dc.contributor.author | Olevskij, Aleksandr M. | |
dc.contributor.author | Ulanovskii, Alexander | |
dc.date.accessioned | 2015-06-18T12:00:00Z | |
dc.date.accessioned | 2016-10-05T14:14:02Z | |
dc.date.available | 2015-06-18T12:00:00Z | |
dc.date.available | 2016-10-05T14:14:02Z | |
dc.date.issued | 2015-06-18 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1098 | |
dc.description | Research in Pairs 2014 | en_US |
dc.description.abstract | A set $\Lambda$ is called $p$-spectral if there is a function $g \in L^p (\mathbb{R})$ such that all $\Lambda$-translates $\{g(t-\lambda),\lambda \in \Lambda\}$ span $L^p(\mathbb{R})$. We prove that exponentially small non-zero pertubations of the integers are p-spectral for all $p>1$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2015,09 | |
dc.title | Discrete Translates in Lp (R) | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2015-09 | |
local.scientificprogram | Research in Pairs 2014 | |
local.series.id | OWP-2015-09 | |
dc.identifier.urn | urn:nbn:de:101:1-2015060913661 | |
dc.identifier.ppn | 1657061159 | |