Show simple item record

dc.contributor.authorBurban, Igor
dc.contributor.authorDrozd, Jurij A.
dc.date.accessioned2009-03-20T12:00:35Z
dc.date.accessioned2016-10-05T14:14:11Z
dc.date.available2009-03-20T12:00:35Z
dc.date.available2016-10-05T14:14:11Z
dc.date.issued2009-03-08
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1148
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractIn this article we introduce a new class of non-commutative projective curves and show that in certain cases the derived category of coherent sheaves on them has a tilting complex. In particular, we prove that the right bounded derived category of coherent sheaves on a reduced rational projective curve with only nodes and cusps as singularities, can be fully faithfully embedded into the right bounded derived category of the finite dimensional representations of a certain finite dimensional algebra of global dimension two. As an application of our approach we show that the dimension of the bounded derived category of coherent sheaves on a rational projective curve with only nodal or cuspidal singularities is at most two. In the case of the Kodaira cycles of projective lines, the corresponding tilted algebras belong to a well-known class of gentle algebras. We work out in details the tilting equivalence in the case of the Weierstrass nodal curve $zy^2=x^3+x^2z$.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2009,14
dc.titleTilting on non-commutative rational projective curvesen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2009-14
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2009-14
local.subject.msc14
local.subject.msc16
dc.identifier.urnurn:nbn:de:101:1-200907022522
dc.identifier.ppn1649512627


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record