dc.contributor.author | Eichelsbacher, Peter | |
dc.contributor.author | Löwe, Matthias | |
dc.date.accessioned | 2009-03-20T12:00:30Z | |
dc.date.accessioned | 2016-10-05T14:14:11Z | |
dc.date.available | 2009-03-20T12:00:30Z | |
dc.date.available | 2016-10-05T14:14:11Z | |
dc.date.issued | 2009-03-03 | |
dc.identifier.uri | http://publications.mfo.de/handle/mfo/1143 | |
dc.description | Research in Pairs 2008 | en_US |
dc.description.abstract | We obtain rates of convergence in limit theorems of partial sums $S_n$ for certain sequences of dependent, identically distributed random variables, which arise naturally in statistical mechanics, in particular, in the context of the Curie-Weiss models. Under appropriate assumptions there exists a real number $\alpha$, a positive number $\mu$, and a positive integer $k$ such that $(S_n-n\alpha)/n^{1-1/2k}$ converges weakly to a random variable with density proportional to $exp(-\mu|x|^{2k}/(2k)!)$. We develop Stein's method for exchangeable pairs for a rich class of distributional approximations including the Gaussian distributions as well as the non-Gaussian limit distributions with density proportional to $exp(-\mu|x|^{2k}/(2k)!)$. Our results include the optimal Berry-Esseen rate in the Central Limit Theorem for the total magnetization in the classical Curie-Weiss model, for high temperatures as well as at the critical temperature $\beta_c=1$, where the Central Limit Theorem fails. Moreover, we analyze Berry-Esseen bounds as the temperature $1/\beta_n$ converges to one and obtain a threshold for the speed of this convergence. Single spin distributions satisfying the Griffiths-Hurst-Sherman (GHS)inequality like models of liquid helium or continuous Curie-Weiss models are considered. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mathematisches Forschungsinstitut Oberwolfach | en_US |
dc.relation.ispartofseries | Oberwolfach Preprints;2009,09 | |
dc.subject | Berry-Esseen bound | en_US |
dc.subject | Stein's method | en_US |
dc.subject | exchangeable pairs | en_US |
dc.subject | Curie-Weiss models | en_US |
dc.subject | critical temperature | en_US |
dc.subject | GHS-inequality | en_US |
dc.title | Stein's method for dependent random variables occuring in statistical mechanics | en_US |
dc.type | Preprint | en_US |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | de |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | en |
dc.identifier.doi | 10.14760/OWP-2009-09 | |
local.scientificprogram | Research in Pairs 2008 | |
local.series.id | OWP-2009-09 | |
local.subject.msc | 60 | |
local.subject.msc | 82 | |
dc.identifier.urn | urn:nbn:de:101:1-2009042383 | |
dc.identifier.ppn | 1649512430 | |