dc.contributor.author | Boros, Endre | |
dc.contributor.author | Elbassioni, Khaled | |
dc.contributor.author | Gurvich, Vladimir | |
dc.contributor.author | Makino, Kazuhisa | |
dc.date.accessioned | 2016-02-06T12:00:01Z | |
dc.date.accessioned | 2016-10-05T14:14:03Z | |
dc.date.available | 2016-02-06T12:00:01Z | |
dc.date.available | 2016-10-05T14:14:03Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1106 | |
dc.description | Research in Pairs 2015 | en_US |
dc.description.abstract | We suggest a new algorithm for two-person zero-sum undiscounted stochastic games focusing on stationary strategies. Given a positive real $\epsilon$, let us call a stochastic game $\epsilon$-ergodic, if its values from any two initial positions differ by at most $\epsilon$. The proposed new algorithm outputs for every $\epsilon > 0$ in finite time either a pair of stationary strategies for the two players guaranteeing that the values from any initial positions are within an $\epsilon$-range, or identifies two initial positions $u$ and $v$ and corresponding stationary strategies for the players proving that the game values starting from $u$ and $v$ are at least $\epsilon/24$ apart.In particular, the above result shows that if a stochastic game is $0$-ergodic, then there are stationary strategies for the players proving $24\epsilon$-ergodicity. This result strengthens and provides a constructive version of an existential result by Vrieze (1980)claiming that if a stochastic game is $0$-ergodic, then there are $\epsilon$-optimal stationary strategies for every $\epsilon>0$. The suggested algorithm is based on a potential transformation technique that changes the range of local values at all positions without changing the normal form of the game. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2015,19 | |
dc.subject | undiscounted stochastic games | en_US |
dc.subject | limiting average payoff | en_US |
dc.subject | mean payoff | en_US |
dc.subject | local reward | en_US |
dc.subject | potential transformation | en_US |
dc.subject | computational game theory | en_US |
dc.title | A potential reduction algorithm for two-person zero-sum mean payoff stochastic games | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2015-19 | |
local.scientificprogram | Research in Pairs 2015 | |
local.series.id | OWP-2015-19 | |
dc.identifier.urn | urn:nbn:de:101:1-201602053959 | |
dc.identifier.ppn | 1653735287 | |