Zur Kurzanzeige

dc.contributor.authorOlevskij, Aleksandr M.
dc.contributor.authorUlanovskii, Alexander
dc.date.accessioned2015-06-18T12:00:00Z
dc.date.accessioned2016-10-05T14:14:02Z
dc.date.available2015-06-18T12:00:00Z
dc.date.available2016-10-05T14:14:02Z
dc.date.issued2015-06-18
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1098
dc.descriptionResearch in Pairs 2014en_US
dc.description.abstractA set $\Lambda$ is called $p$-spectral if there is a function $g \in L^p (\mathbb{R})$ such that all $\Lambda$-translates $\{g(t-\lambda),\lambda \in \Lambda\}$ span $L^p(\mathbb{R})$. We prove that exponentially small non-zero pertubations of the integers are p-spectral for all $p>1$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2015,09
dc.titleDiscrete Translates in Lp (R)en_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2015-09
local.scientificprogramResearch in Pairs 2014
local.series.idOWP-2015-09
dc.identifier.urnurn:nbn:de:101:1-2015060913661
dc.identifier.ppn1657061159


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige