dc.contributor.author | Burban, Igor | |
dc.contributor.author | Drozd, Yuriy | |
dc.date.accessioned | 2015-05-13T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:14:02Z | |
dc.date.available | 2015-05-13T12:00:00Z | |
dc.date.available | 2016-10-05T14:14:02Z | |
dc.date.issued | 2015-05-13 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1097 | |
dc.description | Research in Pairs 2013 | en_US |
dc.description.abstract | In this article we develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, we give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, we prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. Our approach is illustrated on the case of $\mathbb{k}[[x, y, z]]/(xyz)$ as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singularities leads to a new class of problems of linear algebra, which we call representations of decorated bunches of chains. We prove that these matrix problems have tame representation type and describe the underlying canonical forms. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2015,06 | |
dc.title | Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2015-06 | |
local.scientificprogram | Research in Pairs 2013 | |
local.series.id | OWP-2015-06 | |
dc.identifier.urn | urn:nbn:de:101:1-201505127426 | |
dc.identifier.ppn | 1656830876 | |