Zur Kurzanzeige

dc.contributor.authorBoros, Endre
dc.contributor.authorElbassioni, Khaled
dc.contributor.authorGurvich, Vladimir
dc.contributor.authorMakino, Kazuhisa
dc.date.accessioned2016-02-06T12:00:03Z
dc.date.accessioned2016-10-05T14:14:04Z
dc.date.available2016-02-06T12:00:03Z
dc.date.available2016-10-05T14:14:04Z
dc.date.issued2015
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1108
dc.descriptionResearch in Pairs 2015en_US
dc.description.abstractWe consider Gillette's two-person zero-sum stochastic games with perfect information. For each $k \in \mathbb{Z}_+$ we introduce an effective reward function, called $k$-total. For $k = 0$ and $1$ this function is known as mean payoff and total reward, respectively. We restrict our attention to the deterministic case. For all $k$, we prove the existence of a saddle point which can be realized by uniformly optimal pure stationary strategies. We also demonstrate that $k$-total reward games can be embedded into $(k+1)$-total reward games.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2015,21
dc.subjectstochastic game with perfect informationen_US
dc.subjectcyclic gamesen_US
dc.subjecttwo-personen_US
dc.subjectzero-sumen_US
dc.subjectmean payoffen_US
dc.subjecttotal rewarden_US
dc.titleA nested family of k-total effective rewards for positional gamesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2015-21
local.scientificprogramResearch in Pairs 2015
local.series.idOWP-2015-21
dc.identifier.urnurn:nbn:de:101:1-201602053974
dc.identifier.ppn1653736429


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige