Zur Kurzanzeige

dc.contributor.authorOlevskij, Aleksandr M.
dc.contributor.authorUlanovskii, Alexander
dc.date.accessioned2009-03-20T12:00:38Z
dc.date.accessioned2016-10-05T14:14:12Z
dc.date.available2009-03-20T12:00:38Z
dc.date.available2016-10-05T14:14:12Z
dc.date.issued2009-03-11
dc.identifier.urihttp://publications.mfo.de/handle/mfo/1151
dc.descriptionResearch in Pairs 2009en_US
dc.description.abstractLet $\Lambda \subset \mathbb{R}$ be a uniformly discrete sequence and $S \subset \mathbb{R}$ a compact set. We prove that if there exists a bounded sequence of functions in Paley-Wiener space $PW_s$, which approximates $\delta$-functions on $\Lambda$ with $l^2$-error $d$, then measure$(S) \geq 2\pi(1-d^2)D^+(\Lambda)$. This estimate is sharp for every $d$. Analogous estimate holds when the norms of approximating functions have a moderate growth, and we find a sharp growth restriction.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesOberwolfach Preprints;2009,17
dc.subjectPaley-Wiener spaceen_US
dc.subjectBernstein spaceen_US
dc.subjectSet of interpolationen_US
dc.subjectApproximation of discrete functionsen_US
dc.titleApproximation of discrete functions and size of spectrumen_US
dc.typePreprinten_US
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.de
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.en
dc.identifier.doi10.14760/OWP-2009-17
local.scientificprogramResearch in Pairs 2009
local.series.idOWP-2009-17
dc.identifier.urnurn:nbn:de:101:1-200907022557
dc.identifier.ppn1649512732


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige