Show simple item record

dc.contributor.authorBadea, Catalin
dc.contributor.authorGrivaux, Sophie
dc.contributor.authorMüller, Valdimir
dc.date.accessioned2008-03-20T12:00:24Z
dc.date.accessioned2016-10-05T14:14:09Z
dc.date.available2008-03-20T12:00:24Z
dc.date.available2016-10-05T14:14:09Z
dc.date.issued2008-03-19
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1136
dc.descriptionResearch in Pairs 2008en_US
dc.description.abstractFor each fixed number $\varepsilon$ in $(0, 1)$ we construct a bounded linear operator on the Banach space $\ell_1$ having a certain orbit which intersects every cone of aperture $\varepsilon$, but with every orbit avoiding a certain ball of radius $d$, for every $d>0$. This answers a question from [8]. On the other hand, if $T$ is an operator on the Banach space $X$ such that for every $\varepsilon>0$ there is a point in $X$ whose orbit under the action of $T$ meets every cone of aperture $\varepsilon$, then $T$ has a dense orbit.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2008,19
dc.subjectHypercyclic operatorsen_US
dc.subjectbilateral weighted shiftsen_US
dc.titleEpsilon-hypercyclic operatorsen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2008-19
local.scientificprogramResearch in Pairs 2008
local.series.idOWP-2008-19
local.subject.msc47
dc.identifier.urnurn:nbn:de:101:1-20081126625
dc.identifier.ppn1647534658


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record