Zur Kurzanzeige

dc.contributor.authorMaubach, Stefan
dc.contributor.authorPoloni, Pierre-Marie
dc.date.accessioned2008-03-20T12:00:18Z
dc.date.accessioned2016-10-05T14:14:08Z
dc.date.available2008-03-20T12:00:18Z
dc.date.available2016-10-05T14:14:08Z
dc.date.issued2008-03-13
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1129
dc.descriptionOWLF 2007en_US
dc.description.abstractA polynomial automorphism $F$ is called shifted linearizable if there exists a linear map $L$ such that $LF$ is linearizable. We prove that the Nagata automorphism $N:= (X-Y\Delta-Z\Delta^2,Y+Z\Delta,Z)$ where $\Delta=XZ+Y^2$ is shifted linearizable. More precisely, defining $L_{(a,b,c)}$ as the diagonal linear map having $a, b, c$ on its diagonal, we prove that if $ac=b^2$, then $L_{(a,b,c)}N$ is linearizable if and only if $bc \neq 1$. We do this as part of a significantly larger theory: for example, any exponent of a homogeneous locally finite derivation is shifted linearizable. We pose the conjecture that the group generated by the linearizable automorphisms may generate the group of automorphisms, and explain why this is a natural question.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2008,09
dc.titleThe Nagata automorphism is shifted linearizableen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2008-09
local.scientificprogramOWLF 2007
local.series.idOWP-2008-09
dc.identifier.urnurn:nbn:de:101:1-20080627293
dc.identifier.ppn1646797507


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige