, Arghir
dc.date.accessioned2015-07-29T12:00:00Z
dc.date.accessioned2016-10-05T14:14:01Z
dc.date.available2015-07-29T12:00:00Z
dc.date.available2016-10-05T14:14:01Z
dc.date.issued2015-07-29
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1096
dc.descriptionResearch in Pairs 2014en_US
dc.description.abstractWe study a class of symmetric critical points in a variational 2$D$ Landau - de Gennes model where the state of nematic liquid crystals is described by symmetric traceless $3 \times 3$ matrices. These critical points play the role of topological point defects carrying a degree $k\over 2$ for a nonzero integer $k$. We prove existence and study the qualitative behavior of these symmetric solutions. Our main result is the instability of critical points when $|k| \geq 2$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2015,05
dc.titleInstability of point defects in a two-dimensional nematic liquid crystal modelen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2015-05
local.scientificprogramResearch in Pairs 2014
local.series.idOWP-2015-05


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record