Show simple item record

dc.contributor.authorFauser, Bertfried
dc.contributor.authorJarvis, Peter D.
dc.contributor.authorKing, Ronald C.
dc.date.accessioned2016-06-17T12:00:04Z
dc.date.accessioned2016-10-05T14:14:06Z
dc.date.available2016-06-17T12:00:04Z
dc.date.available2016-10-05T14:14:06Z
dc.date.issued2016-06-17
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1121
dc.descriptionResearch in Pairs 2014en_US
dc.description.abstractWe study the algebraic properties of plethystic vertex operators, introduced in J. Phys. A: Math. Theor. 43 405202 (2010), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape $\pi$. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each $\pi$, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopfalgebraic structure of certain symmetric function series and their plethysms.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2016,11
dc.titlePlethystic Vertex Operators and Boson-Fermion Correspondencesen_US
dc.typePreprinten_US
dc.identifier.doi10.14760/OWP-2016-11
local.scientificprogramResearch in Pairs 2014
local.series.idOWP-2016-11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record