dc.contributor.author | Maubach, Stefan | |
dc.contributor.author | Poloni, Pierre-Marie | |
dc.date.accessioned | 2008-03-20T12:00:18Z | |
dc.date.accessioned | 2016-10-05T14:14:08Z | |
dc.date.available | 2008-03-20T12:00:18Z | |
dc.date.available | 2016-10-05T14:14:08Z | |
dc.date.issued | 2008-03-13 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1129 | |
dc.description | OWLF 2007 | en_US |
dc.description.abstract | A polynomial automorphism $F$ is called shifted linearizable if there exists a linear map $L$ such that $LF$ is linearizable. We prove that the Nagata automorphism $N:= (X-Y\Delta-Z\Delta^2,Y+Z\Delta,Z)$ where $\Delta=XZ+Y^2$ is shifted linearizable. More precisely, defining $L_{(a,b,c)}$ as the diagonal linear map having $a, b, c$ on its diagonal, we prove that if $ac=b^2$, then $L_{(a,b,c)}N$ is linearizable if and only if $bc \neq 1$. We do this as part of a significantly larger theory: for example, any exponent of a homogeneous locally finite derivation is shifted linearizable. We pose the conjecture that the group generated by the linearizable automorphisms may generate the group of automorphisms, and explain why this is a natural question. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2008,09 | |
dc.title | The Nagata automorphism is shifted linearizable | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2008-09 | |
local.scientificprogram | OWLF 2007 | |
local.series.id | OWP-2008-09 | |
dc.identifier.urn | urn:nbn:de:101:1-20080627293 | |
dc.identifier.ppn | 1646797507 | |